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Plan today

▪ Some classical probabilistic models for sequential data
▪ Hidden Markov Models (HMM) and State-Space Models (SSM)

▪ Another non-Bayesian way to get uncertainty estimates:
▪ Conformal Prediction

▪ Simulation based inference
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Probabilistic Models 
for Sequential Data
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Latent Variable Models for Sequential Data

▪ Task: Given a sequence of observations, infer the latent state of each observation

▪ If  𝑧𝑛’s are discrete, we have a hidden Markov model (HMM)

▪ If  𝑧𝑛’s are real-valued, we have a state-space model(SSM)
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State-Space Models

▪ In the most general form, the state-transition and observation models of an SSM

▪ Assuming Gaussian noise in the state-transition and observation models
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If  𝑔𝑡 , ℎ𝑡 , 𝑄𝑡 , 𝑅𝑡 are 

independent of 𝑡 then it is 

called a stationary model

HMM is similar to SSM except 

the state-transition model is a 

discrete distribution

This is a Gaussian SSM

𝑔𝑡 , ℎ𝑡 can be 

linear or 

nonlinear 

functions

𝑔𝑡 , ℎ𝑡 , 𝑄𝑡 , 𝑅𝑡 may be known 

or can be learned
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State-Space Models: A Simple Example

▪ Consider the linear Gaussian SSM

▪ Suppose 𝒙𝑡 ∈ ℝ2 denotes the (noisy) observed 2D location of an object

▪ Suppose 𝒔𝑡 ∈ ℝ6 denotes the “state” vector 

▪Here is an example SSM for this problem with pre-defined 𝐀t and 𝐁t matrices
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𝒔𝑡 = [pos1, vel1, accel1, pos2, vel2, accel2]
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Typical Inference Task for Gaussian SSM

▪One of the key tasks: Given sequence 𝑥1, 𝑥2, … , 𝑥𝑇, infer latent 𝑠1, 𝑠2, … , 𝑠𝑇

▪ Usually two ways of inferring the latent states
▪ Infer 𝑝(𝑠𝑡|𝑥1, 𝑥2, … , 𝑥𝑡): Called the “filtering” problem

▪ Infer 𝑝(𝑠𝑡|𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑇): Called the “smoothing” problem

▪ Some other tasks one can solve for using an SSM
▪ Predicting future states 𝑝(𝑠𝑡+ℎ|𝑥1, 𝑥2, … , 𝑥𝑡) for ℎ ≥ 1 , given observations thus far

▪ Predicting future observations 𝑝(𝑥𝑡+ℎ|𝑥1, 𝑥2, … , 𝑥𝑡) for ℎ ≥ 1 , given observations thus far
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Kalman Filtering is a popular 

algorithm for a linear 

Gaussian SSM

A Gaussian

Turns out to be 

another Gaussian
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A Special Case

▪What if  we have i.i.d. latent states, i.e.,. 𝑝 𝑧𝑛 𝑧𝑛−1 = 𝑝 𝑧𝑛 ?

▪ Discrete case (HMM) becomes a simple mixture model

▪ Real-valued case (SSM) becomes a PPCA model

▪ Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
▪ Only main difference is how the latent variables 𝑧𝑛’s are inferred since they aren’t i.i.d.

▪ E.g., if  using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)
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Conformal Prediction
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Conformal Prediction

▪ A simple technique to easily obtain confidence intervals

▪ In classification, such an interval may refer to the set of highly likely classes for a test input

▪ For more difficult test inputs, the set would typically be larger

▪ In a way, conformal prediction gives predictive uncertainty
▪ However, unlike Bayesian ML, we don’t get model uncertainty

▪ Only one model is learned in the standard way and we construct the set of likely classes

▪ It’s like a black-box method; no change to training procedure for the model
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Conformal Prediction

▪ Assume we already have a trained model መ𝑓 using some labelled data

▪ Suppose we get a test input 𝑋𝑡𝑒𝑠𝑡 whose true (unknown) label is 𝑌𝑡𝑒𝑠𝑡

▪ Use መ𝑓 and a calibration set of 𝑛 examples to generate a prediction set 𝒞(𝑋𝑡𝑒𝑠𝑡) s.t.

▪ To construct the set, we first compute, for each example in the calibration set

▪Use the calibration set scores 𝑠1, 𝑠2, … , 𝑠𝑛 to compute their 𝛼 quantile
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1 − 𝛼 ≤ 𝑝 𝑌𝑡𝑒𝑠𝑡 ∈ 𝒞 𝑋𝑡𝑒𝑠𝑡 ≤ 1 − 𝛼 +
1

𝑛 + 1

𝛼 is a user 

chosen error rate

𝑠𝑖 = መ𝑓 𝑥𝑖 𝑦𝑖

Probability/score of the correct 

class 𝑦𝑖 of the input 𝑥𝑖 

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)

Assume it’s a classification model 

which produces softmax scores

Conformal prediction can 

be used for regression 

problems too*

classes

Class 
probabilities

𝑦𝑖

Score 𝑠𝑖 of the 

correct class 𝑦𝑖
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Conformal Prediction

▪ Assume the 𝛼 (say 0.1) quantile of the calibration set scores is equal to ො𝑞

▪ Assuming 𝑛 is very large, roughly 1 − 𝛼  fraction of inputs will have score higher than ො𝑞 

▪ Given a test input 𝑋𝑡𝑒𝑠𝑡, whose label is is unknown, we compute the class probabilities

▪ Define the prediction set for 𝑋𝑡𝑒𝑠𝑡 as
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scores

Frequency

ො𝑞

Pick ො𝑞 such that 𝛼 fraction of the 

mass of histogram is on the left 

side of ො𝑞 

Probability of 

true class

classes

Class 
probabilities

ො𝑞

𝒞 𝑋𝑡𝑒𝑠𝑡 = {𝑦: መ𝑓 𝑋𝑡𝑒𝑠𝑡 𝑦 ≥ ො𝑞}

Report all the classes whose probability is 

large enough (the “large enough” value is 

given by the 𝛼 quantile ො𝑞)

Prediction set for this 

test input includes 

classes 1,2,5
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Conformal Prediction

▪ A generic black-box method

▪ Can be easily applied to any already trained classifier

▪ Predicted set has some nice guarantees

▪ Does not make any assumptions on the distribution of the data

▪ Thus considered a “distribution-free” approach to uncertainty quantification

▪ Can also be applied to regression problems*
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1 − 𝛼 ≤ 𝑝 𝑌𝑡𝑒𝑠𝑡 ∈ 𝒞 𝑋𝑡𝑒𝑠𝑡 ≤ 1 − 𝛼 +
1

𝑛 + 1

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)
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Simulation-based Inference
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Simulation-based Inference

https://github.com/sbi-dev/sbi

▪ Suppose we wish to compute the posterior 𝑝(𝜃|𝐷)

▪ However, suppose we can’t compute the likelihood 𝑝(𝐷|𝜃)
▪ Evaluation too expensive, or don’t have explicit likelihood

▪ Simulation-based Inference (SBI) approximates 𝑝(𝜃|𝐷) as follows
▪ For 𝑖 = 1,2, … 𝑆

▪ Draw a random 𝜃(𝑖) the prior 𝑝(𝜃). Simulate a dataset 𝐷(𝑖) from some simulator using 𝜃(𝑖)

▪ Check how “similar” 𝐷(𝑖) is to 𝐷. Define a suitable distance to measure this, e.g., 

▪ Define the weight of 𝜃(𝑖) as inversely proportional to 𝑑𝑖 , e.g., 𝑤𝑖 ∝ exp(−𝑑𝑖)

▪ The approximate posterior is 𝑤𝑖 , 𝜃 𝑖
𝑖=1

𝑆

▪ The vanilla SBI/ABC can be inefficient in practice (most 𝜃 𝑖
’s may have low weights)

▪ More efficient versions proposed in recent research, e.g, neural conditional density estimators

▪ Check out this package for code and links to other methods: https://github.com/sbi-dev/sbi 
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𝑑𝑖 = 𝑠 𝐷 𝑖 − 𝑠(𝐷)  

This simulator may be some 

domain-specific model of the 

data generation process (e.g., a 

physics engine, robotics/control 

simulator, etc) 

Here 𝑠(. ) denotes a “summary statistics” which 

provides a summary of the dataset (e.g., its mean and 

covariance) which makes the comparison easier

SBI is also known as 

“Approximate Bayesian 

Computation” (ABC)

https://github.com/sbi-dev/sbi
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Conclusion

▪ Probabilistic modeling provides a natural way to think about models of data

▪ Many benefits as compared to non-probabilistic approaches

▪ Easier to model and leverage uncertainty in data/parameters

▪ Principle of marginalization while making prediction

▪ Easier to encode prior knowledge about the problem (via prior/likelihood distributions)

▪ Easier to handle missing data (by marginalizing it out if  possible, or by treating as latent variable)

▪ Easier to build complex models can be neatly combining/extending simpler probabilistic models

▪ Easier to learn the “right model” (hyperparameter estimation, nonparametric Bayesian models)

▪ Bayesian approaches as well as single model based uncertainty

▪ Uncertainty is important but proper calibration of uncertainty is also important

▪ Fast-moving field, lots of recent advances on new models and inference methods
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Thank You!
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