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GP Prediction with Gaussian Likelihood

▪ In general, the PPD when using GP is defined as

▪ For Gaussian likelihood (and fixed hyperparams), we don’t need to do above integral

▪ Reason: The marginal likelihood is Gaussian

▪ 𝑝 𝑦∗ 𝒚 is almost identical to 𝑝 𝑓∗ 𝐟 with 𝐊 replaced by 𝐂N + extra 𝛽−1 noise variance 
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𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝐟 𝑝 𝐟 𝒚 𝑑𝐟𝑑𝑓∗

𝑝 𝒚 = ∫ 𝑝 𝒚 𝐟 𝑝 𝐟 𝑑𝒇 = 𝒩 𝒚 𝟎, 𝐊 + 𝛽−1𝐈𝑵 = 𝒩 𝒚 𝟎, 𝐂N

𝑝
𝒚
𝑦∗

=  𝒩
𝒚
𝑦∗

|
𝟎
0

,
𝐂N 𝐤∗

𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗ + 𝛽−1

𝑝(𝒚 𝐟 = 𝒩(𝒚|𝐟, 𝛽−1𝐈𝑁) 𝑝(𝐟)= 𝒩(𝐟|𝟎,𝐊)Gaussian likelihood 

(assuming 𝛽 is fixed)

Marginal likelihood 

of training outputs

Marginal likelihood of 

training and test outputs

GP prior

𝑝 𝑦∗ 𝒚 = 𝒩 𝑦∗|𝐤∗
⊤𝐂𝑁

−1𝒚, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1
PPD obtained using 

joint to conditional 

results of Gaussians

Assuming zero 

mean function

And don’t even have to 

compute/use the posterior 

𝑝 𝐟 𝒚 (which in this case is 

a Gaussian by the way ☺ ) 

to get the PPD
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Learning Hyperparameters in GP based Models

▪ Can learn the hyperparameters of the GP prior as well as of the likelihood model

▪ Assuming 𝜇 = 0, the hyperparams of GP are cov/kernel function hyperparams

▪ MLE-II is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc) 

▪ Denoting the covariance/kernel matrix as 𝐊𝜃, for Gaussian likelihood case, the marg-lik

▪ This can be maximized to learn 𝜃 and 𝛽

▪ For non-Gaussian likelihoods, the marg-lik itself  will need to be approximated
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Different RBF 

kernel bandwidth 

𝛾𝑑 for each feature

Can help in feature selection (irrelevant 

features will tend to have very large 𝛾𝑑)

𝑝 𝒚|𝜃, 𝛽−1 = 𝒩 𝒚 𝟎, 𝐊𝜃 + 𝛽−1𝐈𝑵

Ability to learn 

kernel hyperparams 

(without cross-

valid) is another 

very appealing 

property of GP 
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Weight Space View vs Function Space View

▪ GPs are defined w.r.t. a function space that models input-output relationship

▪ In contrast, we have seen models that are defined w.r.t. a weight space, e.g.,

▪ Thus the joint marginal of the 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁 is a multivariate Gaussian

▪ Thus GPs can be seen as bypassing the weight space and directly defining the 
model using a marginal likelihood via a function space defined by the GP
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𝑝 𝒚 𝑿, 𝒘 =  𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

𝑝(𝒘) =  𝒩(𝒘|𝝁0, 𝚺0)

𝑝 𝒚 𝑿 = ∫ 𝑝 𝒚 𝑿, 𝒘 𝑝 𝒘 𝑑𝒘 = 𝒩(𝒚|𝑿𝝁0, 𝛽−1𝑰𝑁 + 𝑿𝚺0𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝛽−1𝑰𝑁 + 𝑿𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝑿𝑿⊤)

𝑝

𝑦1

𝑦2

⋮
𝑦𝑁

=  𝒩

0
0
⋮
0

,

𝑥1
⊤𝑥1

𝑥2
⊤𝑥1

⋯
𝑥1

⊤𝑥𝑁

𝑥2
⊤𝑥𝑁

⋮ ⋱ ⋮
𝑥𝑁

⊤𝑥1 ⋯ 𝑥𝑁
⊤𝑥𝑁

Same as a GP 𝑓(𝑥𝑖)  =  𝑦𝑖 , 𝜇 𝑥 = 0 and linear 

covariance/kernel function 𝜅 𝑥𝑖 , 𝑥𝑗 =  𝑥𝑖
⊤𝑥𝑗

Likelihood

Prior over weight vector
Marginal likelihood 

after integrating 

out the weights

Marginal likelihood assuming 𝝁0 = 𝟎 and 𝚺0 = 𝑰 

Assuming noise-free likelihood

This equivalence also shows 

that Bayesian linear regression 

is a special case of GP with 

linear kernel
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Scalability of GPs

▪ Computational costs in some steps of GP models scale in the size of training data

▪ For example, prediction cost is 𝑂(𝑁)

▪ GP models often require matrix inversions (e.g., in marg-lik computation when 
estimating hyperparameters) – takes 𝑂(𝑁3)

▪  Storage also requires 𝑂(𝑁2) since need to store the covariance matrix

▪  A lot of work on speeding up GPs1. Some prominent approaches include

▪ Inducing Point Methods (condition predictions only on a small set of “learnable” points)

▪ Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)

▪ Kernel approximations

▪Note that nearest neighbor methods and kernel methods also face similar issues 
▪ Many tricks to speed up kernel methods can be used for speeding up GPs too
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𝑝 𝑦∗ 𝒚 = 𝒩(𝑦∗| Ƹ𝜇, ො𝜎2) Ƹ𝜇 = 𝐤∗
⊤𝐂𝑁

−1𝒚 ො𝜎2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1

𝑂(𝑁) cost assuming C𝑁 

is already inverted

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

𝑀 ≪ 𝑁 pseudo-inputs 

and pseudo-outputs
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Neural Networks and Gaussian Process

▪ An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP

▪ Shown formally by (Neal2, 1994). Based on applying the central limit theorem

▪ This equivalence is useful for several reasons
▪ Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

▪ With GPs, inference is easy (at least for regression and with known hyperparams)

▪ A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

▪ Connection generalized to infinitely wide multiple hidden layer NN (Lee et al3, 2018)

6

2Priors for infinite networks, Tech Report, 1994 
3Deep Neural Networks as Gaussian Processes (ICLR 2018)
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GP: Some other comments

▪ GPs can be thought of as Bayesian analogues of kernel methods 

▪ Can get estimate of the uncertainty in the function and its predictions

▪ Can learn the kernel (by learning the hyperparameters of the kernels)

▪ In some ways, GPs and (Bayesian/ensembles of) deep neural nets have same goals
▪ These methods are also very related (though appear different based on their formulation)

▪ Several recent papers have investigated these connections

▪ GP can be a nice alternative to (Bayesian/ensembles of) deep neural networks
▪ GP may be preferable if  we don’t have that much training data (deep networks requires lots of data to train well)

▪ When we have lots of training data, training and test speed may be an issue for GP (but faster versions exist)

▪ Not limited to supervised learning problems
▪ 𝑓 could even define a mapping of low-dim latent variable 𝑧𝑛 to an observation 𝑥𝑛

7

𝒙𝑛 = 𝑓 𝒛𝑛 + "noise" GP latent variable model for dimensionality reduction 

(like a kernel version of probabilistic PCA)



CS772A: PML

GP: A Visualization

▪ Assumed zero mean function and a squared exponential kernel

Each curve below is obtained by 

drawing a random 𝐟 from the GP 

prior 𝑝(𝐟) =  𝒩(𝟎, 𝐊) and 

plotting it.

𝑥

𝑓

Each curve below is obtained by drawing  random 𝐟’s 

from the GP posterior 𝑝(𝐟|𝒚) which is also a Gaussian 

(The + symbols denote the training data and we 

assume noiseless outputs, i.e., 𝑦𝑖 = 𝑓𝑖) . 

Shaded area shows the predictive 

uncertainty for each of the test 

inputs (+/- 2 std)

𝐊 is the kernel matrix of a finite 

number of inputs represented on the 

x axis (say 100 equi-spaced points 

between -5 and 5). 𝐟 will be a vector 

of 𝑓’s values at these inputs

𝑥

𝑦 = 𝑓

Figure courtesy: MLAPP (Murphy)

8
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GP packages

▪ Many mature implementations of GP exist. You may check out
▪ GPyTorch (PyTorch), GPFlow (Tensorflow)

▪ sklearn (Python with some basic GP implementations)

▪ GPML (MATLAB), GPsuff  (MATLAB/Octave)

▪ Many others such as Stan, GPJax  

▪ A comparison of the various packages: 
https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software 

9

https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software
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Conditional Posterior

▪ Consider a model with 𝐾 unknown params/hyperparams Θ =  (𝜃1, 𝜃2, … , 𝜃𝐾)

▪ We can however compute conditional posteriors (CP)which for each 𝜃𝑖 looks like

▪ To compute each CP, look at the joint distribution 𝑝 𝑿, Θ

▪ CP of 𝜃𝑖 will be proportional to the product of all the terms involving 𝜃𝑖

▪ If  those terms are conjugate to each other, it is called local conjugacy. CP is then easy to compute

▪ Many algorithms for computing point estimate/full posterior use the CPs
▪ Expectation Maximization, Variational Inference , MCMC (especially Gibbs sampling)
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𝑝 Θ 𝑿 =
𝑝 Θ 𝑝(𝑿|Θ)

𝑝(𝑿)
=

𝑝 Θ 𝑝(𝑿|Θ)

∫ 𝑝 Θ 𝑝 𝑿 Θ 𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝐾

Usually intractable integral 

so the full posterior can’t 

be computed exactly

𝑝 𝑿, Θ = 𝑝(𝑿, 𝜃1, 𝜃2, … , 𝜃𝐾) = 𝑝 𝑿 𝜃1, 𝜃2, … , 𝜃𝐾 𝑝 𝜃1 𝜃2, … , 𝜃𝐾)𝑝(𝜃2 𝜃3, … , 𝜃𝐾 … 𝑝(𝜃𝐾)

𝑝(𝜃𝑖|whatever 𝜃𝑖  depends on)

Joint posterior

Can be data and/or other 

params/hyperparams given their 

fixed values (or current estimates)



CS772A: PML

Latent Variable Models

▪ Application 1: Can use latent variables to learn latent properties/features of data, e.g.,
▪ Cluster assignment of each observation (in mixture models)

▪ Low-dim rep. or “code” of each observation (e.g., prob. PCA, variational autoencoders, etc)

▪ In such apps, latent variables (𝒛𝑛’s) are called “local variables” (specific to individual 
obs.)and other unknown parameters/hyperparams (𝜃, 𝜙 above) are called “global var”

11

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛

𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛 

Plate notation of a generic LVM



CS772A: PML

Latent Variable Models

▪ Application 2: Sometimes, augmenting a model by latent variables simplifies inference

▪ These latent variables aren’t part of the original model definition

▪ Some of the popular examples of such augmentation include

▪ In Probit regression for binary classification, we can model each label 𝑦𝑛 ∈ {0,1} as 

.. and use EM etc, to infer the unknowns 𝒘 and 𝑧𝑛’s (PML-2, Sec 15.4)

▪ Many sparse priors on weights can be thought of as Gaussian “scale-mixtures”

  .. where 𝜏𝑑’s are latent vars. Can use EM to infer 𝒘, 𝜏 (MLAPP 13.4.4 - EM for LASSO)

▪ Such augmentations can often make a non-conjugate model a locally conjugate one
▪ Conditional posteriors of the unknowns often have closed form in such cases

12

𝑦𝑛 =  𝕀[𝑧𝑛 > 0] where       𝑧𝑛 ∼ 𝒩(𝒘⊤𝒙𝑛, 1)   is an auxiliary latent variable 



CS772A: PML

Nomenclature/Notation Alert

▪ Why call some unknowns as parameters and others as latent variables?

▪ Well, no specific reason. Sort of a convention adopted by some algorithms

▪ EM: Unknowns estimated in E step referred to as latent vars; those in M step as params

▪ Usually: Latent vars – (Conditional) posterior computed; parameters – point estimation

▪ Some algos won’t make such distinction and will infer posterior over all unknowns

▪ Sometimes the “global” or “local” unknown distinction makes it clear
▪ Local variables = latent variables, global variables = parameters

▪ But remember that this nomenclature isn’t really cast in stone, no need to be confused 
so long as you are clear as to what the role of each unknown is, and how we want to 
estimate it (posterior or point estimate) and using what type of inference algorithm

13
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Hybrid Inference (posterior infer. + point est.)

▪ In many models, we infer posterior on some unknowns and do point est. for others

▪ We have already seen MLE-II for lin reg. which alternates between

▪ Inferring CP over the main parameter given the point estimates of hyperparams

▪ Maximizing the marginal lik. to do point estimation for hyperparams

▪ The Expectation-Maximization algorithm (will see today) also does something similar
▪ In E step, the CP of latent variables is inferred, given current point-est of params

▪ M step maximizes expected complete data log-lik. to get point estimates of params

▪ If  we can’t (due to computational or other reasons) infer posterior over all unknowns, 
how to decide which variables to infer posterior on, and for which to do point-est?

▪ Usual approach: Infer posterior over local vars and point estimates for global vars
▪ Reason: We typically have plenty of data to reliably estimate the global variables so it is okay even 

if  we just do point estimation for those

14

መ𝜆, መ𝛽 =  argmax𝜆,𝛽 𝑝(𝒚|𝑿, 𝜆, 𝛽)

CP of 𝑤:  𝑝(𝒘|𝑿, 𝒚, መ𝜆, መ𝛽)
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Inference/Parameter Estimation in 
Latent Variable Models using 

Expectation-Maximization (EM)

15
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Parameter Estimation in Latent Variable Models

▪ Assume each observation 𝒙𝑛 to be associated with a “local” latent variable 𝒛𝑛

▪ Although we can do fully Bayesian inference for all the unknowns, suppose we 
only want a point estimate of the “global” parameters Θ =  (𝜃, 𝜙) via MLE/MAP

▪ Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
▪ Would typically re quire gradient based methods with no closed form updates for Θ

▪ However, EM gives a clean way to obtain closed form updates for Θ

16

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛

𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛 
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Why MLE/MAP of Params is Hard for LVMs?

▪ Suppose we want to estimate Θ =  (𝜃, 𝜙) via MLE. If  we knew 𝒛𝑛, we could solve

▪ Easy. Usually closed form if  𝑝 𝒛𝑛 𝜙  and 𝑝 𝒙𝑛 𝒛𝑛, 𝜃  have simple forms

▪ However, since in LVMs, 𝒛𝑛 is hidden, the MLE problem for Θ will be the following

▪ log 𝑝(𝒙𝑛|Θ) will not have a simple expression since 𝑝(𝑥𝑛|Θ) requires sum/integral

▪ MLE now becomes difficult (basically MLE-II now), no closed form expression for Θ.

▪ Can we maximize some other quantity instead of log 𝑝(𝑥𝑛|Θ) for this MLE?

17

In particular, if  they are 

exp-fam distributions

Easy to solve

Basically, the marginal 

likelihood after 

integrating out 𝑧𝑛
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An Important Identity

▪ Assume 𝑝𝑧  =  𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then

▪ In the above ℒ 𝑞, Θ =  σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)
 

▪  𝐾𝐿(𝑞| 𝑝𝑧 = − σ𝑍 𝑞 𝒁 log
𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ KL is always non-negative, so log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ

▪ Thus ℒ 𝑞, Θ  is a lower-bound on log 𝑝 𝑿 Θ

▪ Thus if  we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

▪  Also, as we’ll see, it’s easier to maximize ℒ 𝑞, Θ
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log 𝑝 𝑿 Θ =  ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
Assume 𝒁 discrete

Verify the identity
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19
Maximizing ℒ 𝑞, Θ  

19

▪ ℒ 𝑞, Θ  depends on 𝑞 and Θ. We’ll use ALT-OPT to maximize it

▪ Let’s maximize ℒ 𝑞, Θ  w.r.t. 𝑞 with Θ fixed at some Θold

▪ Now let’s maximize ℒ 𝑞, Θ  w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 =  argmax𝑞ℒ 𝑞, Θold =  argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

Since log 𝑝 𝑿 Θ =  ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧) 
is constant when Θ is held fixed at Θold

Θnew =  argmaxΘℒ ො𝑞, Θ =  argmaxΘ 

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold) 

=  argmaxΘ 

𝑍

𝑝 𝒁 𝑿, Θold  log 𝑝(𝑿, 𝒁|Θ)

=  argmaxΘ 𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)]

Maximization of expected CLL where 

the expectation is w.r.t. the posterior 

distribution of 𝑍 given current 

parameters Θold

The posterior distribution of 𝑍 

given current parameters Θold

=  argmaxΘ 𝒬(Θ, Θold)

Complete-Data Log 

Likelihood (CLL)

log 𝑝 𝑿 Θ  is called Incomplete-

Data Log Likelihood (ILL)

Much easier than maximizing ILL since 

CLL will have simple expressions (since 

it is akin to knowing 𝑍)

Basically, log of marginal 

likelihood w.r.t. 𝚯 with 𝒁 

integrated out



CS772A: PML

The Expectation-Maximization (EM) Algorithm
20

▪ ALT-OPT of ℒ 𝑞, Θ  w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If  we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not full posterior) in Step 1 and maximize 

the CLL in Step 2 using that, i.e., do argmaxΘ σ𝑛=1
𝑁 log 𝑝 𝒙𝑛, Ƹ𝑧𝑛

(𝑡) Θ  this will be ALT-OPT

Conditional posterior of 

each latent variable 𝑧𝑛

Latent variables also 

assumed indep. a priori Assuming the (expected) CLL 

𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)] 

factorizes over all observations

Primarily designed for doing point estimation of the 

parameters Θ but also gives (CP of) latent variables 𝑧𝑛

Usually computing CP + expected CLL 

is referred to as the E step, and max. 

of exp-CLL w.r.t. Θ as the M step
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The Expected CLL
21

▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If  𝑝 𝒛𝑛 Θ  and 𝑝 𝒙𝑛 𝒛𝑛, Θ  are exp-family distributions, 𝒬(Θ, Θold) has a very simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ [𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ [𝒛𝑛𝒛𝑛
⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be 
approximated (will see some examples later)
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What’s Going On?
22

▪ As we saw, the maximization of lower bound ℒ 𝑞, Θ  had two steps 

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it as the posterior of 𝒁 given current Θ 

▪ Step 2 maximizes ℒ ො𝑞, Θ  w.r.t. Θ which gives a new Θ. 

Θ(0) Θ(1)Θ(2)Θ(3)

Green curve: ℒ ො𝑞, Θ  after 

setting 𝑞 to ො𝑞 
log 𝑝 𝑿 Θ

Local optima 

found for Θ𝑀𝐿𝐸

KL becomes zero and ℒ 𝑞, Θ  becomes 

equal to log 𝑝 𝑿 Θ ; thus their curves 

touch at current Θ 

Note that Θ only changes in Step 2 

so the objective log 𝑝 𝑿 Θ
 can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters; 

otherwise would converge 

to a poor local optima

Also kind of similar to Newton’s 

method (and has second order like 

convergence behavior in some cases)

Unlike Newton’s method, we don’t 

construct and optimize a quadratic 

approximation, but a lower bound

Even though original MLE problem 

argmaxΘlog 𝑝 𝑿 Θ  could be solved 

using gradient methods, EM often 

works faster and has cleaner updates

Alternating between 

them until convergence 

to some local optima
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EM vs Gradient-based Methods

▪ Can also estimate params using gradient-based optimization instead of EM

▪ We can usually explicitly sum over or integrate out the latent variables 𝒁, e.g.,

▪ Now we can optimize ℒ(Θ) using first/second order optimization to find the optimal Θ

▪ EM is usually preferred over this approach because

▪ The M step has often simple closed-form updates for the parameters Θ

▪ Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

▪ In some cases†, EM usually converges faster (and often like second-order methods)

▪ E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

▪ EM applies even when the explicit summing over/integrating out is expensive/intractable

▪ EM also provides the conditional posterior over the latent variables Z (from E step)

23

†Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), 

Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)
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Some Applications of EM

▪ Mixture Models and Dimensionality Reduction/Representation Learning

▪ Mixture Models: Mixture of Gaussians, Mixture of Experts, etc

▪ Dim. Reduction/Representation Learning: Probabilistic PCA, Variational Autoencoders

▪ Problems with missing features or missing labels (which are treated as latent variables)

▪ Θ =  argmaxΘ log 𝑝 𝒙𝑜𝑏𝑠 Θ = argmaxΘ log ∫ 𝑝 𝒙𝑜𝑏𝑠, 𝒙𝑚𝑖𝑠𝑠 Θ 𝑑𝒙𝑚𝑖𝑠𝑠

▪ Θ =  argmaxΘ  σ𝑛=1
𝑁 log 𝑝 𝑥𝑛, 𝑦𝑛 Θ + σ𝑛=𝑁+1

𝑁+𝑀 log σ𝑐=1
𝐾 𝑝 𝑥𝑛, 𝑦𝑛 = 𝑐 Θ  

▪ Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

▪ MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

▪ With EM, can treat 𝒘 as latent var, and 𝜆, 𝛽 as “parameters”

▪ E step will estimate the CP of 𝑤 given current estimates of 𝜆, 𝛽 

▪ M step will re-estimate 𝜆, 𝛽 by maximizing the expected CLL

24

መ𝜆, መ𝛽 =  argmax𝜆,𝛽 𝑝 𝒚 𝑿, 𝜆, 𝛽 = argmax𝜆,𝛽 න 𝑝 𝒚 𝒘, 𝑿, 𝛽 𝑝 𝒘 𝜆 𝑑𝒘
For a Bayesian linear 

regression model

Expectations w.r.t. 

the CP of 𝒘
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An Example: Mixture Models

▪ Assume 𝐾 probability distributions (e.g., Gaussians), one for each cluster

▪ The log-likelihood will be

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Discrete latent variable (with 𝐾 possible 

values) or a one-hot vector of length 𝐾. 

Modeled by a multinoulli distribution as prior

Parameters of the 𝐾 distributions, 

e.g,. 𝜃 = 𝜇𝑘, Σ𝑘 𝑘=1
𝐾

The parameter vector 

𝝅 = 𝜋1, 𝜋2, … , 𝜋𝐾  of 

the multinoulli distribution

𝑝 𝑧𝑛 𝜙 = multinoulli(𝝅)

𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, 𝜃 =  𝒩 𝜇𝑘 , Σ𝑘

Assumed generated from one 

of the 𝐾 distributions 

depending on the true (but 

unknown) value of 𝑧𝑛(which 

clustering will find))

(also means 𝑝 𝑧𝑛 = 𝑘 𝜙 = 𝜋𝑘)

The likelihood 

distributions

If the 𝒛𝑛 were known, it just becomes 

generative classification, for which 

which we know how to estimate 𝜃 and 

𝜙, given training data 

25

𝑝(𝑥) is a 

Gaussian mixture 

model (GMM)

log 𝑝 𝒙𝑛 Θ =  log 
𝑘=1

𝐾

𝑝 𝒙𝑛, 𝒛𝑛 = 𝑘 Θ

MLE on this objective won’t 

give closed form solution for 

the parameters

=  log 
𝑘=1

𝐾

𝑝 𝒛𝑛 = 𝑘 𝜙 𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃) = log 
𝑘=1

𝐾

𝜋𝑘𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘
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Detour: MLE for Generative Classification
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▪ Assume a 𝐾 class generative classification model with Gaussian class-conditionals

▪ Assume class 𝑘 = 1,2, … , 𝐾 is modeled by a Gaussian with mean 𝜇𝑘 and cov matrix Σ𝑘 

▪ The labels 𝒛𝑛 (known) are one-hot vecs. Also, 𝑧𝑛𝑘 = 1 if  𝒛𝑛 =  𝑘, and 𝒛𝑛𝑘 = 0, o/w

▪ Assuming class prior as 𝑝(𝒛𝑛 = 𝑘) = 𝜋𝑘, the model has params Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾  

▪ Given training data {𝒙𝑛, 𝒛𝑛} 𝑛=1
𝑁 , the MLE solution will be 

Same as 
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘

𝑁 𝒙𝑛

Same as 
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘

𝑁 (𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤ 

ො𝜋𝑘 =
1

𝑁


𝑛=1

𝑁

𝑧𝑛𝑘

Ƹ𝜇𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝑧𝑛𝑘𝒙𝑛

Σ𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝑧𝑛𝑘(𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Same as 
𝑁𝑘

𝑁
 where 𝑁𝑘 is # of training ex. for which 𝑦𝑛 =  𝑘 
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Detour: MLE for Generative Classification
27

▪ Here is a formal derivation of the MLE solution for Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

Θ =  argmaxΘ 𝑝(𝑿, 𝒁|Θ) =  argmaxΘ  ς𝑛=1
𝑁 𝑝(𝒙𝑛, 𝒛𝑛|Θ) 

=  argmaxΘ  ς𝑛=1
𝑁 𝑝(𝒛𝑛|Θ) 𝑝(𝑥𝑛|𝒛𝑛, Θ) 

=  argmaxΘ  ς𝑛=1
𝑁 ς𝑘=1

𝐾 𝜋𝑘
𝑧𝑛𝑘  ς𝑘=1

𝐾 𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)𝑧𝑛𝑘

=  argmaxΘ  ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

=  argmaxΘ log ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

=  argmaxΘ  
𝑛=1

𝑁


𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 +  log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

multinoulli Gaussian

Can see that, when estimating the 

parameters of the 𝑘𝑡ℎ Gaussian 

(𝜋𝑘, 𝜇𝑘, Σ𝑘), we only will only need 

training examples from the 𝑘𝑡ℎ class, 

i.e., examples for which 𝑧𝑛𝑘 = 1

Also, due to the form of the likelihood 

(Gaussian) and prior (multinoulli), the 

MLE problem had a nice separable 

structure after taking the log

In general, in models with probability distributions 

from the exponential family, the MLE problem will 

usually have a simple analytic form

The form of this expression is important; 

will encounter this in GMM too
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EM for Mixture Models

▪ So how do we estimate the parameters of a GMM where 𝒛𝑛’s are unknown?

▪ The guess about 𝒛𝑛 can be in one of the two forms

▪ A “hard” guess – a single best value ො𝒛𝑛(some “optimal” value of the random variable 𝒛𝑛)

▪ The “expected” value 𝔼 𝒛𝑛  of  the random variable 𝒛𝑛 

▪ Using the hard guess ො𝒛𝑛 of 𝒛𝑛 will result in an ALT-OPT like algorithm

▪ Using the expected value of 𝒛𝑛 will give the so-called Expectation-Maximization (EM) algo

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Well, you kind of already know 

how to do this. ☺ Remember 

generative classification?

Hmmmm.. So can we make a guess 

what the value of each 𝒛𝑛 and then 

estimate 𝜃 and 𝜙 as we do in case 

of generative classification??

Yes, exactly. ☺ However, just like in 

gen-class, you will need to repeat 

the guess and estimate them a few 

times until you converge

EM is pretty much like ALT-OPT 

but with soft/expected values 

of the latent variables

28
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EM for Gaussian Mixture Model (GMM)
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▪ EM finds Θ𝑀𝐿𝐸 by maximizing 𝔼 log 𝑝 𝑿, 𝒁 Θ  rather than log 𝑝 𝑿, 𝒁 Θ

▪ Note: Expectation will be w.r.t. the conditional posterior distribution of 𝒁, i.e., 𝑝(𝒁|𝑿, Θ)

▪ The EM algorithm for GMM operates as follows

▪ Initialize Θ =  {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾  as Θ

▪ Repeat until convergence

▪ Compute conditional posterior 𝑝(𝒁|𝑿, Θ). Since obs are i.i.d, compute separately for each 𝑛 (and for 𝑘 = 1,2, . . 𝐾)

▪ Update Θ by maximizing the expected complete data log-likelihood

Θ = argmaxΘ𝔼𝑝(𝒁|𝑿,Θ) log 𝑝 𝑿, 𝒁 Θ =  
𝑛=1

𝑁

𝔼𝑝(𝒛𝑛|𝒙𝑛,Θ) log 𝑝 𝒙𝑛, 𝒛𝑛 Θ

𝑝 𝒛𝑛 = 𝑘 𝒙𝑛, Θ ∝ 𝑝 𝒛𝑛 = 𝑘 Θ  𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, Θ  = ො𝜋𝑘𝒩 𝑥𝑛| ො𝜇𝑘 , Σ𝑘

Expectation of CLL

Needed to get the expected CLL

= argmaxΘ 𝔼 
𝑛=1

𝑁


𝑘=1

𝐾

 𝑧𝑛𝑘[log 𝜋𝑘 +  log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

= argmaxΘ 
𝑛=1

𝑁


𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘 +  log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

ො𝜋𝑘 =
1

𝑁


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘] Ƹ𝜇𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]𝒙𝑛

Σ𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘](𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)⊤

Solution has a similar form as 

ALT-OPT (or gen. class.), 

except we now have the 

expectation of 𝑧𝑛𝑘 being used

Same as 𝑝(𝑧𝑛𝑘 = 1| 𝒙𝑛, Θ), just a 

different notation

It is “conditional” posterior 

because it is also conditioned 

on Θ, not just data 𝑋
Requires knowing Θ

𝑁𝑘 : Effective number 

of points in cluster k
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EM for GMM (Contd)
30

▪ The EM algo for GMM required 𝔼[𝑧𝑛𝑘]. Note 𝑧𝑛𝑘 ∈ {0,1} 

𝔼 𝑧𝑛𝑘 = 𝛾𝑛𝑘 =  0 × 𝑝(𝑧𝑛𝑘 = 0|𝑥𝑛, Θ) + 1 × 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ) ∝ ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘 , Σ𝑘=  𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ)

Need to normalize: 𝔼 𝑧𝑛𝑘 =
ෝ𝜋𝑘𝒩 𝑥𝑛|ෝ𝜇𝑘,Σ𝑘

σℓ=1
𝐾 ෝ𝜋ℓ𝒩 𝑥𝑛|ෝ𝜇ℓ,Σℓ

   

Reason: σ𝑘=1
𝐾 𝛾𝑛𝑘 = 1

M-step:

Soft 𝐾-means, which is more of a heuristic to 

get soft-clustering,  also gave us probabilities 

but doesn’t account for cluster shapes or 

fraction of points in each cluster

Accounts for cluster shapes (since 

each cluster is a Gaussian

Accounts for fraction of 

points in each cluster

Effective number of points 

in the 𝑘𝑡ℎ cluster
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EM: Some Final Comments

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ The conditional posterior of latent variables 𝑝(𝑍|𝑋, Θ) may not be easy to compute

▪ Will need to approximate 𝑝(𝑍|𝑋, Θ) using methods such as MCMC or variational inference

▪ Even if  𝑝(𝑍|𝑋, Θ) is easy, the expected CLL may not be easy to compute

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if  the M step is only solved approximately (Generalized EM)

▪ If  M step has multiple parameters whose updates depend on each other, they are 
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

▪ Other advanced probabilistic inference algos are based on ideas similar to EM

▪ E.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)

31

Can often be approximated 

by Monte-Carlo using 

sample from the CP of 𝑍

Results in 

Monte-Carlo EM


	Slide 1: GP (contd), Latent Variable Models and EM Algorithm
	Slide 2: GP Prediction with Gaussian Likelihood
	Slide 3: Learning Hyperparameters in GP based Models
	Slide 4: Weight Space View vs Function Space View
	Slide 5: Scalability of GPs
	Slide 6: Neural Networks and Gaussian Process
	Slide 7: GP: Some other comments
	Slide 8: GP: A Visualization
	Slide 9: GP packages
	Slide 10: Conditional Posterior
	Slide 11: Latent Variable Models
	Slide 12: Latent Variable Models
	Slide 13: Nomenclature/Notation Alert
	Slide 14: Hybrid Inference (posterior infer. + point est.)
	Slide 15:   Inference/Parameter Estimation in Latent Variable Models using Expectation-Maximization (EM)
	Slide 16: Parameter Estimation in Latent Variable Models
	Slide 17: Why MLE/MAP of Params is Hard for LVMs?
	Slide 18: An Important Identity
	Slide 19: Maximizing script cap L open paren q ,cap theta , close paren  
	Slide 20: The Expectation-Maximization (EM) Algorithm
	Slide 21: The Expected CLL
	Slide 22
	Slide 23: EM vs Gradient-based Methods
	Slide 24: Some Applications of EM
	Slide 25: An Example: Mixture Models
	Slide 26: Detour: MLE for Generative Classification
	Slide 27: Detour: MLE for Generative Classification
	Slide 28: EM for Mixture Models
	Slide 29: EM for Gaussian Mixture Model (GMM)
	Slide 30: EM for GMM (Contd)
	Slide 31: EM: Some Final Comments

