Lec. No. |
Topics |
Readings/References/Comments |
Slides/Notes |
1 |
Course Logistics, Intro to Probabilistic Machine Learning |
A review article on PML and AI,
Probability and statistics refresher slides |
PPTX slides,
PDF slides
|
2 |
Probabilistic ML: Some Basic Ideas |
PML-1 (Section 4.6), Optional/recommended: Chapter 2 and Appendix B of PRML |
PPTX slides,
PDF slides
|
3 |
Estimating Parameters and Predictive Distributions: Some Simple Cases |
PML-1 (Section 4.6), Optional/recommended: Chapter 2 and Appendix B of PRML |
PPTX slides,
PDF slides
|
4 |
Gaussian Observation Model: Some Examples |
PML-1 (Section 4.6, Section 11.7). Optional/recommended: Conjugate Bayesian analysis of the Gaussian distribution |
PPTX slides,
PDF slides
|
5 |
Probabilistic Linear Regression |
Bayesian inference tutorial (Section 1-3) |
PPTX slides,
PDF slides
|
6 |
Logisti/Softmax Classification, Laplace Approximation |
PML-2 (Section 15.3) |
PPTX slides,
PDF slides
|
7 |
Model Selection and Model Averaging, Exponential Family |
PML-2: Section 2.3, 2.4, 3.4.5 |
PPTX slides,
PDF slides
|
8 |
Exponential Family (contd), Generative Supervised Learning |
CS771 slides on the generative sup. learning (PPTX,
PDF),
PML-1 (Chapter 9) |
PPTX slides,
PDF slides
|
9 |
Gaussian Process (GP) |
PML-2 Chapter 18 |
PPTX slides,
PDF slides
|
10 |
GP (wrap-up), Latent Variable Models and EM |
PRML Chapter 9 |
PPTX slides,
PDF slides
|
11 |
LVMs and EM (contd) |
PRML Chapter 9 |
PPTX slides,
PDF slides
|
12 |
EM (wrap-up) |
PRML Chapter 9 (+ PRML Section 3.5 on MLE-II for Bayesian Linear Regression) |
PPTX slides,
PDF slides
|
13 |
Variational Inference |
PML-2 Chapter 10.1-10.4 |
PPTX slides,
PDF slides
|
14 |
Variational Inference (contd) |
PML-2 Chapter 10.1-10.4 |
PPTX slides,
PDF slides
|
15 |
Variational Inference (wrap-up), Sampling from distributions |
PML-2 Chapter 10.1-10.4, PML-2: Chapter 11.1-11.5 |
PPTX slides,
PDF slides
|
16 |
Sampling Methods, MCMC |
|
PPTX slides,
PDF slides
|
17 |
MCMC (contd) |
|
PPTX slides,
PDF slides
|
18 |
MCMC (contd) |
|
PPTX slides,
PDF slides
|
19 |
MCMC (wrap-up), Deep Generative Models |
|
PPTX slides,
PDF slides
|
20 |
Deep Generative Models (VAE and GAN) |
|
PPTX slides,
PDF slides
|
21 |
Denoising Diffusion Models |
|
PPTX slides,
PDF slides
|
22 |
Denoising Diffusion Models (contd) |
|
PPTX slides,
PDF slides
|
23 |
Large Language Models (Autoregressive and Diffusion-based) |
|
PPTX slides,
PDF slides
|
24 |
Active Learning and Bayesian Optimization |
|
PPTX slides,
PDF slides
|
25 |
Assorted Topics (1): Calibration, Frequentist Statistics |
|
PPTX slides,
PDF slides
|
26 |
Assorted Topics (2): Conformal Prediction, Simulation-based Inference |
|
PPTX slides,
PDF slides
|