Large Language Models

(Auto-regressive and Diffusion-based)

CS772A: Probabilistic Machine Learning
Piyush Rai

Large Language Models (LLM)
=" An LM defines a probability distribution over sequences of tokens

X = {Xl, X9, ...,xN}

= Autoregressive modeling is a popular way to define this distribution
N

p(x) = p(x)p(xzlx)p(x3]x0, %3) .. = p(xi|x<;)

1=1

» Params 6 of each conditional p(x;|x<;) defined using neural nets (e.g., transformer)

po (x;|x<;) = softmax(fy(x<;))

A neural net

Vector of probabilities of all possible
values of the next token

CS772A: PML

Training of LLMs and Sequence Generation

= Usually trained using maximum likelihood with log-likelihood defined as

N
L(6) = E ~ logpg (xi|x<;)
1=1
» Once trained, generate a sequence of tokens, one at a time. Some popular ways:
» Greedy (pick the most probable token deterministically): X; = argmax pg(X;|X<;)

= Sampling: X; ~ pg(x;|x<;)

» Temperature based sampling: £; ~ [pg (x;|x<;)]*/*
" T < 1 sharpens the distribution (more deterministic sampling)
= 7 > 1 flattens the distribution (more exploratory sampling)

= Top-k sampling

= Randomly sample a token from k most probable token

= Nucleus (top-p) sampling
= Sample from minimum set of tokens with cumulative probability = p
CS772A: PML

Some Limitations of Autoregressive LLMSs

» Sequential Generation: Inherently slow due to token-by-token decoding

= | ow Output Diversity: Because of the decoding techniques used

» | ocally greedy generation and lacks long-term coherence control.

= Token-Level Objectives: Next-token prediction doesn't align well with task-level goals
(e.g., factual consistency).

= Difficulty Handling Edits/Rewrites: Inefficient for tasks requiring partial edits or
structured generation.

CS772A: PML

Diffusion based LLM*

= Autoregressive LLMs generate each token conditioned on earlier tokens
N
pe) = | | peulxad
1=

" |n contrast, diffusion based LLM generate all tokens in parallel
» Diffusion LLLM consist of a forward and a reverse process
" Forward process corrupts the token sequence gradually till it becomes pure noise

>
Clean Text Small Noise More MNoise Heavy Noise FPure Noise
"The quick brown” "The quick brown” "The green brown” “car big apple” “random sample of™
"fox jumps over" "fox happy over™ "fox happy tree" "boat runs water" "tokens drawn from"
"the lazy dog" "the lazy dog" "the small dog" “a blue cat” “vocabulary dist.”

" Reverse process starts with pure noise and gradually denoises it to generates a token
sequence

*Structured Denoising Diffusion Models in Discrete State-Spaces (Austin et al, NeurlIPS 2021)
*Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions (Hoogeboom et al, NeurIPS 2021) CS772A: PML

Forward Process

" Assuming z; contains N tokens, the forward process in diffusion LLM can be defined as
N . . P is the V X V transition matrix that defines
q(Zt |Zt—1) = 1_[Cat(zé |PZ£_1) corruption probabilities, z{ are one-hot vectors
=1 of size V where V is the vocab size

x u— ZO Zl Z2 --------------- ZT_l ZT
Clean Text Small Noise More Noise Heavy Noise Fure Noise
"The quick brown” "The quick brown™ "The green brown" "car big apple” “random sample of”
"fox jumps over” "fox happy over™ "fox happy tree” "boat runs water” "tokens drawn from"
"the lazy dog” "the lazy dog" "the small dog" “a blue cat” “vocabulary dist.”
f1 (small) B, (larger) Br (close to 1)

= A very simple yet popular form of the above corruption distribution is
q(z¢|z¢1) = (1= Bz, = 2,1 + B, /V
" Basically, to get sequence zZ¢ from Zy_4, it does the following for each token in z;_
= With probability B¢, replace it by a random token from the vocabulary
= With probability 1 — B, keep it unchanged

= Note: Some diffusion LLMs replace tokens by not a random but a "mask” token,,,,

Reverse Process

" Takes noisy text and produces less noisy text (basically opposite of forward process)

N . . .
po(Z;—1l2;) = 1_[1Cat(z§_1|p9(zé_1|zé)
i=

—
x — ZO Zl Z2 --------------- ZT_l ZT
Clean Text Small Noise More Noise Heavy Noise FPure Noise
"The gquick brown” "The quick brown" "The green brown” "car big apple” “random sample of”
"fox jumps over” "fox happy over” "fox happy tree" "boat runs water” "tokens drawn from"
"the lazy dog” "the lazy dog" "the small dog" "a blue cat” "vocabulary dist.™

" The training objective is similar to the one used in continuous data LLM
= Rasically we want to match pg(Z;:—112;) and q(z;_1| 2, x)

L= Eixzlllpe(ze-1l2¢) — q(Ze—112¢,) ||%]

CS772A: PML

Diffusion LLMs: Some Pros and Cons

" Some pros
= Parallel Decoding — Faster inference potential via non-sequential generation
= Better Output Diversity — Naturally handles multi-modal distributions
" Improved Controllability — Supports classifier-free guidance and conditioning
= Resilience to Exposure Bias — Trained via denoising, not next-token prediction
* FHexible Objectives — Enables structured generation, editing, and planning

" Some cons
= Slower Training — lterative denoising steps can increase training cost
= Complex Architecture — Needs noise schedule, denoising network, sampling strategy
= High Inference Cost (currently) — Requires multiple denoising steps at test time
" L ess Mature — Fewer benchmarks and toolkits compared to autoregressive LLMs
= Tokenization Challenges — Needs careful handling of discrete text representations

CS772A: PML

	Slide 1: Large Language Models (Auto-regressive and Diffusion-based)
	Slide 2: Large Language Models (LLM)
	Slide 3: Training of LLMs and Sequence Generation
	Slide 4: Some Limitations of Autoregressive LLMs
	Slide 5: Diffusion based LLM*
	Slide 6: Forward Process
	Slide 7: Reverse Process
	Slide 8: Diffusion LLMs: Some Pros and Cons

