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Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔
[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦 ]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy) 

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 + trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2)

▪ These measures can also be used for evaluating other deep gen models like VAE
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𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how 

realistic the generated data is

High IS and low 

FID is desirable
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GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues 

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)
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GAN 1: No mode collapse (all 10 
modes captured in generation)

GAN 2: Mode collapse (stuck on 
one of the modes)
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Denoising Diffusion Models

▪ Consider gradually corrupting an image (𝒛0 = 𝒙) till it becomes pure noise (𝒛𝑇)

▪ Each step 𝑧𝑡−1 → 𝑧𝑡 is a pre-defined Gaussian perturbation (forward process)
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𝒙 𝒛1 𝒛2 𝒛𝑡 𝒛𝑇−1 𝒛𝑇

𝑞 𝒛𝑡 𝒛𝑡−1 =  𝒩(𝒛𝑡| 1 − 𝛽𝑡𝒛𝑡−1, 𝛽𝑡𝐈)

𝒛𝑡 = 1 − 𝛽𝑡𝒛𝑡−1 + 𝛽𝑡𝝐 (𝝐 ∼  𝒩(𝟎, 𝐈))

𝑞 𝒛𝑡 𝒙 =  𝒩(𝒛𝑡| 𝛼𝑡𝒙, (1 − 𝛼𝑡)𝐈)

where 𝛼𝑡 =  ς𝜏=1
𝑡 (1 − 𝛽𝜏)

𝑞 𝒛𝑇 𝒙 =  𝒩(𝒛𝑇|𝟎, 𝐈) as 𝑇 → ∞

implies

𝛽𝑡 ∈ 0,1  and 𝛽1 < 𝛽2 < ⋯ 𝛽𝑇−1  < 𝛽𝑇

Imp: Thus we can also compute 𝒛𝒕 

from 𝒙 directly in a single step 

𝒛𝑡 = 𝛼𝑡𝒙 + 1 − 𝛼𝑡𝝐 

Usually pre-defined but 

can also be learned
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Generating Data by Reversing Diffusion

▪ Reversing the diffusion(red arrows) would enable generating data from pure noise

▪ To reverse the diffusion, we need the distribution of 𝑧𝑡−1 given 𝑧𝑡, i.e., 𝑞(𝑧𝑡−1|𝑧𝑡)
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𝒙 𝒛1 𝒛2 𝒛𝑡 𝒛𝑇−1 𝒛𝑇

𝑞 𝑧𝑡−1 𝑧𝑡 =
𝑞 𝑧𝑡−1  𝑞 𝑧𝑡 𝑧𝑡−1

𝑞(𝑧𝑡)

𝑞 𝑧𝑡 = න 𝑞 𝑧𝑡 𝑥 𝑝 𝑥 𝑑𝑥

Since the true data distribution 

𝑝(𝑥) is not known, we can’t 

compute this integral

The denoising 

distribution

Intractable because 

𝑞(𝑧𝑡) and 𝑞(𝑧𝑡−1) are 

difficult to compute
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Towards a Tractable Reverse Diffusion

▪ Although 𝑞 𝒛𝑡−1 𝒛𝑡  isn’t tractable, the following distribution is tractable

▪ Reason: 𝑞 𝒛𝑡−1|𝒙  and 𝑞 𝒛𝑡 𝒛𝑡−1  are Gaussians, so 𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙  is Gaussian
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𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 =
𝑞 𝒛𝑡−1|𝒙  𝑞 𝒛𝑡 𝒛𝑡−1, 𝒙

𝑞(𝒛𝑡|𝒙)

=
𝑞 𝒛𝑡−1|𝒙  𝑞 𝒛𝑡 𝒛𝑡−1

𝑞(𝒛𝑡|𝒙)

𝑞 𝒛𝑡−1 𝒛𝑡, 𝒙 =  𝒩(𝒛𝑡−1|𝑚 𝒙, 𝒛𝑡 , 𝜎𝑡
2𝐈)

𝑚 𝒙, 𝒛𝑡 =
1 − 𝛼𝑡−1 1 − 𝛽𝑡𝒛𝑡 + 𝛼𝑡−1𝛽𝑡𝒙 

1 − 𝛼𝑡

𝜎𝑡
2 =

𝛽𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡

=
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝝐

Using 𝒙 =
1

𝛼𝑡
𝒛𝑡 −

1−𝛼𝑡

𝛼𝑡
𝝐 where 𝝐 ∼ 𝒩(𝟎, 𝐈)
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Towards a Tractable Reverse Diffusion

▪We saw that the reverse diffusion distribution is the Gaussian

▪ Let’s approximate 𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙  by another Gaussian that doesn’t depend on 𝒙 

▪ Usually, Σ(𝒛𝑡 , 𝒘, 𝑡) is chosen to be spherical. A popular choice: Σ 𝒛𝑡 , 𝒘, 𝑡 = 𝛽𝑡𝐈 

▪ The mean 𝜇 𝒛𝑡 , 𝒘, 𝑡  is defined to mimic the form of 𝑚 𝒙, 𝒛𝑡
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𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 =  𝒩(𝒛𝑡−1|𝑚 𝒙, 𝒛𝑡 , 𝜎𝑡
2𝐈)

𝑚 𝒙, 𝒛𝑡 =
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝝐where

𝑝 𝒛𝑡−1 𝒛𝑡 , 𝒘 =  𝒩(𝒛𝑡−1|𝜇 𝒛𝑡 , 𝒘, 𝑡 , Σ(𝒛𝑡 , 𝒘, 𝑡))

𝜇 𝒛𝑡 , 𝒘, 𝑡 =
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝑔 𝒛𝑡 , 𝒘, 𝑡

Issue: At generation time, we don’t 

have 𝒙 (the goal is to generate 𝒙 

which is only available for training 

data) so we can’t use 𝑚 𝒙, 𝒛𝑡  at 

generation time since it depends on 𝒙



CS772A: PML

Reversing the Diffusion

▪ The joint distribution of data and latents

▪ Let’s assume

▪ The true joint distribution of the latents given 𝑥

▪ To estimate 𝒘, we can maximize the ELBO defined as
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Pure NoiseImage

𝑞 𝑧1, 𝑧2, … , 𝑧𝑇 𝑥 = 𝑞(𝑧1|𝑥) ෑ
𝑡=2

𝑇

𝑞(𝑧𝑡|𝑧𝑡−1, 𝑥)

First and third terms don’t 

contain 𝑤 so can be ignored 

when maximizing the ELBO

This term is just like the VAE 

reconstruction error term 

(can approximate it using 

samples of 𝑧1 from 𝑞(𝑧1|𝑥)

Note that 𝜇 represents the denoising 

model (e.g., a neural net) which 

denoises 𝑧𝑡 to produce 𝑧𝑡−1

From ELBO 

definition𝔼𝑞 log
𝑝(𝑋,𝑍)

𝑞(𝑍)

Also note that unlike VI, 

here we aren’t estimating 

the 𝑞 distribution
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ELBO (contd)

▪ Recall the ELBO for the denoising diffusion model 

▪ Ignoring terms that don’t depend on 𝑤 and using

▪ The ELBO becomes

▪ Since both distributions in the KL divergence term are Gaussians, it becomes

 

99
Pure NoiseImage
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Predicting the noise

▪ The KL terms in the ELBO are of the form

▪Note that 

▪ Instead of learning 𝜇(𝑧𝑡 , 𝑤, 𝑡), we will learn a noise predictor 𝑔 𝑧𝑡, 𝑤, 𝑡  s.t. 

▪ Therefore 

 
Basically, we are now just 

predicting the noise 𝜖𝑡 using the 

neural network 𝑔(𝑧𝑡 , 𝑤, 𝑡) 
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From the definition 

of 𝑚𝑡(𝑥, 𝑧𝑡)

Network which gives the 

mean of the denoised 𝑧𝑡−1

Using the same form as 𝑚𝑡 with 

𝑔 𝑧𝑡 , 𝑤, 𝑡  trying to predict 𝜖𝑡
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Predicting the noise

▪We basically had the following

▪ The reconstruction error part in the ELBO can also be written as noise prediction

 

▪ Ignoring the constants in front of the squared error terms above, the ELBO becomes
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Empirically found to give 

improved performance

Can optimize using 

stochastic optimization

Pick an example 𝑥 randomly, 

generate a corruption 𝑧𝑡 by 

sampling 𝜖𝑡 and make a 

gradient based update to 𝑤
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Denoising Diffusion Model: The Training Algo

▪ The overall training algo is as follows
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Pseudo-code from Bishop & Bishop (2023)
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Denoising Diffusion Model: Generation

▪ Using the training model, we can now generate data as follows
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Pseudo-code from Bishop & Bishop (2023)

Generation can be slow 

because it requires 

several steps

Reducing the number 

of steps is an active 

area of research

One such approach is 

DDIM (denoising 

diffusion implicit model) 

which relaxes the 

Markov assumption in 

the noise process
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Noise Predictor Network

▪ A “U-net” model (a neural net) is commonly used as the noise predictor network

▪ An embedding (positional embedding) of the time-step 𝑡 is fed into the residual 
blocks of the U-net architecture
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Figure source: Arash Vahdat

U-net used in a 

diffusion modelA typical U-net
Noisy image at 

time 𝑡 Predicted noise

𝑧𝑡 𝑔(𝑧𝑡, 𝑤, 𝑡)
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Score based deep generative models

▪ For a probability distribution 𝑝(𝒙) its score function is defined as

▪ Assuming 𝑝(𝑥) as a target distribution, we can use SGLD to generate data samples as

▪ But doing so requires the score function 𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)

▪ Since 𝑝(𝑥) itself  is not known, how do get the score function 𝑠(𝒙)?

▪We can train a neural network to model the score function

▪ The score based approach is also helpful in “guided” or conditional generation
▪ Example: Want to generate 𝒙 while conditioning on some signal 𝑐 (e.g., class label or texual 

description of the input to be generated)
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𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)
Note: Here, this gradient is 

w.r.t. 𝑥 and not w.r.t. the 

parameters of the distribution

𝒙𝑡 = 𝒙𝑡+1 +
𝛿

2
∇𝒙log 𝑝 𝒙𝑡 + 𝛿𝜖𝑡

where 𝜖𝑡 ∼ 𝒩(0, 𝐼)
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Diffusion Models via Score Matching

▪ For a probability distribution 𝑝(𝒙) its score function is defined as

▪ Learning this score function is equivalent to learning the distribution 𝑝(𝒙)  

▪ We can parameterize the score function as 𝑠 𝒙 = 𝑠(𝒙, 𝒘) and define a loss function

▪ The distribution 𝑝(𝒙) isn’t known but we only have a dataset 𝒟 of 𝑁 samples
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𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)
Note: Here, this gradient is 

w.r.t. 𝑥 and not w.r.t. the 

parameters of the distribution

Can define it as 

a neural network

A discrete distribution 

represented by the N 

samples from the dataset

However, this is non-differentiable 

and thus can’t use it in the 

minimization of 𝐽 𝑤
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Score Matching

▪ Instead of 𝑝𝒟(𝑥), we define a smooth distribution

▪ Using this 𝑞𝜎(𝑧) instead of 𝑝𝒟(𝑥), we can define the “score loss” function as

▪ Using the 𝑁 samples from the dataset, the empirical loss will be
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One option is to define it as 

a Gaussian 𝒩(𝑧|𝑥, 𝜎2𝐼)
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Score Matching

▪ Recall that the score loss function is

▪ Choosing 𝑞 𝑧 𝑥, 𝜎 = 𝒩(𝑧|𝑥, 𝜎2𝐼), we get

▪ Note the similarity with denoising diffusion model where

▪ The score loss function measures the difference b/w predicted score 𝑠(𝑧, 𝑤) and noise

▪ Note that the score function 𝑠(𝑧, 𝑤) plays a similar role as noise predictor 𝑔(𝑧, 𝑤, 𝑡) in 
denoising diffusion model we saw earlier

▪ Careful selection of the noise variance 𝜎2 is important in this approach
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where    𝜖 = 𝑥 − 𝑧 

𝑞 𝑧𝑡 𝑥 = 𝒩(𝑧| 𝛼𝑡𝑥, (1 − 𝛼𝑡)𝐼)
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Noise Variance in Score Matching

▪ Success of score matching depends on the estimate of score function 𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)

▪ In regions where 𝑝(𝑥) is small/zero, the estimate 𝑠 𝑧, 𝑤  may not be reliable

▪ Recall that, in score matching, we typically use 𝑞 𝑧 𝑥, 𝜎 = 𝒩(𝑧|𝑥, 𝜎2𝐼)

▪ Using the appropriate 𝜎2 is critical
▪ Using large 𝜎2 means we won’t have small/zero values for 𝑞(𝑧|𝑥) but also high distortion

▪ Very small 𝜎2 means 𝑞 𝑧|𝑥  is close to 𝑝(𝑥)

▪ We can choose a series of variances 𝜎1
2 < 𝜎2

2 < ⋯ < 𝜎𝐿
2 and use the following loss function
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This gives us 𝐿 score matching 

based diffusion models with 

different variances

We can run SGLD where we use a 

few steps of each in a sequences 

𝐿, 𝐿 − 1, 𝐿 − 2, … , 2,1

𝜆(𝑖) is the weighting 

coefficient for model 𝑖
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Diffusion Models and SDE

▪ Stochastic Differential Equations (SDE) define a continuous-time process

▪Denoising diffusion model and score matching models are like discretization of the 
continuous-time SDE

▪ The forward SDE is written as

▪ The corresponding reverse SDE can be written as
 

▪ We can solve SDE by discretizing time
▪ For equal-size time steps, we get the Langevin dynamics based equations for the updates

▪ SDE connection is helpful in designing fast reverse process for diffusion models
▪ For example, we can leverage the ODE corresponding to the SDE for faster sampling
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This is like the score function

The corresponding ODE for 

the SDE reverse process
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Guided Diffusion

▪ Often we want to generate data based on some “reference” conditioning signal, e.g., 
▪ Images of a specific class (class-conditional generation)

▪ Images based on some textual description

▪ High resolution image using a low-resolution image (image “super-resolution”)

▪ Denoting the data as 𝒙 and the conditioning signal as 𝒄, we want to learn 𝑝(𝒙|𝒄)

21

Conditioning signal: “stained glass 
window of a panda eating bamboo”

Conditioning signal: Low-res 
image on the left

Figure source: DLFC (Bishop and Bishop, 2023) 
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Classifier Guidance

▪ Assume we have an already training classifier of the form 𝑝 𝑐 𝑥

▪ We can then define the score function of a conditional diffusion model as

▪ We can also control the contribution of the classifier by defining the score function as

▪ Large 𝜆 will encourage generation of 𝑥 which respects the conditioning signal 𝑐

▪ However, this approach requires a classifier trained on noisy images
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Score function of 

unconditional diffusion model
Classifier guidance term
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Classifier-free Guidance

▪ Recall the score function in classifier guidance method

▪ To eliminate the classifier term ∇𝑥 log 𝑝(𝑐|𝑥), use the fact that 

 

▪ Thus we can rewrite the score function as follows

▪ No need to train a separate classifier 𝑝(𝑐|𝑥)

▪ Also, no need to train both 𝑝(𝑥) and 𝑝 𝑥 𝑐
▪ Just train 𝑝(𝑥|𝑐) using a score-function based approach and use 𝑝 𝑥 𝑐 = 0 = 𝑝(𝑥) 
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Latent Diffusion Models (LDM)

▪Defines diffusion process in a latent space instead of in data (e.g., pixel) space

▪ The popular “Stable Diffusion” is based on LDM

▪Diffusion process in a low-dim latent space is also more efficient computationally

▪ Can also condition the generation of other modalities such as text

24

*High-Resolution Image Synthesis with Latent Diffusion Models (Rombach et al, 2022)
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Cascaded Diffusion Models

▪ Useful for generating high-resolution images using conditioning

▪ Cascaded approach is usually better than a direct generation of high-resolution image
▪ Smaller model size

▪ Learning gradual transformations is easier than a direct transformation

25
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Summary

▪ Diffusion Models (denoising diffusion models, score based models, etc) are currently the 
best performing methods

▪ A lot of ongoing work on diffusion models, e.g., 
▪ Improving quality of generation

▪ Speeding-up generation

▪ Combining them with other generative models (e.g., large language models)

26
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