Assorted Topics (2)

CS772A: Probabilistic Machine Learning Piyush Rai

Plan today

- Some classical probabilistic models for sequential data
 - Hidden Markov Models (HMM) and State-Space Models (SSM)
- Another non-Bayesian way to get uncertainty estimates:
 - Conformal Prediction
- Simulation based inference

Probabilistic Models for Sequential Data

Latent Variable Models for Sequential Data

Task: Given a sequence of observations, infer the latent state of each observation

• If z_n 's are discrete, we have a hidden Markov model (HMM) $p(z_n|z_{n-1} = \ell) = \text{multinoulli}(\pi_\ell)$

CS772A: PML

• If z_n 's are real-valued, we have a state-space model(SSM) $p(z_n|z_{n-1}) = \mathcal{N}(Az_{n-1}, I_{\kappa})$

State-Space Models

In the most general form, the state-transition and observation models of an SSM

Assuming Gaussian noise in the state-transition and observation models

This is a Gaussian SSM

$$\begin{aligned} \mathbf{s}_{t} | \mathbf{s}_{t-1} \sim \mathcal{N}(\mathbf{s}_{t} | g_{t}(\mathbf{s}_{t-1}), \mathbf{Q}_{t}) & \text{If } g_{t}, h_{t}, Q_{t}, R_{t} \text{ are independent of } t \text{ then it is called a stationary model} \\ \mathbf{x}_{t} | \mathbf{s}_{t} \sim \mathcal{N}(\mathbf{x}_{t} | h_{t}(\mathbf{s}_{t}), \mathbf{R}_{t}) & g_{t}, h_{t}, Q_{t}, R_{t} \text{ may be known or can be learned} \end{aligned}$$

State-Space Models: A Simple Example

Consider the linear Gaussian SSM

$$\mathbf{s}_t | \mathbf{s}_{t-1} = \mathbf{A}_t \mathbf{s}_{t-1} + \epsilon_t$$
$$\mathbf{x}_t | \mathbf{s}_t = \mathbf{B}_t \mathbf{s}_t + \delta_t$$

• Suppose $x_t \in \mathbb{R}^2$ denotes the (noisy) observed 2D location of an object

 \blacksquare Suppose $\boldsymbol{s}_t \in \mathbb{R}^6$ denotes the "state" vector

 $\boldsymbol{s}_t = [\text{pos1, vel1, accel1, pos2, vel2, accel2}]$

 $\hfill\blacksquare$ Here is an example SSM for this problem with pre-defined A_t and B_t matrices

$$\mathbf{A}_{t} = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} & 0 & 0 & 0 \\ 0 & 1 & \Delta t & 0 & 0 & 0 \\ 0 & 0 & e^{-\alpha\Delta t} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\ 0 & 0 & 0 & 0 & 1 & \Delta t \\ 0 & 0 & 0 & 0 & 0 & e^{-\alpha\Delta t} \end{bmatrix} \mathbf{s}_{t-1} + \boldsymbol{\epsilon}_{t}$$

$$\mathbf{R}_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{S}_{t} + \boldsymbol{\delta}_{t}$$

Typical Inference Task for Gaussian SSM

• One of the key tasks: Given sequence x_1, x_2, \dots, x_T , infer latent s_1, s_2, \dots, s_T

- Some other tasks one can solve for using an SSM
 - Predicting future states $p(s_{t+h}|x_1, x_2, ..., x_t)$ for $h \ge 1$, given observations thus far
 - Predicting future observations $p(x_{t+h}|x_1, x_2, ..., x_t)$ for $h \ge 1$, given observations thus far

CS772A: PML

A Special Case

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

- Discrete case (HMM) becomes a simple mixture model $p(z_n|z_{n-1} = \ell) = p(z_n) = \text{multinoulli}(\pi)$
- Real-valued case (SSM) becomes a PPCA model $p(z_n|z_{n-1}) = p(z_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_{\mathbf{K}})$ or $\mathcal{N}(\mu, \Psi)$
- Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred since they aren't i.i.d.
 - E.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)

CS772A: PML

- A simple technique to easily obtain confidence intervals
 - In classification, such an interval may refer to the <u>set</u> of highly likely classes for a test input

- For more difficult test inputs, the set would typically be larger
- In a way, conformal prediction gives predictive uncertainty
 - However, unlike Bayesian ML, we don't get model uncertainty
 - Only one model is learned in the standard way and we construct the set of likely classes
 - It's like a black-box method; no change to training procedure for the model

Conformal prediction can be used for regression problems too*

CS772A: PML

- Assume we already have a trained model \hat{f} using some labelled data
- Suppose we get a test input X_{test} whose true (unknown) label is Y_{test}
- Use \hat{f} and a calibration set of n examples to generate a prediction set $\mathcal{C}(X_{test})$ s.t. $\alpha \text{ is a user}$ $\alpha \text{ is a user}$ $\alpha \text{ is a user}$ $1 - \alpha \leq p(Y_{test} \in \mathcal{C}(X_{test})) \leq 1 - \alpha + \frac{1}{n+1}$
- To construct the set, we first compute, for each example in the calibration set

• Use the calibration set scores s_1, s_2, \dots, s_n to compute their α quantile

- Assume the lpha (say 0.1) quantile of the calibration set scores is equal to \hat{q}

- Assuming n is very large, roughly (1α) fraction of inputs will have score higher than \hat{q}
- Given a test input X_{test} , whose label is is unknown, we compute the class probabilities

- A generic black-box method
- Can be easily applied to any already trained classifier
- Predicted set has some nice guarantees

$$1 - \alpha \le p(Y_{test} \in \mathcal{C}(X_{test})) \le 1 - \alpha + \frac{1}{n+1}$$

- Does not make any assumptions on the distribution of the data
 - Thus considered a "distribution-free" approach to uncertainty quantification
- Can also be applied to regression problems*

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)

Simulation-based Inference

Simulation-based Inference

- Suppose we wish to compute the posterior $p(\theta|D)$
- However, suppose we can't compute the likelihood $p(D|\theta)$
 - Evaluation too expensive, or don't have explicit likelihood
- Simulation-based Inference (SBI) approximates $p(\theta|D)$ as follows
 - For *i* = 1,2,...*S*
 - Draw a random $\theta^{(i)}$ the prior $p(\theta)$. Simulate a dataset $D^{(i)}$ from some simulator using $\theta^{(i)}$
 - Check how "similar" $D^{(i)}$ is to D. Define a suitable distance to measure this, e.g.,

$$d_i = \left\| s(D^{(i)}) - s(D) \right\|$$

Here s(.) denotes a "summary statistics" which provides a summary of the dataset (e.g., its mean and covariance) which makes the comparison easier

- Define the weight of $\theta^{(i)}$ as inversely proportional to d_i , e.g., $w_i \propto \exp(-d_i)$
- The approximate posterior is $\{w_i, \theta^{(i)}\}_{i=1}^{S}$
- The vanilla SBI/ABC can be inefficient in practice (most $\theta^{(i)}$'s may have low weights)
 - More efficient versions proposed in recent research, e.g, neural conditional density estimators
 - Check out this package for code and links to other methods: <u>https://github.com/sbi-dev/sbi</u>

SBI is also known as "Approximate Bayesian Computation" (ABC)

> This simulator may be some domain-specific model of the data generation process (e.g., a physics engine, robotics/control simulator, etc)

CS772A: PML

Conclusion

- Probabilistic modeling provides a natural way to think about models of data
- Many benefits as compared to non-probabilistic approaches
 - Easier to model and leverage uncertainty in data/parameters
 - Principle of marginalization while making prediction
 - Easier to encode prior knowledge about the problem (via prior/likelihood distributions)
 - Easier to handle missing data (by marginalizing it out if possible, or by treating as latent variable)
 - Easier to build complex models can be neatly combining/extending simpler probabilistic models
 - Easier to learn the "right model" (hyperparameter estimation, nonparametric Bayesian models)
- Bayesian approaches as well as single model based uncertainty
- Uncertainty is important but proper calibration of uncertainty is also important
- Fast-moving field, lots of recent advances on new models and inference methods

Thank You!

CS772A: PML

17