
Denoising Diffusion Models

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔
[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy)

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 + trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2)

▪ These measures can also be used for evaluating other deep gen models like VAE

2

𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how

realistic the generated data is

High IS and low

FID is desirable

CS772A: PML

GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)

3

GAN 1: No mode collapse (all 10
modes captured in generation)

GAN 2: Mode collapse (stuck on
one of the modes)

CS772A: PML

Denoising Diffusion Models

▪ Consider gradually corrupting an image (𝒛0 = 𝒙) till it becomes pure noise (𝒛𝑇)

▪ Each step 𝑧𝑡−1 → 𝑧𝑡 is a pre-defined Gaussian perturbation (forward process)

4

𝒙 𝒛1 𝒛2 𝒛𝑡 𝒛𝑇−1 𝒛𝑇

𝑞 𝒛𝑡 𝒛𝑡−1 = 𝒩(𝒛𝑡| 1 − 𝛽𝑡𝒛𝑡−1, 𝛽𝑡𝐈)

𝒛𝑡 = 1 − 𝛽𝑡𝒛𝑡−1 + 𝛽𝑡𝝐 (𝝐 ∼ 𝒩(𝟎, 𝐈))

𝑞 𝒛𝑡 𝒙 = 𝒩(𝒛𝑡| 𝛼𝑡𝒙, (1 − 𝛼𝑡)𝐈)

where 𝛼𝑡 = ς𝜏=1
𝑡 (1 − 𝛽𝜏)

𝑞 𝒛𝑇 𝒙 = 𝒩(𝒛𝑇|𝟎, 𝐈) as 𝑇 → ∞

implies

𝛽𝑡 ∈ 0,1 and 𝛽1 < 𝛽2 < ⋯ 𝛽𝑇−1 < 𝛽𝑇

Imp: Thus we can also compute 𝒛𝒕

from 𝒙 directly in a single step

𝒛𝑡 = 𝛼𝑡𝒙 + 1 − 𝛼𝑡𝝐

Usually pre-defined but

can also be learned

CS772A: PML

Generating Data by Reversing Diffusion

▪ Reversing the diffusion(red arrows) would enable generating data from pure noise

▪ To reverse the diffusion, we need the distribution of 𝑧𝑡−1 given 𝑧𝑡, i.e., 𝑞(𝑧𝑡−1|𝑧𝑡)

5

𝒙 𝒛1 𝒛2 𝒛𝑡 𝒛𝑇−1 𝒛𝑇

𝑞 𝑧𝑡−1 𝑧𝑡 =
𝑞 𝑧𝑡−1 𝑞 𝑧𝑡 𝑧𝑡−1

𝑞(𝑧𝑡)

𝑞 𝑧𝑡 = න 𝑞 𝑧𝑡 𝑥 𝑝 𝑥 𝑑𝑥

Since the true data distribution

𝑝(𝑥) is not known, we can’t

compute this integral

The denoising

distribution

Intractable because

𝑞(𝑧𝑡) and 𝑞(𝑧𝑡−1) are

difficult to compute

CS772A: PML

Towards a Tractable Reverse Diffusion

▪ Although 𝑞 𝒛𝑡−1 𝒛𝑡 isn’t tractable, the following distribution is tractable

▪ Reason: 𝑞 𝒛𝑡−1|𝒙 and 𝑞 𝒛𝑡 𝒛𝑡−1 are Gaussians, so 𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 is Gaussian

6

𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 =
𝑞 𝒛𝑡−1|𝒙 𝑞 𝒛𝑡 𝒛𝑡−1, 𝒙

𝑞(𝒛𝑡|𝒙)

=
𝑞 𝒛𝑡−1|𝒙 𝑞 𝒛𝑡 𝒛𝑡−1

𝑞(𝒛𝑡|𝒙)

𝑞 𝒛𝑡−1 𝒛𝑡, 𝒙 = 𝒩(𝒛𝑡−1|𝑚 𝒙, 𝒛𝑡 , 𝜎𝑡
2𝐈)

𝑚 𝒙, 𝒛𝑡 =
1 − 𝛼𝑡−1 1 − 𝛽𝑡𝒛𝑡 + 𝛼𝑡−1𝛽𝑡𝒙

1 − 𝛼𝑡

𝜎𝑡
2 =

𝛽𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡

=
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝝐

Using 𝒙 =
1

𝛼𝑡
𝒛𝑡 −

1−𝛼𝑡

𝛼𝑡
𝝐 where 𝝐 ∼ 𝒩(𝟎, 𝐈)

CS772A: PML

Towards a Tractable Reverse Diffusion

▪We saw that the reverse diffusion distribution is the Gaussian

▪ Let’s approximate 𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 by another Gaussian that doesn’t depend on 𝒙

▪ Usually, Σ(𝒛𝑡 , 𝒘, 𝑡) is chosen to be spherical. A popular choice: Σ 𝒛𝑡 , 𝒘, 𝑡 = 𝛽𝑡𝐈

▪ The mean 𝜇 𝒛𝑡 , 𝒘, 𝑡 is defined to mimic the form of 𝑚 𝒙, 𝒛𝑡

7

𝑞 𝒛𝑡−1 𝒛𝑡 , 𝒙 = 𝒩(𝒛𝑡−1|𝑚 𝒙, 𝒛𝑡 , 𝜎𝑡
2𝐈)

𝑚 𝒙, 𝒛𝑡 =
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝝐where

𝑝 𝒛𝑡−1 𝒛𝑡 , 𝒘 = 𝒩(𝒛𝑡−1|𝜇 𝒛𝑡 , 𝒘, 𝑡 , Σ(𝒛𝑡 , 𝒘, 𝑡))

𝜇 𝒛𝑡 , 𝒘, 𝑡 =
1

1 − 𝛽𝑡

𝒛𝑡 −
𝛽𝑡

1 − 𝛼𝑡

𝑔 𝒛𝑡 , 𝒘, 𝑡

Issue: At generation time, we don’t

have 𝒙 (the goal is to generate 𝒙

which is only available for training

data) so we can’t use 𝑚 𝒙, 𝒛𝑡 at

generation time since it depends on 𝒙

CS772A: PML

Reversing the Diffusion

▪ The joint distribution of data and latents

▪ Let’s assume

▪ The true joint distribution of the latents given 𝑥

▪ To estimate 𝒘, we can maximize the ELBO defined as

8
Pure NoiseImage

𝑞 𝑧1, 𝑧2, … , 𝑧𝑇 𝑥 = 𝑞(𝑧1|𝑥) ෑ
𝑡=2

𝑇

𝑞(𝑧𝑡|𝑧𝑡−1, 𝑥)

First and third terms don’t

contain 𝑤 so can be ignored

when maximizing the ELBO

This term is just like the VAE

reconstruction error term

(can approximate it using

samples of 𝑧1 from 𝑞(𝑧1|𝑥)

Note that 𝜇 represents the denoising

model (e.g., a neural net) which

denoises 𝑧𝑡 to produce 𝑧𝑡−1

From ELBO

definition𝔼𝑞 log
𝑝(𝑋,𝑍)

𝑞(𝑍)

Also note that unlike VI,

here we aren’t estimating

the 𝑞 distribution

CS772A: PML

ELBO (contd)

▪ Recall the ELBO for the denoising diffusion model

▪ Ignoring terms that don’t depend on 𝑤 and using

▪ The ELBO becomes

▪ Since both distributions in the KL divergence term are Gaussians, it becomes

99
Pure NoiseImage

CS772A: PML

Predicting the noise

▪ The KL terms in the ELBO are of the form

▪Note that

▪ Instead of learning 𝜇(𝑧𝑡 , 𝑤, 𝑡), we will learn a noise predictor 𝑔 𝑧𝑡, 𝑤, 𝑡 s.t.

▪ Therefore

Basically, we are now just

predicting the noise 𝜖𝑡 using the

neural network 𝑔(𝑧𝑡 , 𝑤, 𝑡)

10

From the definition

of 𝑚𝑡(𝑥, 𝑧𝑡)

Network which gives the

mean of the denoised 𝑧𝑡−1

Using the same form as 𝑚𝑡 with

𝑔 𝑧𝑡 , 𝑤, 𝑡 trying to predict 𝜖𝑡

CS772A: PML

Predicting the noise

▪We basically had the following

▪ The reconstruction error part in the ELBO can also be written as noise prediction

▪ Ignoring the constants in front of the squared error terms above, the ELBO becomes

11

Empirically found to give

improved performance

Can optimize using

stochastic optimization

Pick an example 𝑥 randomly,

generate a corruption 𝑧𝑡 by

sampling 𝜖𝑡 and make a

gradient based update to 𝑤

CS772A: PML

Denoising Diffusion Model: The Training Algo

▪ The overall training algo is as follows

12

Pseudo-code from Bishop & Bishop (2023)

CS772A: PML

Denoising Diffusion Model: Generation

▪ Using the training model, we can now generate data as follows

13

Pseudo-code from Bishop & Bishop (2023)

Generation can be slow

because it requires

several steps

Reducing the number

of steps is an active

area of research

One such approach is

DDIM (denoising

diffusion implicit model)

which relaxes the

Markov assumption in

the noise process

CS772A: PML

Noise Predictor Network

▪ A “U-net” model (a neural net) is commonly used as the noise predictor network

▪ An embedding (positional embedding) of the time-step 𝑡 is fed into the residual
blocks of the U-net architecture

14

Figure source: Arash Vahdat

U-net used in a

diffusion modelA typical U-net
Noisy image at

time 𝑡 Predicted noise

𝑧𝑡 𝑔(𝑧𝑡, 𝑤, 𝑡)

CS772A: PML

Score based deep generative models

▪ For a probability distribution 𝑝(𝒙) its score function is defined as

▪ Assuming 𝑝(𝑥) as a target distribution, we can use SGLD to generate data samples as

▪ But doing so requires the score function 𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)

▪ Since 𝑝(𝑥) itself is not known, how do get the score function 𝑠(𝒙)?

▪We can train a neural network to model the score function

▪ The score based approach is also helpful in “guided” or conditional generation
▪ Example: Want to generate 𝒙 while conditioning on some signal 𝑐 (e.g., class label or texual

description of the input to be generated)

15

𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)
Note: Here, this gradient is

w.r.t. 𝑥 and not w.r.t. the

parameters of the distribution

𝒙𝑡 = 𝒙𝑡+1 +
𝛿

2
∇𝒙log 𝑝 𝒙𝑡 + 𝛿𝜖𝑡

where 𝜖𝑡 ∼ 𝒩(0, 𝐼)

CS772A: PML

Diffusion Models via Score Matching

▪ For a probability distribution 𝑝(𝒙) its score function is defined as

▪ Learning this score function is equivalent to learning the distribution 𝑝(𝒙)

▪ We can parameterize the score function as 𝑠 𝒙 = 𝑠(𝒙, 𝒘) and define a loss function

▪ The distribution 𝑝(𝒙) isn’t known but we only have a dataset 𝒟 of 𝑁 samples

16

𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)
Note: Here, this gradient is

w.r.t. 𝑥 and not w.r.t. the

parameters of the distribution

Can define it as

a neural network

A discrete distribution

represented by the N

samples from the dataset

However, this is non-differentiable

and thus can’t use it in the

minimization of 𝐽 𝑤

CS772A: PML

Score Matching

▪ Instead of 𝑝𝒟(𝑥), we define a smooth distribution

▪ Using this 𝑞𝜎(𝑧) instead of 𝑝𝒟(𝑥), we can define the “score loss” function as

▪ Using the 𝑁 samples from the dataset, the empirical loss will be

17

One option is to define it as

a Gaussian 𝒩(𝑧|𝑥, 𝜎2𝐼)

CS772A: PML

Score Matching

▪ Recall that the score loss function is

▪ Choosing 𝑞 𝑧 𝑥, 𝜎 = 𝒩(𝑧|𝑥, 𝜎2𝐼), we get

▪ Note the similarity with denoising diffusion model where

▪ The score loss function measures the difference b/w predicted score 𝑠(𝑧, 𝑤) and noise

▪ Note that the score function 𝑠(𝑧, 𝑤) plays a similar role as noise predictor 𝑔(𝑧, 𝑤, 𝑡) in
denoising diffusion model we saw earlier

▪ Careful selection of the noise variance 𝜎2 is important in this approach

18

where 𝜖 = 𝑥 − 𝑧

𝑞 𝑧𝑡 𝑥 = 𝒩(𝑧| 𝛼𝑡𝑥, (1 − 𝛼𝑡)𝐼)

CS772A: PML

Noise Variance in Score Matching

▪ Success of score matching depends on the estimate of score function 𝑠 𝒙 = ∇𝒙log 𝑝(𝒙)

▪ In regions where 𝑝(𝑥) is small/zero, the estimate 𝑠 𝑧, 𝑤 may not be reliable

▪ Recall that, in score matching, we typically use 𝑞 𝑧 𝑥, 𝜎 = 𝒩(𝑧|𝑥, 𝜎2𝐼)

▪ Using the appropriate 𝜎2 is critical
▪ Using large 𝜎2 means we won’t have small/zero values for 𝑞(𝑧|𝑥) but also high distortion

▪ Very small 𝜎2 means 𝑞 𝑧|𝑥 is close to 𝑝(𝑥)

▪ We can choose a series of variances 𝜎1
2 < 𝜎2

2 < ⋯ < 𝜎𝐿
2 and use the following loss function

19

This gives us 𝐿 score matching

based diffusion models with

different variances

We can run SGLD where we use a

few steps of each in a sequences

𝐿, 𝐿 − 1, 𝐿 − 2, … , 2,1

𝜆(𝑖) is the weighting

coefficient for model 𝑖

CS772A: PML

Diffusion Models and SDE

▪ Stochastic Differential Equations (SDE) define a continuous-time process

▪Denoising diffusion model and score matching models are like discretization of the
continuous-time SDE

▪ The forward SDE is written as

▪ The corresponding reverse SDE can be written as

▪ We can solve SDE by discretizing time
▪ For equal-size time steps, we get the Langevin dynamics based equations for the updates

▪ SDE connection is helpful in designing fast reverse process for diffusion models
▪ For example, we can leverage the ODE corresponding to the SDE for faster sampling

20

This is like the score function

The corresponding ODE for

the SDE reverse process

CS772A: PML

Guided Diffusion

▪ Often we want to generate data based on some “reference” conditioning signal, e.g.,
▪ Images of a specific class (class-conditional generation)

▪ Images based on some textual description

▪ High resolution image using a low-resolution image (image “super-resolution”)

▪ Denoting the data as 𝒙 and the conditioning signal as 𝒄, we want to learn 𝑝(𝒙|𝒄)

21

Conditioning signal: “stained glass
window of a panda eating bamboo”

Conditioning signal: Low-res
image on the left

Figure source: DLFC (Bishop and Bishop, 2023)

CS772A: PML

Classifier Guidance

▪ Assume we have an already training classifier of the form 𝑝 𝑐 𝑥

▪ We can then define the score function of a conditional diffusion model as

▪ We can also control the contribution of the classifier by defining the score function as

▪ Large 𝜆 will encourage generation of 𝑥 which respects the conditioning signal 𝑐

▪ However, this approach requires a classifier trained on noisy images

22

Score function of

unconditional diffusion model
Classifier guidance term

CS772A: PML

Classifier-free Guidance

▪ Recall the score function in classifier guidance method

▪ To eliminate the classifier term ∇𝑥 log 𝑝(𝑐|𝑥), use the fact that

▪ Thus we can rewrite the score function as follows

▪ No need to train a separate classifier 𝑝(𝑐|𝑥)

▪ Also, no need to train both 𝑝(𝑥) and 𝑝 𝑥 𝑐
▪ Just train 𝑝(𝑥|𝑐) using a score-function based approach and use 𝑝 𝑥 𝑐 = 0 = 𝑝(𝑥)

23

CS772A: PML

Latent Diffusion Models (LDM)

▪Defines diffusion process in a latent space instead of in data (e.g., pixel) space

▪ The popular “Stable Diffusion” is based on LDM

▪Diffusion process in a low-dim latent space is also more efficient computationally

▪ Can also condition the generation of other modalities such as text

24

*High-Resolution Image Synthesis with Latent Diffusion Models (Rombach et al, 2022)

CS772A: PML

Cascaded Diffusion Models

▪ Useful for generating high-resolution images using conditioning

▪ Cascaded approach is usually better than a direct generation of high-resolution image
▪ Smaller model size

▪ Learning gradual transformations is easier than a direct transformation

25

CS772A: PML

Summary

▪ Diffusion Models (denoising diffusion models, score based models, etc) are currently the
best performing methods

▪ A lot of ongoing work on diffusion models, e.g.,
▪ Improving quality of generation

▪ Speeding-up generation

▪ Combining them with other generative models (e.g., large language models)

26

	Slide 1: Denoising Diffusion Models
	Slide 2: Evaluating GANs
	Slide 3: GAN: Some Issues/Comments
	Slide 4: Denoising Diffusion Models
	Slide 5: Generating Data by Reversing Diffusion
	Slide 6: Towards a Tractable Reverse Diffusion
	Slide 7: Towards a Tractable Reverse Diffusion
	Slide 8: Reversing the Diffusion
	Slide 9: ELBO (contd)
	Slide 10: Predicting the noise
	Slide 11: Predicting the noise
	Slide 12: Denoising Diffusion Model: The Training Algo
	Slide 13: Denoising Diffusion Model: Generation
	Slide 14: Noise Predictor Network
	Slide 15: Score based deep generative models
	Slide 16: Diffusion Models via Score Matching
	Slide 17: Score Matching
	Slide 18: Score Matching
	Slide 19: Noise Variance in Score Matching
	Slide 20: Diffusion Models and SDE
	Slide 21: Guided Diffusion
	Slide 22: Classifier Guidance
	Slide 23: Classifier-free Guidance
	Slide 24: Latent Diffusion Models (LDM)
	Slide 25: Cascaded Diffusion Models
	Slide 26: Summary

