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Recap: Variational Inference (V) [varatona | | Verationa

distribution

= Assuming p(Z|D, ©) is intractable, VI approximates it by a distr q(Z|¢) or q4(Z)
- KL minimization ¢* — argmin¢ KL[CI¢ (Z)”p(ZlD’ @)]

T = argmaxy B, ) [10g p(D]Z, ©)] — KL[q4(2)|[p(Z16)]
= argmax¢IEq¢(Z) [log p(D,Z|0) —log q4 (Z)] = argmaxy L(¢,0)

Case when 0 is also unknown

¢t+1 — ¢t + nt V¢=¢t[;(¢’ @) will be discussed later

[El-ij denotes expectations w.r.t. Hiij- q(Z;i|d;)
Mean-field M ..
assumption on q(zl¢) — C[(Zlqb) q;(zj) _ eXp(IEwt] [10g p(D,Z|@)])

I L=1 e [ exp(E;;[log p(D, Z|0)] dZ;

Can use gradient-based optimization
to learn the parameters of the
variational distribution

the variational
distribution L\

1 for smple enoush model L Equiivalent to writing log q; (Zj) = E;xjllogp(D,Z|0)] + const

when using mean-field VI, we can
get optimal q “directly” without “simple enough” means the cases where these _
taking ELBO derivatives expectations can be analytically computed CS772A: PML




No “latent variables” here.
Data X is fully observed,
and parameters u, T need
to be estimated

» Consider data X = {x4, x5, ..., Xy} from a one-dim Gaussian N(,u,r‘l)

Example: Mean-field VI without ELBO Derivatives

= Assume the following normal-gamma prior on u and 7 Assume the hyperparameters

1 Uo, Ao, Ao, by are known
p(u|T) = N(plpo;, (A7) ")  p(7) = Gamma(7|a, bo)
= Posterior is also normal-gamma due to the jointly conjugate prior | o et e arent even speclying fhe

forms of these two distributions! We'll
be able identify the forms in a few steps

" | et's still try mean-field VI for this model fter working with the expectations
= With mean-field assumption on the variational posterior q(u, T) = q, (1) q.(T)
log q,.(1) = Eq, [logp(X,p,7)] + const
log - (1) = Eq,[logp(X,p,T)]+ const
" [n this example, the log-joint log p(X, i, 7) = log p(X|w, 7) + log p(u|7) + log p(7). Thus
logq,.(1) = Eq, [logp(X|yx, )+ log p(u|T)] + const (only keeping terms that involve p)
log g-(7) = Eg,[logp(X|p,T) + log p(u|7) + log p(7)] + const
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Example: Mean-field VI without ELBO Derivatives

= Substituting p(X|u, T) = [IN=1p(xn|u, ) and p(u|7), we get

log g, (1) = Eg,[log p(X|u, ) + log p(u|7)] + const
Eq.l7] | ¥
= - qT2 {;(Xn — 1)? + olp — Ho)z} + const

= (Verify) The above is log of a Gaussian. This q,, = N (| py, Axt) with

Moo + NXx This update depends on q
= and Ay = (Ao +N)E, [T ‘
* Proceeding in a similar way (verify), we can show that q; = Gamma(t|ay, by)
N
ay = a0 4+ N;— 1 and by = by + %E% Z(Xn B u)z oy — “0)2] This update depends on g,
n=1

= Note: Updates of q, and g7 depend on each other (hence alternating updates needed)
CS772A: PML



Mean-Field VI for Locally Conjugate Models

" Since log q}'-‘(Zj) = E;jllogp(X,Z)] + const = E;4; llog p(X, Zj,Z_j)] + const
% For any model
log g7 (Z;) = Eii[log p(Z;|X, Z_;)] + const ===
" Thus finding optimal q}‘ (Zj) only requires expectations of params of CP p(Zj‘X, Z_j)
* For |ocally conjugate models, we know CP is easy and is an exp-fam distr of the form
p(Zj|X,Z_j) = h(Z;)exp [U(X, Z_;)'Z; - A(n(X, Z—j))]
= Using the above, we can rewrite the optimal variational distribution as follows
0g(Z)) = Eiy [log (h(Z))exp [n(X,Z-)7Z; — A(n(X,Z-;))| )| + const
—> q; (Zj) o h(Z;)exp {IE,-#[;;(X. Z—J)]TZJ} (verify)

= Thus, with local conj, we just require expectation of nat. params. of CP of Z;
CS772A: PML



Variational EM

" In LVMs, latent vars Z and parameters © both may be unknown. In such cases, we can
use variational EM (VEM). Same as EM except VEM uses VI to approx. CP of Z

= \VEM alternates between the following two steps
= Maximize the ELBO wirt. ¢ (gives the variational approximation q(Z£) of CP of Z)

dt) = argmaxg Eg 2) [log p(D,Z|®(t_1)) —log q4 (Z)]

= Maximize the ELBO wirt. © (gives us point estimate of ©)

0 = argmaxg Eq(p(t)(l) _log p(D,Z|O) —log q (Z)]

- This looks very similar to the
= dIgmaXeg [Eq¢(t) (2) lOg p (D; Zl G))] expected CLL with the CP replaced

by its variational approximation

= Note: If we want posterior for © as well, treat it similar to Z and apply variational
approximation (instead of using VEM) if the posterior isn't tractable
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77 | Recall the Gaussian

VI for models without “latent variables” | e ne s

estimation problem

" Suppose we have a "fully observed” case (no missing data/latent variables but
just some unknown global parameters 8 and known hyperparams ¢)

" A simple example of the model is shown in the figure below

Even supervised learning ; 5 M
problems may have this form with '\,

D 9 9 0 being the weights of the

( ‘é ‘é p w'n ‘ generative/discriminative models
and the models may not have any
missing data or latent variables

If this CP is intractable,

we can use VI to
use VIt p(D\H)p(H\ﬁ)
approximate this 6 D-. —
p(OID. &) p(DI§)

= [T ¢ are also unknown then one way would be to alternate like Variational EM

= Approximating the CP p(81|D, &) using VI
= Using MLE-Il to get point estimates of the hyperparameters &
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Making VI Faster for LVMs: Stochastic VI (SVI)

» Many LVMs have local latent variables Z = {24, 25, ..., Zy } and global params ©
= \/| updates of local and global variables depend on each other (similar to EM)

" This makes things slow (for VI and also for EM) especially when N is large
» \We must update q(z,|¢®,). i.e., compute ¢,,, for each latent variable before updating @

» Also need all the data X = {x4, X5, ..., Xy} in memory to do these updates
= Stochastic VI*™ is an efficient way using minibatches of data

" |n each iteration, SVI takes a minibatch B of |B| < N data points, updates
q(z,|®,) examples in that minibatches and approximates the ELBO as follows

Optimize this approximate ELBO w.rt. ©
(note: this is an unbiased estimate™)

o N
L$0)= ) Equippllogp(xilzi,0)] — KLay(z)Ip(:16)
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Making VI Faster for LVMs: Amortized VI

" Instead of computing the optimal ¢,, for each q(z,,|¢,,). learn a function to do so

q(zn|6n) ~ q(2a|¢n) where o = NNg(xn)

= Function is usually a neural network with weights ¢
= Usually referred to as “inference network™ or “recognition model”

= Amortization: We are shifting the cost of finding ¢,, for each data point to finding
the weights ¢ of the neural network shared by all data points

" Can also combine amortized VI with stochastic VI
= Fach iteration only uses a minibatch to optimize NN weights ¢ and global params ©

» £| BO expression remains the same but q(z,|¢,,) is replaced by q(zn|NN¢(xn))

= Amortized VI quality can be poor but it is fast and can give a quick solution
= We can refine this solution other methods (e.g., using sampling; will see later)
= This refinement based approach is called "semi-amortized VI" CS772A: PML



VI using ELBO’s gradients

» -or simple locally conjugate models, VI updates are usually easy
= Sometimes, can find the optimal g even without taking the ELBO's gradients

= For complex models, we have to use the more general gradient-based approach

= Consider the setting when we have latent variables Z and parameters 0
" The ELBO's gradient wir.t. ©

VoL(¢,0) = Vg Eq, (z)[log p(D, Z10) —log q4(2)] | cociier e s
Monte-Carlo approximation

s a0 = Eqy )| Ve {log p(D, Z10) —log g ()] =

straightforward here

* The ELBO's gradient wirt. ¢
V¢L(¢, ('*)) — V(l) IEC[¢(Z) [lOg p(D’ Zl@) _ log q¢ (Z)] Gradient can't go inside

expectation since q(Z)

Monte-Carlo approximation depends on ¢

using samples of q¢(Z) is = [Eq¢(Z) [v¢ {108 p(D; Zl ®) T 108 ng (Z)}]

NOT as Straightforward CS772A: PML



Black-Box Variational Inference (BBVI)

" Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo
» Uses the following identity for the ELBO's derivative
Vsl(q) = VyuEg4[logp(X,Z)— logq(Z|o)]
= E,[V,logq(Z|o)(log p(X,Z) — log q(Z|®))] (proof on next slide)
= Thus ELBO gradient can be written solely in terms of expec. of gradient of log q(Z|¢)
* Required gradients don't depend on the model; only on chosen var. distribution (hence “black-box”)

= Given S samples {Z,}5_, from q(Z|¢), we can get (noisy) gradient as follows

S
Vo£(q) ~ 3 3 Volog a(Z.|6)(log p(X, Z.) — log 4(Z.|6)

s=1

= Above is also called the "score function” based gradient (also REINFORCE method)

Gradient of a log-likelihood or log-probability function wir.t,

its params is called score function; hence the name
*Black Box Variational Inference - Ranganath et al (2014) CS772A: PML



Proof of BBVI ldentity

* The ELBO gradient can be written as
Vol(a) = Vo [(logp(X.2) - loga(Z|¢)a(Z|¢)dz
— / V.4 [(log p(X, Z) — log g(Z|$))a(Z|$)]dZ  (V and / enterchanpeable: it Sofmene thade)
= [ Vallogp(X. 2) ~ log a(2|#))1a(ZI¢) + V a(Z|¢)l(log p(X. Z) — log a(Z|4))|dZ

— B[V, loga(Zo)) + [ V,sa(2|)l(log p(X, 2) ~ log a(Z|¢))]dZ

" Note that Eq[V,log q(Z|0)] = Eq [“2422| = [ V4q(Z|9)dZ = Vs [ 4(Z|$)dZ = V1 =0

= Also note that V,q(Z|¢) = Vs[log q(Z|)]q(Z|4), using which
/V¢Q(Z|¢)[(|ng(xs Z) — log q(Z[9))]dZ = /V¢ log q(Z|¢)[(log p(X, Z) — log q(Z|¢))]a(Z|¢)dZ
= Eg[Vy log q(Z[9)(log p(X, Z) — log q(Z[4))]
" Therefore V4L£(q) = Eq[V log q(Z|¢)(log p(X, Z) — log q(Z|¢))]

CS772A: PML



Benefits of BBV

» Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

S
VoL(q) = é Y Ve log q(Zs|¢)(log p(X, Zs) — log q(Zs|9))

s=1

" Enables applying VI for a wide variety of probabilistic models

= Can also work with small minibatches of data rather than full data

* BBVI has very few requirements
= Should be able to sample from q(Z|¢) (usually sampling routines exists!)
= Should be able to compute V4 log q(Z|¢) (automatic differentiation methods exist!)

= Should be able to evaluate log p(X, Z) and log q(Z|¢) for any value of Z

= Some tricks needed to control the variance in the Monte Carlo estimate of the ELLBO

gradient (if interested in the details, please refer to the BBVI paper)

CS772A: PML



Reparametrization Trick

* Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)
» Suppose we want to compute ELBO's gradient V4Eq, z)[log p(X, Z) — log g4 (Z)]

= Assume a deterministic transformation g
Assumed to not

7 = g(E, ¢) where € ~ p(€) depend on ¢
= With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

VEy)[log p(X, g(€, ¢)) — log gs(g(€, )] = Epe)Vo[log p(X, g(e, ¢)) — log qs(g (€, #))]

= Given S i.i.d. random samples {€,}5_, from p(€), we can get a Monte-Carlo approx.

VEq,z)llog p(X, Z) — log q4(Z)]~ % > [Vslogp(X, g(es; d)) — Vo log go(g(es, ¢))]

* Such gradients are called pathwise gradients® (since we took a "path” from € to Z)

CS772A: PML

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: An Example

» Suppose our variational distribution is g(w|¢) = N (w|u, X), so ¢ = {u, X}

= Suppose our ELBO has a difficult expectation term [, [ f (w)] SVL;’:L{Z’ 3101(2)

* However, note that we need ELBO gradient, not ELBO itself. Let's use the trick

= Reparametrize w as w = u + Lv where v ~ N (0, I) ssﬁlg‘;tzwm&ﬂ'gve

V,LL,LEN(Wll,L,Z)[f(w)] — vILJ-IE‘:J'\/’(VIO,I)[f-(:u 03 LV)] & ]EN(v|o,|)[vu,Lf(H £3 LV)]

" The above is now straightforward Often even one or very
» Fasily take derivatives of f(w) wirt. variational params u, L few samples suffice
= Replace exp. by Monte-Carlo averaging using samples of v from N (0, I) of ow

dw du
VBl fW)] = Exion[Vif(u+ L)) AT F(+ Lvd)D o me
ViENwiws)[f(W)] = Ex(jon[Vif(p+ Lv)] ""‘ off .

. . L . ow 9
" Std. reparam. trick assumes differentiability (recent work on removing th?swre]“q).
CS772A: PML

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: Some Comments

» Standard Reparametrization Trick assumes the model to be differentiable
VEq,z)llog p(X,Z) — log gs(Z)] = Ep¢) [V log p(X, g(€, @) — Ve log go(g(€, ¢))]

= |n contrast, BBVI (score function gradients) only required q(Z) to be differentiable
" Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary /categorical)

= Recent work on continuous relaxation’ of discrete variables'(e.g., Gumbel Softmax for categorical)

" The transformation function g may be difficult to find for general distributions

= Recent work on generalized reparametrizations™

" Also, the transformation function g needs to be invertible (difficult/expensive)
» Recent work on implicit reparametrized gradients”

= Assumes that we can directly draw samples from p(€). If not, then rep. trick isn’t valid®

tCategorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurefglf?i,A_ PML
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016) :



Automatic Differentiation Variational Inference

= Suppose Z is D-dim r.v. with constraints (e.g., non-negativity) and distribution q(Z|¢)
= Assume a transformation T such that u = T(Z) st. u € RP (unconstrained) then

dtBZ
© ou

" Recall the original ELBO expression L(¢) = Egz|) [log

q(u) = q(Z)

p(D.Z)
q(Z|p)
= Assuming q(uly) = N (u|u, ) and using Z = T~1(u), the ELBO becomes
p(D,T~"(w))|det(9Z/0u)|
L@) = Eqeupyp) [108 T, ]

= Eq upy)[log p(D, T2 () + log|det(8Z/0w)|] + H(q(uly))

» Optimize L(Y) wirt. Y to get g(u|y) as a Gaussian and use distribution
transformation equation to get q(Z|¢)

CS772A: PML



Structured Variational Inference

" Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
* Removing the independence assumption of mean-field VI
" |n general, learning more complex forms for the variational approximation family q(Z|¢)

" Jo remove the mean-field assumption in VI, various approaches exist
= Structured mean-field (Saul et al, 1996)
* Hierarchical VI (Ranganath et al, 2016): Variational params ¢+, ¢, ..., ¢ “tied” via a shared prior

q(z1,...,zum|0) = / [H q(zm|dm)| p(¢|0)dep

" Recent work on learning more expressive variational approx. for general VI

, , , C , . C Even simple unimodal components
= Boosting or mixture of simpler distributions, e.g., q(Z) = Y¢=1Ppcqc(Z)< give a multimodal q(2)

= Normalizing flows™*: Turn a simple var. distr. into a complex one via series of invertible transfor.

A mgch more cc')m.plex(e'.g.,. | 2 = fx 00 fi(20), Zo~ qo(2), A.Sm.mple? unimodal variational
multimodal) variational distribution distribution (e.g.. N (0, 1)

obtained via the flow idea = ofr | "

Zrg ~ Qi (2K) = qo(2 det
( ) 0 0 n az,l;_ :

*Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015) CS772A: PML




Other Divergence Measures

" \/| minimizes KL(q||p) but other divergences can be minimized as well
» Recall that VI with minimization of KL(q||p) leads to underestimated variances

= A general form of divergence is Renyi's a-divergence defined as

log f p(2)%q(2)'-dZ

DE(p@D)|a(@®) = —

* KL(p||q) is a special case with & — 1 (can verify using L'Hopital rule of taking limits)

" An even more general form of divergence is f-Divergence

Z
Dr(p(2)||q(2)) = fq(Z)f (%> “

= Many recent variational inference algorithms are based on minimizing such divergences

CS772A: PML



Variational Inference: Some Comments

» Many probabilistic models nowadays rely on VI to do approx. inference

" Fven mean-field with locally-conjugacy used in lots of models
= This + SVI gives excellent scalability as well on large datasets

" Progress in various areas has made VI very popular and widely applicable
= Stochastic Optimization (e.g., SGD)

We covered many of the threads A
s Automatic Differentiation being explored in recent work but Lo 4 /
. a lot of work still being done in
= Monte-Carlo gradient of ELBO this aren ° e»

= Note: Most of these ideas apply also to Variational EM

* Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g.,
Tensorflow Probability, Pylorch, etc), making VI easy even for complex models

= Still a very active area of research, especially for doing VI in complex models
= Models with discrete latent variables
* Reducing the variance in Monte-Carlo estimate of ELBO gradients
= More expressive variational distribution for better approximation C5772A: PML
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