
GP (contd), Latent Variable Models
and EM Algorithm

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

GP Prediction with Gaussian Likelihood

▪ In general, the PPD when using GP is defined as

▪ For Gaussian likelihood (and fixed hyperparams), we don’t need to do above integral

▪ Reason: The marginal likelihood is Gaussian

▪ 𝑝 𝑦∗ 𝒚 is almost identical to 𝑝 𝑓∗ 𝐟 with 𝐊 replaced by 𝐂N + extra 𝛽−1 noise variance

2

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝐟 𝑝 𝐟 𝒚 𝑑𝐟𝑑𝑓∗

𝑝 𝒚 = ∫ 𝑝 𝒚 𝐟 𝑝 𝐟 𝑑𝒇 = 𝒩 𝒚 𝟎, 𝐊 + 𝛽−1𝐈𝑵 = 𝒩 𝒚 𝟎, 𝐂N

𝑝
𝒚
𝑦∗

= 𝒩
𝒚
𝑦∗

|
𝟎
0

,
𝐂N 𝐤∗

𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗ + 𝛽−1

𝑝(𝒚 𝐟 = 𝒩(𝒚|𝐟, 𝛽−1𝐈𝑁) 𝑝(𝐟)= 𝒩(𝐟|𝟎,𝐊)Gaussian likelihood

(assuming 𝛽 is fixed)

Marginal likelihood

of training outputs

Marginal likelihood of

training and test outputs

GP prior

𝑝 𝑦∗ 𝒚 = 𝒩 𝑦∗|𝐤∗
⊤𝐂𝑁

−1𝒚, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1
PPD obtained using

joint to conditional

results of Gaussians

Assuming zero

mean function

And don’t even have to

compute/use the posterior

𝑝 𝐟 𝒚 (which in this case is

a Gaussian by the way ☺)

to get the PPD

CS772A: PML

Learning Hyperparameters in GP based Models

▪ Can learn the hyperparameters of the GP prior as well as of the likelihood model

▪ Assuming 𝜇 = 0, the hyperparams of GP are cov/kernel function hyperparams

▪ MLE-II is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc)

▪ Denoting the covariance/kernel matrix as 𝐊𝜃, for Gaussian likelihood case, the marg-lik

▪ This can be maximized to learn 𝜃 and 𝛽

▪ For non-Gaussian likelihoods, the marg-lik itself will need to be approximated

3

Different RBF

kernel bandwidth

𝛾𝑑 for each feature

Can help in feature selection (irrelevant

features will tend to have very large 𝛾𝑑)

𝑝 𝒚|𝜃, 𝛽−1 = 𝒩 𝒚 𝟎, 𝐊𝜃 + 𝛽−1𝐈𝑵

Ability to learn

kernel hyperparams

(without cross-

valid) is another

very appealing

property of GP

CS772A: PML

Weight Space View vs Function Space View

▪ GPs are defined w.r.t. a function space that models input-output relationship

▪ In contrast, we have seen models that are defined w.r.t. a weight space, e.g.,

▪ Thus the joint marginal of the 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁 is a multivariate Gaussian

▪ Thus GPs can be seen as bypassing the weight space and directly defining the
model using a marginal likelihood via a function space defined by the GP

4

𝑝 𝒚 𝑿, 𝒘 = 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

𝑝(𝒘) = 𝒩(𝒘|𝝁0, 𝚺0)

𝑝 𝒚 𝑿 = ∫ 𝑝 𝒚 𝑿, 𝒘 𝑝 𝒘 𝑑𝒘 = 𝒩(𝒚|𝑿𝝁0, 𝛽−1𝑰𝑁 + 𝑿𝚺0𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝛽−1𝑰𝑁 + 𝑿𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝑿𝑿⊤)

𝑝

𝑦1

𝑦2

⋮
𝑦𝑁

= 𝒩

0
0
⋮
0

,

𝑥1
⊤𝑥1

𝑥2
⊤𝑥1

⋯
𝑥1

⊤𝑥𝑁

𝑥2
⊤𝑥𝑁

⋮ ⋱ ⋮
𝑥𝑁

⊤𝑥1 ⋯ 𝑥𝑁
⊤𝑥𝑁

Same as a GP 𝑓(𝑥𝑖) = 𝑦𝑖 , 𝜇 𝑥 = 0 and linear

covariance/kernel function 𝜅 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖
⊤𝑥𝑗

Likelihood

Prior over weight vector
Marginal likelihood

after integrating

out the weights

Marginal likelihood assuming 𝝁0 = 𝟎 and 𝚺0 = 𝑰

Assuming noise-free likelihood

This equivalence also shows

that Bayesian linear regression

is a special case of GP with

linear kernel

CS772A: PML

Scalability of GPs

▪ Computational costs in some steps of GP models scale in the size of training data

▪ For example, prediction cost is 𝑂(𝑁)

▪ GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) – takes 𝑂(𝑁3)

▪ Storage also requires 𝑂(𝑁2) since need to store the covariance matrix

▪ A lot of work on speeding up GPs1. Some prominent approaches include

▪ Inducing Point Methods (condition predictions only on a small set of “learnable” points)

▪ Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)

▪ Kernel approximations

▪Note that nearest neighbor methods and kernel methods also face similar issues
▪ Many tricks to speed up kernel methods can be used for speeding up GPs too

5

𝑝 𝑦∗ 𝒚 = 𝒩(𝑦∗| Ƹ𝜇, ො𝜎2) Ƹ𝜇 = 𝐤∗
⊤𝐂𝑁

−1𝒚 ො𝜎2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1

𝑂(𝑁) cost assuming C𝑁

is already inverted

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

𝑀 ≪ 𝑁 pseudo-inputs

and pseudo-outputs

CS772A: PML

Neural Networks and Gaussian Process

▪ An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP

▪ Shown formally by (Neal2, 1994). Based on applying the central limit theorem

▪ This equivalence is useful for several reasons
▪ Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

▪ With GPs, inference is easy (at least for regression and with known hyperparams)

▪ A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

▪ Connection generalized to infinitely wide multiple hidden layer NN (Lee et al3, 2018)

6

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)

CS772A: PML

GP: Some other comments

▪ GPs can be thought of as Bayesian analogues of kernel methods

▪ Can get estimate of the uncertainty in the function and its predictions

▪ Can learn the kernel (by learning the hyperparameters of the kernels)

▪ In some ways, GPs and (Bayesian/ensembles of) deep neural nets have same goals
▪ These methods are also very related (though appear different based on their formulation)

▪ Several recent papers have investigated these connections

▪ GP can be a nice alternative to (Bayesian/ensembles of) deep neural networks
▪ GP may be preferable if we don’t have that much training data (deep networks requires lots of data to train well)

▪ When we have lots of training data, training and test speed may be an issue for GP (but faster versions exist)

▪ Not limited to supervised learning problems
▪ 𝑓 could even define a mapping of low-dim latent variable 𝑧𝑛 to an observation 𝑥𝑛

7

𝒙𝑛 = 𝑓 𝒛𝑛 + "noise" GP latent variable model for dimensionality reduction

(like a kernel version of probabilistic PCA)

CS772A: PML

GP: A Visualization

▪ Assumed zero mean function and a squared exponential kernel

Each curve below is obtained by

drawing a random 𝐟 from the GP

prior 𝑝(𝐟) = 𝒩(𝟎, 𝐊) and

plotting it.

𝑥

𝑓

Each curve below is obtained by drawing random 𝐟’s

from the GP posterior 𝑝(𝐟|𝒚) which is also a Gaussian

(The + symbols denote the training data and we

assume noiseless outputs, i.e., 𝑦𝑖 = 𝑓𝑖) .

Shaded area shows the predictive

uncertainty for each of the test

inputs (+/- 2 std)

𝐊 is the kernel matrix of a finite

number of inputs represented on the

x axis (say 100 equi-spaced points

between -5 and 5). 𝐟 will be a vector

of 𝑓’s values at these inputs

𝑥

𝑦 = 𝑓

Figure courtesy: MLAPP (Murphy)

8

CS772A: PML

GP packages

▪ Many mature implementations of GP exist. You may check out
▪ GPyTorch (PyTorch), GPFlow (Tensorflow)

▪ sklearn (Python with some basic GP implementations)

▪ GPML (MATLAB), GPsuff (MATLAB/Octave)

▪ Many others such as Stan, GPJax

▪ A comparison of the various packages:
https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software

9

https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software

CS772A: PML

Conditional Posterior

▪ Consider a model with 𝐾 unknown params/hyperparams Θ = (𝜃1, 𝜃2, … , 𝜃𝐾)

▪ We can however compute conditional posteriors (CP)which for each 𝜃𝑖 looks like

▪ To compute each CP, look at the joint distribution 𝑝 𝑿, Θ

▪ CP of 𝜃𝑖 will be proportional to the product of all the terms involving 𝜃𝑖

▪ If those terms are conjugate to each other, it is called local conjugacy. CP is then easy to compute

▪ Many algorithms for computing point estimate/full posterior use the CPs
▪ Expectation Maximization, Variational Inference , MCMC (especially Gibbs sampling)

10

𝑝 Θ 𝑿 =
𝑝 Θ 𝑝(𝑿|Θ)

𝑝(𝑿)
=

𝑝 Θ 𝑝(𝑿|Θ)

∫ 𝑝 Θ 𝑝 𝑿 Θ 𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝐾

Usually intractable integral

so the full posterior can’t

be computed exactly

𝑝 𝑿, Θ = 𝑝(𝑿, 𝜃1, 𝜃2, … , 𝜃𝐾) = 𝑝 𝑿 𝜃1, 𝜃2, … , 𝜃𝐾 𝑝 𝜃1 𝜃2, … , 𝜃𝐾)𝑝(𝜃2 𝜃3, … , 𝜃𝐾 … 𝑝(𝜃𝐾)

𝑝(𝜃𝑖|whatever 𝜃𝑖 depends on)

Joint posterior

Can be data and/or other

params/hyperparams given their

fixed values (or current estimates)

CS772A: PML

Latent Variable Models

▪ Application 1: Can use latent variables to learn latent properties/features of data, e.g.,
▪ Cluster assignment of each observation (in mixture models)

▪ Low-dim rep. or “code” of each observation (e.g., prob. PCA, variational autoencoders, etc)

▪ In such apps, latent variables (𝒛𝑛’s) are called “local variables” (specific to individual
obs.)and other unknown parameters/hyperparams (𝜃, 𝜙 above) are called “global var”

11

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛

𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛

Plate notation of a generic LVM

CS772A: PML

Latent Variable Models

▪ Application 2: Sometimes, augmenting a model by latent variables simplifies inference

▪ These latent variables aren’t part of the original model definition

▪ Some of the popular examples of such augmentation include

▪ In Probit regression for binary classification, we can model each label 𝑦𝑛 ∈ {0,1} as

.. and use EM etc, to infer the unknowns 𝒘 and 𝑧𝑛’s (PML-2, Sec 15.4)

▪ Many sparse priors on weights can be thought of as Gaussian “scale-mixtures”

 .. where 𝜏𝑑’s are latent vars. Can use EM to infer 𝒘, 𝜏 (MLAPP 13.4.4 - EM for LASSO)

▪ Such augmentations can often make a non-conjugate model a locally conjugate one
▪ Conditional posteriors of the unknowns often have closed form in such cases

12

𝑦𝑛 = 𝕀[𝑧𝑛 > 0] where 𝑧𝑛 ∼ 𝒩(𝒘⊤𝒙𝑛, 1) is an auxiliary latent variable

CS772A: PML

Nomenclature/Notation Alert

▪ Why call some unknowns as parameters and others as latent variables?

▪ Well, no specific reason. Sort of a convention adopted by some algorithms

▪ EM: Unknowns estimated in E step referred to as latent vars; those in M step as params

▪ Usually: Latent vars – (Conditional) posterior computed; parameters – point estimation

▪ Some algos won’t make such distinction and will infer posterior over all unknowns

▪ Sometimes the “global” or “local” unknown distinction makes it clear
▪ Local variables = latent variables, global variables = parameters

▪ But remember that this nomenclature isn’t really cast in stone, no need to be confused
so long as you are clear as to what the role of each unknown is, and how we want to
estimate it (posterior or point estimate) and using what type of inference algorithm

13

CS772A: PML

Hybrid Inference (posterior infer. + point est.)

▪ In many models, we infer posterior on some unknowns and do point est. for others

▪ We have already seen MLE-II for lin reg. which alternates between

▪ Inferring CP over the main parameter given the point estimates of hyperparams

▪ Maximizing the marginal lik. to do point estimation for hyperparams

▪ The Expectation-Maximization algorithm (will see today) also does something similar
▪ In E step, the CP of latent variables is inferred, given current point-est of params

▪ M step maximizes expected complete data log-lik. to get point estimates of params

▪ If we can’t (due to computational or other reasons) infer posterior over all unknowns,
how to decide which variables to infer posterior on, and for which to do point-est?

▪ Usual approach: Infer posterior over local vars and point estimates for global vars
▪ Reason: We typically have plenty of data to reliably estimate the global variables so it is okay even

if we just do point estimation for those

14

መ𝜆, መ𝛽 = argmax𝜆,𝛽 𝑝(𝒚|𝑿, 𝜆, 𝛽)

CP of 𝑤: 𝑝(𝒘|𝑿, 𝒚, መ𝜆, መ𝛽)

CS772A: PML

Inference/Parameter Estimation in
Latent Variable Models using

Expectation-Maximization (EM)

15

CS772A: PML

Parameter Estimation in Latent Variable Models

▪ Assume each observation 𝒙𝑛 to be associated with a “local” latent variable 𝒛𝑛

▪ Although we can do fully Bayesian inference for all the unknowns, suppose we
only want a point estimate of the “global” parameters Θ = (𝜃, 𝜙) via MLE/MAP

▪ Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
▪ Would typically re quire gradient based methods with no closed form updates for Θ

▪ However, EM gives a clean way to obtain closed form updates for Θ

16

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛

𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛

CS772A: PML

Why MLE/MAP of Params is Hard for LVMs?

▪ Suppose we want to estimate Θ = (𝜃, 𝜙) via MLE. If we knew 𝒛𝑛, we could solve

▪ Easy. Usually closed form if 𝑝 𝒛𝑛 𝜙 and 𝑝 𝒙𝑛 𝒛𝑛, 𝜃 have simple forms

▪ However, since in LVMs, 𝒛𝑛 is hidden, the MLE problem for Θ will be the following

▪ log 𝑝(𝒙𝑛|Θ) will not have a simple expression since 𝑝(𝑥𝑛|Θ) requires sum/integral

▪ MLE now becomes difficult (basically MLE-II now), no closed form expression for Θ.

▪ Can we maximize some other quantity instead of log 𝑝(𝑥𝑛|Θ) for this MLE?

17

In particular, if they are

exp-fam distributions

Easy to solve

Basically, the marginal

likelihood after

integrating out 𝑧𝑛

CS772A: PML

An Important Identity

▪ Assume 𝑝𝑧 = 𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then

▪ In the above ℒ 𝑞, Θ = σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)

▪ 𝐾𝐿(𝑞| 𝑝𝑧 = − σ𝑍 𝑞 𝒁 log
𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ KL is always non-negative, so log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ

▪ Thus ℒ 𝑞, Θ is a lower-bound on log 𝑝 𝑿 Θ

▪ Thus if we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

▪ Also, as we’ll see, it’s easier to maximize ℒ 𝑞, Θ

18

log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
Assume 𝒁 discrete

Verify the identity

CS772A: PML

19
Maximizing ℒ 𝑞, Θ

19

▪ ℒ 𝑞, Θ depends on 𝑞 and Θ. We’ll use ALT-OPT to maximize it

▪ Let’s maximize ℒ 𝑞, Θ w.r.t. 𝑞 with Θ fixed at some Θold

▪ Now let’s maximize ℒ 𝑞, Θ w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 = argmax𝑞ℒ 𝑞, Θold = argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

Since log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
is constant when Θ is held fixed at Θold

Θnew = argmaxΘℒ ො𝑞, Θ = argmaxΘ

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold)

= argmaxΘ

𝑍

𝑝 𝒁 𝑿, Θold log 𝑝(𝑿, 𝒁|Θ)

= argmaxΘ 𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)]

Maximization of expected CLL where

the expectation is w.r.t. the posterior

distribution of 𝑍 given current

parameters Θold

The posterior distribution of 𝑍

given current parameters Θold

= argmaxΘ 𝒬(Θ, Θold)

Complete-Data Log

Likelihood (CLL)

log 𝑝 𝑿 Θ is called Incomplete-

Data Log Likelihood (ILL)

Much easier than maximizing ILL since

CLL will have simple expressions (since

it is akin to knowing 𝑍)

Basically, log of marginal

likelihood w.r.t. 𝚯 with 𝒁

integrated out

CS772A: PML

The Expectation-Maximization (EM) Algorithm
20

▪ ALT-OPT of ℒ 𝑞, Θ w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not full posterior) in Step 1 and maximize

the CLL in Step 2 using that, i.e., do argmaxΘ σ𝑛=1
𝑁 log 𝑝 𝒙𝑛, Ƹ𝑧𝑛

(𝑡) Θ this will be ALT-OPT

Conditional posterior of

each latent variable 𝑧𝑛

Latent variables also

assumed indep. a priori Assuming the (expected) CLL

𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)]

factorizes over all observations

Primarily designed for doing point estimation of the

parameters Θ but also gives (CP of) latent variables 𝑧𝑛

Usually computing CP + expected CLL

is referred to as the E step, and max.

of exp-CLL w.r.t. Θ as the M step

CS772A: PML

The Expected CLL
21

▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If 𝑝 𝒛𝑛 Θ and 𝑝 𝒙𝑛 𝒛𝑛, Θ are exp-family distributions, 𝒬(Θ, Θold) has a very simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ [𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ [𝒛𝑛𝒛𝑛
⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be
approximated (will see some examples later)

CS772A: PML

What’s Going On?
22

▪ As we saw, the maximization of lower bound ℒ 𝑞, Θ had two steps

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it as the posterior of 𝒁 given current Θ

▪ Step 2 maximizes ℒ ො𝑞, Θ w.r.t. Θ which gives a new Θ.

Θ(0) Θ(1)Θ(2)Θ(3)

Green curve: ℒ ො𝑞, Θ after

setting 𝑞 to ො𝑞
log 𝑝 𝑿 Θ

Local optima

found for Θ𝑀𝐿𝐸

KL becomes zero and ℒ 𝑞, Θ becomes

equal to log 𝑝 𝑿 Θ ; thus their curves

touch at current Θ

Note that Θ only changes in Step 2

so the objective log 𝑝 𝑿 Θ
 can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters;

otherwise would converge

to a poor local optima

Also kind of similar to Newton’s

method (and has second order like

convergence behavior in some cases)

Unlike Newton’s method, we don’t

construct and optimize a quadratic

approximation, but a lower bound

Even though original MLE problem

argmaxΘlog 𝑝 𝑿 Θ could be solved

using gradient methods, EM often

works faster and has cleaner updates

Alternating between

them until convergence

to some local optima

CS772A: PML

EM vs Gradient-based Methods

▪ Can also estimate params using gradient-based optimization instead of EM

▪ We can usually explicitly sum over or integrate out the latent variables 𝒁, e.g.,

▪ Now we can optimize ℒ(Θ) using first/second order optimization to find the optimal Θ

▪ EM is usually preferred over this approach because

▪ The M step has often simple closed-form updates for the parameters Θ

▪ Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

▪ In some cases†, EM usually converges faster (and often like second-order methods)

▪ E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

▪ EM applies even when the explicit summing over/integrating out is expensive/intractable

▪ EM also provides the conditional posterior over the latent variables Z (from E step)

23

†Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996),

Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

CS772A: PML

Some Applications of EM

▪ Mixture Models and Dimensionality Reduction/Representation Learning

▪ Mixture Models: Mixture of Gaussians, Mixture of Experts, etc

▪ Dim. Reduction/Representation Learning: Probabilistic PCA, Variational Autoencoders

▪ Problems with missing features or missing labels (which are treated as latent variables)

▪ Θ = argmaxΘ log 𝑝 𝒙𝑜𝑏𝑠 Θ = argmaxΘ log ∫ 𝑝 𝒙𝑜𝑏𝑠, 𝒙𝑚𝑖𝑠𝑠 Θ 𝑑𝒙𝑚𝑖𝑠𝑠

▪ Θ = argmaxΘ σ𝑛=1
𝑁 log 𝑝 𝑥𝑛, 𝑦𝑛 Θ + σ𝑛=𝑁+1

𝑁+𝑀 log σ𝑐=1
𝐾 𝑝 𝑥𝑛, 𝑦𝑛 = 𝑐 Θ

▪ Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

▪ MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

▪ With EM, can treat 𝒘 as latent var, and 𝜆, 𝛽 as “parameters”

▪ E step will estimate the CP of 𝑤 given current estimates of 𝜆, 𝛽

▪ M step will re-estimate 𝜆, 𝛽 by maximizing the expected CLL

24

መ𝜆, መ𝛽 = argmax𝜆,𝛽 𝑝 𝒚 𝑿, 𝜆, 𝛽 = argmax𝜆,𝛽 න 𝑝 𝒚 𝒘, 𝑿, 𝛽 𝑝 𝒘 𝜆 𝑑𝒘
For a Bayesian linear

regression model

Expectations w.r.t.

the CP of 𝒘

CS772A: PML

An Example: Mixture Models

▪ Assume 𝐾 probability distributions (e.g., Gaussians), one for each cluster

▪ The log-likelihood will be

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Discrete latent variable (with 𝐾 possible

values) or a one-hot vector of length 𝐾.

Modeled by a multinoulli distribution as prior

Parameters of the 𝐾 distributions,

e.g,. 𝜃 = 𝜇𝑘, Σ𝑘 𝑘=1
𝐾

The parameter vector

𝝅 = 𝜋1, 𝜋2, … , 𝜋𝐾 of

the multinoulli distribution

𝑝 𝑧𝑛 𝜙 = multinoulli(𝝅)

𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, 𝜃 = 𝒩 𝜇𝑘 , Σ𝑘

Assumed generated from one

of the 𝐾 distributions

depending on the true (but

unknown) value of 𝑧𝑛(which

clustering will find))

(also means 𝑝 𝑧𝑛 = 𝑘 𝜙 = 𝜋𝑘)

The likelihood

distributions

If the 𝒛𝑛 were known, it just becomes

generative classification, for which

which we know how to estimate 𝜃 and

𝜙, given training data

25

𝑝(𝑥) is a

Gaussian mixture

model (GMM)

log 𝑝 𝒙𝑛 Θ = log
𝑘=1

𝐾

𝑝 𝒙𝑛, 𝒛𝑛 = 𝑘 Θ

MLE on this objective won’t

give closed form solution for

the parameters

= log
𝑘=1

𝐾

𝑝 𝒛𝑛 = 𝑘 𝜙 𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃) = log
𝑘=1

𝐾

𝜋𝑘𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘

CS772A: PML

Detour: MLE for Generative Classification
26

▪ Assume a 𝐾 class generative classification model with Gaussian class-conditionals

▪ Assume class 𝑘 = 1,2, … , 𝐾 is modeled by a Gaussian with mean 𝜇𝑘 and cov matrix Σ𝑘

▪ The labels 𝒛𝑛 (known) are one-hot vecs. Also, 𝑧𝑛𝑘 = 1 if 𝒛𝑛 = 𝑘, and 𝒛𝑛𝑘 = 0, o/w

▪ Assuming class prior as 𝑝(𝒛𝑛 = 𝑘) = 𝜋𝑘, the model has params Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

▪ Given training data {𝒙𝑛, 𝒛𝑛} 𝑛=1
𝑁 , the MLE solution will be

Same as
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘

𝑁 𝒙𝑛

Same as
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘

𝑁 (𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

ො𝜋𝑘 =
1

𝑁

𝑛=1

𝑁

𝑧𝑛𝑘

Ƹ𝜇𝑘 =
1

𝑁𝑘

𝑛=1

𝑁

𝑧𝑛𝑘𝒙𝑛

Σ𝑘 =
1

𝑁𝑘

𝑛=1

𝑁

𝑧𝑛𝑘(𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Same as
𝑁𝑘

𝑁
 where 𝑁𝑘 is # of training ex. for which 𝑦𝑛 = 𝑘

CS772A: PML

Detour: MLE for Generative Classification
27

▪ Here is a formal derivation of the MLE solution for Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

Θ = argmaxΘ 𝑝(𝑿, 𝒁|Θ) = argmaxΘ ς𝑛=1
𝑁 𝑝(𝒙𝑛, 𝒛𝑛|Θ)

= argmaxΘ ς𝑛=1
𝑁 𝑝(𝒛𝑛|Θ) 𝑝(𝑥𝑛|𝒛𝑛, Θ)

= argmaxΘ ς𝑛=1
𝑁 ς𝑘=1

𝐾 𝜋𝑘
𝑧𝑛𝑘 ς𝑘=1

𝐾 𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)𝑧𝑛𝑘

= argmaxΘ ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

= argmaxΘ log ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

= argmaxΘ
𝑛=1

𝑁

𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

multinoulli Gaussian

Can see that, when estimating the

parameters of the 𝑘𝑡ℎ Gaussian

(𝜋𝑘, 𝜇𝑘, Σ𝑘), we only will only need

training examples from the 𝑘𝑡ℎ class,

i.e., examples for which 𝑧𝑛𝑘 = 1

Also, due to the form of the likelihood

(Gaussian) and prior (multinoulli), the

MLE problem had a nice separable

structure after taking the log

In general, in models with probability distributions

from the exponential family, the MLE problem will

usually have a simple analytic form

The form of this expression is important;

will encounter this in GMM too

CS772A: PML

EM for Mixture Models

▪ So how do we estimate the parameters of a GMM where 𝒛𝑛’s are unknown?

▪ The guess about 𝒛𝑛 can be in one of the two forms

▪ A “hard” guess – a single best value ො𝒛𝑛(some “optimal” value of the random variable 𝒛𝑛)

▪ The “expected” value 𝔼 𝒛𝑛 of the random variable 𝒛𝑛

▪ Using the hard guess ො𝒛𝑛 of 𝒛𝑛 will result in an ALT-OPT like algorithm

▪ Using the expected value of 𝒛𝑛 will give the so-called Expectation-Maximization (EM) algo

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Well, you kind of already know

how to do this. ☺ Remember

generative classification?

Hmmmm.. So can we make a guess

what the value of each 𝒛𝑛 and then

estimate 𝜃 and 𝜙 as we do in case

of generative classification??

Yes, exactly. ☺ However, just like in

gen-class, you will need to repeat

the guess and estimate them a few

times until you converge

EM is pretty much like ALT-OPT

but with soft/expected values

of the latent variables

28

CS772A: PML

EM for Gaussian Mixture Model (GMM)
29

▪ EM finds Θ𝑀𝐿𝐸 by maximizing 𝔼 log 𝑝 𝑿, 𝒁 Θ rather than log 𝑝 𝑿, 𝒁 Θ

▪ Note: Expectation will be w.r.t. the conditional posterior distribution of 𝒁, i.e., 𝑝(𝒁|𝑿, Θ)

▪ The EM algorithm for GMM operates as follows

▪ Initialize Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾 as Θ

▪ Repeat until convergence

▪ Compute conditional posterior 𝑝(𝒁|𝑿, Θ). Since obs are i.i.d, compute separately for each 𝑛 (and for 𝑘 = 1,2, . . 𝐾)

▪ Update Θ by maximizing the expected complete data log-likelihood

Θ = argmaxΘ𝔼𝑝(𝒁|𝑿,Θ) log 𝑝 𝑿, 𝒁 Θ =
𝑛=1

𝑁

𝔼𝑝(𝒛𝑛|𝒙𝑛,Θ) log 𝑝 𝒙𝑛, 𝒛𝑛 Θ

𝑝 𝒛𝑛 = 𝑘 𝒙𝑛, Θ ∝ 𝑝 𝒛𝑛 = 𝑘 Θ 𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, Θ = ො𝜋𝑘𝒩 𝑥𝑛| ො𝜇𝑘 , Σ𝑘

Expectation of CLL

Needed to get the expected CLL

= argmaxΘ 𝔼
𝑛=1

𝑁

𝑘=1

𝐾

 𝑧𝑛𝑘[log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

= argmaxΘ
𝑛=1

𝑁

𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘 + log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘]

ො𝜋𝑘 =
1

𝑁

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘] Ƹ𝜇𝑘 =
1

𝑁𝑘

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]𝒙𝑛

Σ𝑘 =
1

𝑁𝑘

𝑛=1

𝑁

𝔼[𝑧𝑛𝑘](𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Solution has a similar form as

ALT-OPT (or gen. class.),

except we now have the

expectation of 𝑧𝑛𝑘 being used

Same as 𝑝(𝑧𝑛𝑘 = 1| 𝒙𝑛, Θ), just a

different notation

It is “conditional” posterior

because it is also conditioned

on Θ, not just data 𝑋
Requires knowing Θ

𝑁𝑘 : Effective number

of points in cluster k

CS772A: PML

EM for GMM (Contd)
30

▪ The EM algo for GMM required 𝔼[𝑧𝑛𝑘]. Note 𝑧𝑛𝑘 ∈ {0,1}

𝔼 𝑧𝑛𝑘 = 𝛾𝑛𝑘 = 0 × 𝑝(𝑧𝑛𝑘 = 0|𝑥𝑛, Θ) + 1 × 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ) ∝ ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘 , Σ𝑘= 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ)

Need to normalize: 𝔼 𝑧𝑛𝑘 =
ෝ𝜋𝑘𝒩 𝑥𝑛|ෝ𝜇𝑘,Σ𝑘

σℓ=1
𝐾 ෝ𝜋ℓ𝒩 𝑥𝑛|ෝ𝜇ℓ,Σℓ

Reason: σ𝑘=1
𝐾 𝛾𝑛𝑘 = 1

M-step:

Soft 𝐾-means, which is more of a heuristic to

get soft-clustering, also gave us probabilities

but doesn’t account for cluster shapes or

fraction of points in each cluster

Accounts for cluster shapes (since

each cluster is a Gaussian

Accounts for fraction of

points in each cluster

Effective number of points

in the 𝑘𝑡ℎ cluster

CS772A: PML

EM: Some Final Comments

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ The conditional posterior of latent variables 𝑝(𝑍|𝑋, Θ) may not be easy to compute

▪ Will need to approximate 𝑝(𝑍|𝑋, Θ) using methods such as MCMC or variational inference

▪ Even if 𝑝(𝑍|𝑋, Θ) is easy, the expected CLL may not be easy to compute

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if the M step is only solved approximately (Generalized EM)

▪ If M step has multiple parameters whose updates depend on each other, they are
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

▪ Other advanced probabilistic inference algos are based on ideas similar to EM

▪ E.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)

31

Can often be approximated

by Monte-Carlo using

sample from the CP of 𝑍

Results in

Monte-Carlo EM

	Slide 1: GP (contd), Latent Variable Models and EM Algorithm
	Slide 2: GP Prediction with Gaussian Likelihood
	Slide 3: Learning Hyperparameters in GP based Models
	Slide 4: Weight Space View vs Function Space View
	Slide 5: Scalability of GPs
	Slide 6: Neural Networks and Gaussian Process
	Slide 7: GP: Some other comments
	Slide 8: GP: A Visualization
	Slide 9: GP packages
	Slide 10: Conditional Posterior
	Slide 11: Latent Variable Models
	Slide 12: Latent Variable Models
	Slide 13: Nomenclature/Notation Alert
	Slide 14: Hybrid Inference (posterior infer. + point est.)
	Slide 15: Inference/Parameter Estimation in Latent Variable Models using Expectation-Maximization (EM)
	Slide 16: Parameter Estimation in Latent Variable Models
	Slide 17: Why MLE/MAP of Params is Hard for LVMs?
	Slide 18: An Important Identity
	Slide 19: Maximizing script cap L open paren q ,cap theta , close paren
	Slide 20: The Expectation-Maximization (EM) Algorithm
	Slide 21: The Expected CLL
	Slide 22
	Slide 23: EM vs Gradient-based Methods
	Slide 24: Some Applications of EM
	Slide 25: An Example: Mixture Models
	Slide 26: Detour: MLE for Generative Classification
	Slide 27: Detour: MLE for Generative Classification
	Slide 28: EM for Mixture Models
	Slide 29: EM for Gaussian Mixture Model (GMM)
	Slide 30: EM for GMM (Contd)
	Slide 31: EM: Some Final Comments

