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Recap: Variational Inference (VI)

▪ Assuming 𝑝(𝒁|𝓓, Θ) is intractable, VI approximates it by a distr 𝑞(𝒁|𝜙) or 𝑞𝜙(𝒁)
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𝜙∗ =  argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝓓, Θ)]

𝜙𝑡+1 = 𝜙𝑡 + 𝜂𝑡 ∇𝜙=𝜙𝑡
ℒ 𝜙, Θ

𝑞 𝒁 𝜙 =  ෑ
𝑖=1

𝑀

𝑞(𝒁𝑖|𝜙𝑖) 𝑞𝑗
∗ 𝒁𝑗 =

exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) )

׬ exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) 𝑑𝒁𝑗

KL minimization

ELBO 

maximization

Can use gradient-based optimization 

to learn the parameters of the 

variational distribution

Mean-field 

assumption on 

the variational 

distribution

Equivalent to writing log 𝑞𝑗
∗ 𝒁𝑗 =  𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) +  const

Variational 

distribution

Variational 

parameters

𝜙∗ = argmax𝜙𝔼𝑞𝜙(𝒁)[log 𝑝(𝓓|𝒁, Θ)] − KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ ]

= argmax𝜙 ℒ 𝜙, Θ= argmax𝜙𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

𝔼𝑖≠𝑗 denotes expectations w.r.t. ς𝑖≠𝑗 𝑞(𝑍𝑖|𝜙𝑖) 

This, for simple enough model, 

when using mean-field VI, we can 

get optimal 𝑞 “directly” without 

taking ELBO derivatives
“simple enough” means the cases where these 

expectations can be analytically computed

Case when Θ is also unknown 

will be discussed later
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Example: Mean-field VI without ELBO Derivatives

▪ Consider data 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} from a one-dim Gaussian 𝒩(𝜇, 𝜏−1)

▪ Assume the following normal-gamma prior on 𝜇 and 𝜏

▪ Posterior is also normal-gamma due to the jointly conjugate prior

▪ Let’s still try mean-field VI for this model

▪ With mean-field assumption on the variational posterior 𝑞 𝜇, 𝜏 = 𝑞𝜇 𝜇 𝑞𝜏(𝜏)

▪ In this example, the log-joint                                                              . Thus 

3
No “latent variables” here. 

Data 𝐗 is fully observed, 

and parameters 𝜇, 𝜏 need 

to be estimated

Assume the hyperparameters 

𝜇0, 𝜆0, 𝑎0, 𝑏0 are known

Note that we aren’t even specifying the 

forms of these two distributions! We’ll 

be able identify the forms in a few steps 

after working with the expectations
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Example: Mean-field VI without ELBO Derivatives

▪ Substituting 𝑝 𝐗 𝜇, 𝜏 =  ς𝑛=1
𝑁 𝑝(𝑥𝑛|𝜇, 𝜏) and 𝑝(𝜇|𝜏), we get

▪ (Verify) The above is log of a Gaussian. This 𝑞𝜇
∗ = 𝒩(𝜇|𝜇𝑁, 𝜆𝑁

−1) with

▪ Proceeding in a similar way (verify), we can show that 𝑞𝜏
∗ = Gamma(𝜏|𝑎𝑁, 𝑏𝑁)

▪ Note: Updates of 𝑞𝜇
∗  and 𝑞𝜏

∗ depend on each other (hence alternating updates needed)

4

This update depends on 𝑞𝜏 

This update depends on 𝑞𝜇 
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Mean-Field VI for Locally Conjugate Models

▪ Since log 𝑞𝑗
∗ 𝒁𝑗 = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁)  + const = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁𝑗 , 𝒁−𝑗)  + const

▪ Thus finding optimal 𝑞𝑗
∗ 𝒁𝑗  only requires expectations of params of CP 𝑝 𝒁𝑗 𝑿, 𝒁−𝑗

▪ For locally conjugate models, we know CP is easy and is an exp-fam distr of the form

▪ Using the above, we can rewrite the optimal variational distribution as follows

▪ Thus, with local conj, we just require expectation of nat. params. of CP of 𝒁𝑗

5

For any model 
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Variational EM

▪ In LVMs, latent vars 𝒁 and parameters Θ both may be unknown. In such cases, we can 
use variational EM (VEM). Same as EM except VEM uses VI to approx. CP of 𝒁

▪ VEM alternates between the following two steps
▪ Maximize the ELBO w.r.t. 𝜙 (gives the variational approximation 𝑞(𝒁) of CP of 𝒁)

▪ Maximize the ELBO w.r.t. Θ (gives us point estimate of Θ)

▪Note: If  we want posterior for Θ as well, treat it similar to 𝒁 and apply variational 
approximation (instead of using VEM) if  the posterior isn’t tractable
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𝜙(𝑡) =  argmax𝜙 𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ(𝑡−1) − log 𝑞𝜙 𝒁

Θ(𝑡) =  argmaxΘ 𝔼𝑞
𝜙(𝑡)(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙(𝑡) 𝒁

=  argmaxΘ 𝔼𝑞
𝜙(𝑡)(𝒁) log 𝑝 𝓓, 𝒁 Θ

This looks very similar to the 

expected CLL with the CP replaced 

by its variational approximation
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VI for models without “latent variables”

▪ Suppose we have a “fully observed” case (no missing data/latent variables but 
just some unknown global parameters 𝜃 and known hyperparams 𝜉)

▪ A simple example of the model is shown in the figure below

▪ If  𝜉 are also unknown then one way would be to alternate like Variational EM
▪ Approximating the CP 𝑝(𝜃|𝒟, 𝜉) using VI

▪ Using MLE-II to get point estimates of the hyperparameters 𝜉
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If  this CP is intractable, 

we can use VI to 

approximate this

Even supervised learning 

problems may have this form with 

𝜃 being the weights of the 

generative/discriminative models 

and the models may not have any 

missing data or latent variables

Recall the Gaussian 

mean and variance 

estimation problem
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Making VI Faster for LVMs: Stochastic VI (SVI)

▪Many LVMs have local latent variables 𝒁 = {𝒛1, 𝒛2, … , 𝒛𝑁} and global params Θ

▪ VI updates of local and global variables depend on each other (similar to EM)

▪ This makes things slow (for VI and also for EM) especially when 𝑁 is large
▪ We must update 𝑞 𝒛𝑛 𝜙𝑛), i.e., compute 𝜙𝑛, for each latent variable before updating Θ

▪ Also need all the data 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁} in memory to do these updates

▪ Stochastic VI* is an efficient way using minibatches of data

▪ In each iteration, SVI takes a minibatch ℬ of |ℬ| ≪ 𝑁 data points, updates 
𝑞 𝒛𝑛 𝜙𝑛) examples in that minibatches and approximates the ELBO as follows

8

*Stochastic Variational Inference (Hoffman et al, 2013)

ሚℒ 𝜙, Θ =  
𝑁

𝐵
෍

𝑥𝑖∈ℬ
𝔼𝑞(𝒛𝑖|𝜙𝑖)[log 𝑝(𝒙𝒊|𝒛𝑖 , Θ)] − KL[𝑞𝜙 𝒛𝒊 ||𝑝 𝒛𝒊 Θ ]

Optimize this approximate ELBO w.r.t. Θ 

(note: this is an unbiased estimate*)
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Making VI Faster for LVMs: Amortized VI

▪ Instead of computing the optimal 𝜙𝑛 for each 𝑞(𝒛𝑛 𝜙𝑛 , learn a function to do so

▪ Function is usually a neural network with weights 𝜙
▪ Usually referred to as “inference network” or “recognition model”

▪ Amortization: We are shifting the cost of finding 𝜙𝑛 for each data point to finding 
the weights 𝜙 of the neural network shared by all data points

▪ Can also combine amortized VI with stochastic VI
▪ Each iteration only uses a minibatch to optimize NN weights 𝜙 and global params Θ

▪ ELBO expression remains the same but 𝑞 𝑧𝑛 𝜙𝑛  is replaced by 𝑞 𝑧𝑛 NN𝜙(𝑥𝑛)

▪ Amortized VI quality can be poor but it is fast and can give a quick solution
▪ We can refine this solution other methods (e.g., using sampling; will see later)

▪ This refinement based approach is called “semi-amortized VI”

9
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VI using ELBO’s gradients

▪ For simple locally conjugate models, VI updates are usually easy
▪ Sometimes, can find the optimal 𝑞 even without taking the ELBO’s gradients

▪ For complex models, we have to use the more general gradient-based approach

▪ Consider the setting when we have latent variables 𝒁 and parameters Θ

▪ The ELBO’s gradient w.r.t. Θ

▪ The ELBO’s gradient w.r.t. 𝜙
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∇Θℒ 𝜙, Θ = ∇Θ 𝔼𝑞𝜙(𝒁)[log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 ]

= 𝔼𝑞𝜙(𝒁) ∇Θ log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

∇𝜙ℒ 𝜙, Θ = ∇𝜙 𝔼𝑞𝜙(𝒁)[log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 ]

≠ 𝔼𝑞𝜙(𝒁) ∇𝜙 log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

Monte-Carlo approximation 

using samples of 𝑞𝜙(𝒁) is 

straightforward here

Monte-Carlo approximation 

using samples of 𝑞𝜙(𝒁) is 

NOT as straightforward

Gradient can’t go inside 

expectation since 𝑞(𝑍) 

depends on 𝜙

Gradient can go inside 

expectation since 𝑞(𝑍) 

doesn’t depend on Θ
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Black-Box Variational Inference (BBVI)

▪ Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo

▪ Uses the following identity for the ELBO’s derivative

▪ Thus ELBO gradient can be written solely in terms of expec. of gradient of log 𝑞(𝒁|𝜙)

▪ Required gradients don’t depend on the model; only on chosen var. distribution (hence “black-box”)

▪ Given 𝑆 samples 𝑍𝑠 𝑠=1
𝑆  from 𝑞(𝒁|𝜙), we can get (noisy) gradient as follows 

▪ Above is also called the “score function” based gradient (also REINFORCE method)
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∗Black Box Variational Inference - Ranganath et al (2014)

Gradient of a log-likelihood or log-probability function w.r.t. 

its params is called score function; hence the name
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Proof of BBVI Identity

▪ The ELBO gradient can be written as

▪ Note that

▪ Also note that                                            , using which

▪ Therefore  

12
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Benefits of BBVI

▪ Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

▪ Enables applying VI for a wide variety of probabilistic models

▪ Can also work with small minibatches of data rather than full data

▪ BBVI has very few requirements
▪ Should be able to sample from 𝑞(𝒁|𝜙) (usually sampling routines exists!)

▪ Should be able to compute ∇𝜙 log 𝑞(𝒁|𝜙) (automatic differentiation methods exist!)

▪ Should be able to evaluate log 𝑝(𝑿, 𝒁) and log 𝑞(𝒁|𝜙) for any value of 𝒁

▪ Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO 
gradient (if  interested in the details, please refer to the BBVI paper)

13
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Reparametrization Trick

▪ Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)

▪ Suppose we want to compute ELBO’s gradient

▪ Assume a deterministic transformation 𝑔

▪ With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

▪ Given 𝑆 i.i.d. random samples 𝜖𝑠 𝑠=1
𝑆  from 𝑝(𝜖), we can get a Monte-Carlo approx.

▪ Such gradients are called pathwise gradients* (since we took a “path” from 𝜖 to 𝒁)

14

𝒁 = 𝑔(𝜖, 𝜙) 𝜖 ∼ 𝑝(𝜖)where
Assumed to not 

depend on 𝜙

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: An Example

▪ Suppose our variational distribution is 𝑞 𝒘|𝜙 =  𝒩(𝒘|𝝁, 𝚺), so 𝜙 = {𝝁, 𝚺}

▪ Suppose our ELBO has a difficult expectation term 𝔼𝑞[𝑓 𝒘 ]

▪ However, note that we need ELBO gradient, not ELBO itself. Let’s use the trick

▪ Reparametrize 𝒘 as 𝒘 = 𝝁 + 𝐋𝐯 where 𝐯 ~ 𝒩(𝟎, 𝑰)

▪ The above is now straightforward

▪ Easily take derivatives of 𝑓(𝒘) w.r.t. variational params 𝝁, 𝐋

▪ Replace exp. by Monte-Carlo averaging using samples of 𝐯 from 𝒩(𝟎, 𝑰)

▪ Std. reparam. trick assumes differentiability (recent work on removing this req). 

15

Or 𝜙 = {𝝁, 𝐋} 
where 𝐋 =  chol(Σ)

Note that we will still have 

𝑞 𝒘|𝜙 =  𝒩(𝒘|𝝁, 𝚺) 

Often even one or very 

few samples suffice

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝝁

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝐋

Chain Rule

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: Some Comments

▪ Standard Reparametrization Trick assumes the model to be differentiable

▪ In contrast, BBVI (score function gradients) only required 𝑞(𝒁) to be differentiable

▪ Thus rep. trick often isn’t applicable, e.g., when 𝒁 is discrete (e.g., binary /categorical)

▪ Recent work on continuous relaxation† of  discrete variables†(e.g., Gumbel Softmax for categorical)

▪ The transformation function 𝑔 may be difficult to find for general distributions

▪ Recent work on generalized reparametrizations*

▪ Also, the transformation function 𝑔 needs to be invertible (difficult/expensive)
▪ Recent work on implicit reparametrized gradients#

▪ Assumes that we can directly draw samples from 𝑝(𝜖). If  not, then rep. trick isn’t valid@

16

†Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), ∗ The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)
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Automatic Differentiation Variational Inference

▪ Suppose 𝒁 is 𝐷-dim r.v. with constraints (e.g., non-negativity) and distribution 𝑞(𝒁|𝜙) 

▪ Assume a transformation 𝑇 such that 𝒖 = 𝑇(𝒁) s.t. 𝒖 ∈ ℝ𝐷 (unconstrained) then

▪ Recall the original ELBO expression ℒ 𝜙 =  𝔼𝑞(𝒁|𝜙) log
𝑝(𝑫,𝒁)

𝑞(𝒁|𝜙)

▪ Assuming 𝑞 𝒖 𝜓 =  𝒩(𝒖|𝜇, Σ) and using 𝒁 = 𝑇−1(𝒖), the ELBO becomes

▪Optimize ℒ 𝜓  w.r.t. 𝜓 to get 𝑞 𝒖 𝜓  as a Gaussian and use distribution 
transformation equation to get 𝑞(𝒁|𝜙) 

17

𝑞 𝒖 = 𝑞(𝒁) det
𝜕𝒁

𝜕𝒖

ℒ 𝜓 =  𝔼𝑞 𝒖 𝜓 log
𝑝(𝑫, 𝑇−1(𝒖)) det 𝜕𝒁/𝜕𝒖

𝑞 𝒖 𝜓

= 𝔼𝑞 𝒖 𝜓 log 𝑝(𝑫, 𝑇−1(𝒖)) +  log det 𝜕𝒁/𝜕𝒖 + H(𝑞(𝒖|𝜓))
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Structured Variational Inference

▪ Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
▪ Removing the independence assumption of mean-field VI

▪ In general, learning more complex forms for the variational approximation family 𝑞 𝒁 𝜙

▪ To remove the mean-field assumption in VI, various approaches exist
▪ Structured mean-field (Saul et al, 1996)

▪ Hierarchical VI (Ranganath et al, 2016): Variational params 𝜙1, 𝜙2, … , 𝜙𝑀 “tied” via a shared prior

▪ Recent work on learning more expressive variational approx. for general VI

▪ Boosting or mixture of simpler distributions, e.g., 𝑞 𝒁 =  σ𝑐=1
𝐶 𝜌𝑐𝑞𝑐(𝒁)

▪ Normalizing flows*: Turn a simple var. distr. into a complex one via series of invertible transfor.

18

A simple unimodal variational 

distribution (e.g.. 𝒩(0, 𝐼)
A much more complex(e.g., 

multimodal) variational distribution 

obtained via the flow idea

∗Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015)

Even simple unimodal components 

will give a multimodal 𝑞 𝒁
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Other Divergence Measures

▪ VI minimizes 𝐾𝐿(𝑞||𝑝) but other divergences can be minimized as well

▪ Recall that VI with minimization of 𝐾𝐿(𝑞||𝑝) leads to underestimated variances

▪ A general form of divergence is Renyi’s 𝛼-divergence defined as

▪ 𝐾𝐿(𝑝||𝑞) is a special case with 𝛼 → 1 (can verify using L’Hopital rule of taking limits)

▪ An even more general form of divergence is 𝑓-Divergence

▪ Many recent variational inference algorithms are based on minimizing such divergences

19

𝐷𝛼
𝑅(𝑝(𝒁)| 𝑞 𝒁 =

1

𝛼 − 1
 log න 𝑝 𝒁 𝛼𝑞 𝒁 1−𝛼𝑑𝒁

𝐷𝑓(𝑝(𝒁)| 𝑞 𝒁 =  න 𝑞 𝒁 𝑓
𝑝(𝒁)

𝑞(𝒁)
𝑑𝒁
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Variational Inference: Some Comments

▪ Many probabilistic models nowadays rely on VI to do approx. inference

▪ Even mean-field with locally-conjugacy used in lots of models
▪ This + SVI gives excellent scalability as well on large datasets

▪ Progress in various areas has made VI very popular and widely applicable
▪ Stochastic Optimization (e.g., SGD)

▪ Automatic Differentiation

▪ Monte-Carlo gradient of ELBO

▪ Note: Most of these ideas apply also to Variational EM

▪ Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g., 
Tensorflow Probability, PyTorch, etc), making VI easy even for complex models

▪ Still a very active area of research, especially for doing VI in complex models
▪ Models with discrete latent variables

▪ Reducing the variance in Monte-Carlo estimate of ELBO gradients

▪ More expressive variational distribution for better approximation

20

We covered many of the threads 

being explored in recent work but 

a lot of work still being done in 

this area
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