Large Language Models (Auto-regressive and Diffusion-based)

CS772A: Probabilistic Machine Learning Piyush Rai

Large Language Models (LLM)

An LLM defines a probability distribution over sequences of tokens

$$\boldsymbol{x} = \{x_1, x_2, \dots, x_N\}$$

Autoregressive modeling is a popular way to define this distribution

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \dots = \prod_{i=1}^{N} p(x_i|\mathbf{x}_{i})$$

• Params θ of each conditional $p(x_i | \mathbf{x}_{< i})$ defined using neural nets (e.g., transformer)

 $p_{\theta}(x_i | \mathbf{x}_{< i}) = \text{softmax}(f_{\theta}(\mathbf{x}_{< i}))$ A neural net
Vector of probabilities of all possible
values of the next token

Training of LLMs and Sequence Generation

Usually trained using maximum likelihood with log-likelihood defined as

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \log p_{\theta}(x_i | \mathbf{x}_{< i})$$

- Once trained, generate a sequence of tokens, one at a time. Some popular ways:
 - Greedy (pick the most probable token deterministically): $\hat{x}_i = \operatorname{argmax} p_{\theta}(x_i | x_{< i})$
 - Sampling: $\hat{x}_i \sim p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Temperature based sampling: $\hat{x}_i \sim [p_{\theta}(x_i | x_{< i})]^{1/\tau}$
 - $\tau < 1$ sharpens the distribution (more deterministic sampling)
 - $\tau > 1$ flattens the distribution (more exploratory sampling)
 - Top-*k* sampling
 - Randomly sample a token from k most probable token
 - Nucleus (top-p) sampling
 - Sample from minimum set of tokens with cumulative probability $\geq p$

Some Limitations of Autoregressive LLMs

- Sequential Generation: Inherently slow due to token-by-token decoding
- Low Output Diversity: Because of the decoding techniques used
- Locally greedy generation and lacks long-term coherence control.
- Token-Level Objectives: Next-token prediction doesn't align well with task-level goals (e.g., factual consistency).
- Difficulty Handling Edits/Rewrites: Inefficient for tasks requiring partial edits or structured generation.

Diffusion based LLM*

Autoregressive LLMs generate each token conditioned on earlier tokens

$$p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i | x_{< i})$$

- In contrast, diffusion based LLM generate all tokens in parallel
- Diffusion LLM consist of a forward and a reverse process
- Forward process corrupts the token sequence gradually till it becomes pure noise

Forward Process

• Assuming z_t contains N tokens, the forward process in diffusion LLM can be defined as

 $q(z_t|z_{t-1}) = \prod_{i=1}^{N} \operatorname{Cat}(z_t^i|Pz_{t-1}^i) \xrightarrow{P \text{ is the } V \times V \text{ transition matrix that defines}}_{\text{corruption probabilities, } z_t^i \text{ are one-hot vectors}}$

- A very simple yet popular form of the above corruption distribution is $q(z_t | z_{t-1}) = (1 - \beta_t) \mathbb{I}[z_t = z_{t-1}] + \beta_t / V$
- Basically, to get sequence z_t from z_{t-1} , it does the following for each token in z_{t-1}
 - With probability eta_t , replace it by a random token from the vocabulary
 - With probability $1 \beta_t$, keep it unchanged
- Note: Some diffusion LLMs replace tokens by not a random but a "mask" to

Reverse Process

Takes noisy text and produces less noisy text (basically opposite of forward process)

$$p_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}) = \prod_{i=1}^{N} \operatorname{Cat}(z_{t-1}^{i}|\boldsymbol{p}_{\theta}(z_{t-1}^{i}|\boldsymbol{z}_{t}^{i}))$$

The training objective is similar to the one used in continuous data LLM

- Basically we want to match $p_{\theta}(\boldsymbol{z}_{t-1} | \boldsymbol{z}_t)$ and $q(\boldsymbol{z}_{t-1} | \boldsymbol{z}_t, \boldsymbol{x})$

$$\mathcal{L} = \mathbb{E}_{t,\boldsymbol{x},\boldsymbol{z}_t}[\|p_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) - q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t,\boldsymbol{x})\|^2]$$

Diffusion LLMs: Some Pros and Cons

- Some pros
 - Parallel Decoding \rightarrow Faster inference potential via non-sequential generation
 - Better Output Diversity \rightarrow Naturally handles multi-modal distributions
 - Improved Controllability \rightarrow Supports classifier-free guidance and conditioning
 - Resilience to Exposure Bias \rightarrow Trained via denoising, not next-token prediction
 - Flexible Objectives \rightarrow Enables structured generation, editing, and planning
- Some cons
 - Slower Training \rightarrow Iterative denoising steps can increase training cost
 - Complex Architecture \rightarrow Needs noise schedule, denoising network, sampling strategy
 - High Inference Cost (currently) \rightarrow Requires multiple denoising steps at test time

 - Tokenization Challenges \rightarrow Needs careful handling of discrete text representations

