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Plan today

" Some classical probabilistic models for sequential data
" Hidden Markov Models (HMM) and State-Space Models (SSM)

= Another non-Bayesian way to get uncertainty estimates:
= Conformal Prediction

= Simulation based inference
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Probabilistic Models
for Sequential Data
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Latent Variable Models for Sequential Data

" Task: Given a sequence of observations, infer the latent state of each observation

Z1 Z2
i(l iz
Observation
mode| XplZn =~ PlXalZz,) (i.i.d. draws of x,, given z,)
otate transiton Zolzoed = plaslza-i) (first-order dependence b/w z,'s)

" |t z,,'s are discrete, we have a hidden Markov model (HMM)  p(zn|zn—1 = £) = multinoulli(7r)
" |f z,'s are real-valued, we have a state-space model (SSM) p(zalz,-1) = N(Az,_1, k)

CS772A: PML



State-Space Models

" |n the most general form, the state-transition and observation models of an SSM

S1 52 St-1 S St+1

Using ‘s’ instead of ‘2’
to refer to states

Using ‘t’ to denote the

X1 X2
‘time-step’ HMM is similar to SSM except
n 5 the state-transition model is a
iigrf’eartocran © - discrete distribution
o S¢|St—1 = gi(Si—1) + € (must be a cont. dist. over s;)
functions .
X:|S: = he(st) + 0y (can be any dist. over x;)

» Assuming Gaussian noise in the state-transition and observation models

St|st_]_ S 4 N(St‘gt(St_]_), Qt) :;c‘ige’:p;gri;jg;,tliﬁcirfhen itis
called a stationary model
x¢|s: ~ N(x¢ h:(s:), Re)

This is a Gaussian SSM

9, he, Q¢, Ry may be known
or can be learned 72A: PML



State-Space Models: A Simple Example

" Consider the linear Gaussian SSM
St|St—1 = A¢Si—1 + €
Xt|s: = Bys; + 0y
= Suppose x; € R? denotes the (noisy) observed 2D location of an object
= Suppose s; € R® denotes the “state” vector

S = |[pos1, vell, accell, pos2, vel2, accel?]

" Here is an example SSM for this problem with pre-defined A and By matrices

At
(1 Ar (A2 0 0 0 Bt
0 1 At 0 0 s 1z 0 pescesssksaskesavtssssssy
_§|% e @D W _if1 000 0 0
Sc=lo 0 0 1 A L(Ar)? S T €t Xt_ S Y B St*(st
0 0 0 0 1 | S
0 0 0 0 0 &
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Typical Inference Task for Gaussian SSM

" One of the key tasks: Given sequence X4, X5, ..., X7, infer latent sq, S5, ..., ST

S1 S2

= Usually two ways of inferring the latent states
Kalman Filtering is a popular

- , e ' 1
Infer p(s¢|xq, X5, ..., X¢): Called the “filtering” problem A Cotrein gorithm for a finear

lurns out to be p(se|x1,x2,...,x¢) < p(x¢|st) / p(st|st—1) p(st—1|x1,x2,...,Xx¢—1)dst—1 Gaussian SSM
N’ N’

another Gaussian
N(xt|Bst,R) N(StlASt-l,Q)

" Infer p(s¢]|xq, X3, -y X¢, -, X7): Called the "smoothing™ problem

= Some other tasks one can solve for using an SSM
= Predicting future states p(S¢4+n|X1, X2, ..., X¢) for h = 1, given observations thus far

= Predicting future observations p(xX¢4+5|%1, X2, ..., x¢) for h = 1 | given observations thus far
CS772A: PML



A Special Case

= What if we have i.i.d. latent states, i.e... p(z,|z,—1) = p(2,)?

Z Z 7 Z Z
1 2 = h & ¢ n-1 " Lo
( X1 l X2 I Xn-1 I Xn I Xn+1
" Discrete case (HMM) becomes a simple mixture model p(za|za-1 =€) = p(z,) = multinoulli(z)

= Real-valued case (SSM) becomes a PPCA model p(za|za-1) = p(z,) = N(0,Ik) or N(p, V)

* Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
= Only main difference is how the latent variables z,'s are inferred since they aren't i.i.d.
= £.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)
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Conformal Prediction
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Conformal Prediction

» A simple technique to easily obtain confidence intervals
" [n classification, such an interval may refer to the set of highly likely classes for a test input

w 'y .—.' - 1 .
e a o P = - -
- ’ \\' "‘ - = " 'A‘
.'\ . . - g
%y L f 2 \d-Squirrel (Alaska) " Copyright 1998 - Mon|
fox gray rain fox
. CkEE, A marmot S irr mink, weasel, beaver, polecat
{ squirrel } {sqxélegra Fox, PYcKSt: barre: Fot  squizrel, mink, weasel, btar. pelec
0.99

» For more difficult test inputs, the set would typically be larger

" In a way, conformal prediction gives predictive uncertainty
* However, unlike Bayesian ML, we don't get model uncertainty
= Only one model is learned in the standard way and we construct the set of likely classes
" [t's like a black-box method; no change to training procedure for the model CS772A: PML



CO n fO r m a | P re d I Ct I O n Assume it's a classification model Conformal prediction can

which produces softmax scores be used for regression
problems too*

= Assume we already have a trained model f using some labelled data
" Suppose we get a test input X Whose true (unknown) label is Yipqt

= Use f and a calibration set of n examples to generate a prediction set C(X¢ege) St

a is a user 1

chosen error rate 1 —a< p(Ytest (S C(Xtest)) <1 -—-—-a+

n+1
" [0 construct the set, we first compute, for each example in the calibration set

Class Score s; of the
probabilities correct class y;

class y; of the input x; A
ss y; of the input S; = f(xi)yi H|_||‘||_|H
Vi

Probability/score of the correct

» classes

" Jse the calibration set scores sy, s5, ..., s, t0 compute their a quantile

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022) CS772A: PML



Conformal Prediction

" Assume the a (say 0.1) quantile of the calibration set scores is equal to @

Pick g such that a fraction of the
mass of histogram is on the left
side of @

scores
q Probability of
true class

» Assuming n is very large, roughly (1 — a) fraction of inputs will have score higher than g

" Given a test input Xeqp, Whose label is is unknown, we compute the class probabilities

Prediction set for this

CIasbs biliti test input includes
proba ”t'ei classes 1,2,5
il HHH .......
| » classes

Report all the classes whose probability is

® Define the prediction set for Xtest as large enough (the “large enough” value is

given by the a quantile g)

C(Xtest) = {y:f(Xtest)y = q}
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Conformal Prediction

= A generic black-box method
= Can be easily applied to any already trained classifier
" Predicted set has some nice guarantees

1
n+1

1 —a< p(Ytest € C(Xtest)) <1-a+

" Does not make any assumptions on the distribution of the data
* Thus considered a “distribution-free” approach to uncertainty quantification

= Can also be applied to regression problems*

CS772A: PML

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)
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Simulation-based Inference
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Simulation-based Inference

= Suppose we wish to compute the posterior p(6|D) SBl s also known as
‘Approximate Bayesian
» However, suppose we can't compute the likelihood p(D|g) = e 5=

This simulator may be some

= Fvaluation too expensive, or don't have explicit likelihood domain-spedific model of the

data generation process (e.g., a

= Simulation-based Inference (SBI) approximates p(0|D) as follows | phsics engine, robotics/conirol

simulator, etc)
= Fori=1,2,..5
= Draw a random 8® the prior p(@). Simulate a dataset D® from some simulator using 8@

» Check how “similar” D® is to D. Define a suitable distance to measure this, e.g.,
Here s(.) denotes a “summary statistics” which

dl — ||S (D (l)) — S (D) || provides a summary of the dataset (e.g., its mean and

covariance) which makes the comparison easier

= Define the weight of 8 as inversely proportional to d;, e.g., w; < exp(—d;)
, C NS
* The approximate posterior is {Wi, 9(1)}1,_1

" The vanilla SBI/ABC can be inefficient in practice (most 6 may have low weights)

= More efficient versions proposed in recent research, e.g, neural conditional density estimators
= Check out this package for code and links to other methods: https://github.com/sbi-dev/sbi
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https://github.com/sbi-dev/sbi

Conclusion

* Probabilistic modeling provides a natural way to think about models of data

= Many benefits as compared to non-probabilistic approaches

» Fasier to model and leverage uncertainty in data/parameters

= Principle of marginalization while making prediction

= Fasier to encode prior knowledge about the problem (via prior/likelihood distributions)

= Fasier to handle missing data (by marginalizing it out if possible, or by treating as latent variable)
= Easier to build complex models can be neatly combining/extending simpler probabilistic models
= Fasier to learn the "right model” (hyperparameter estimation, nonparametric Bayesian models)

= Bayesian approaches as well as single model based uncertainty

= Uncertainty is important but proper calibration of uncertainty is also important

* Fast-moving field, lots of recent advances on new models and inference methods
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Thank You!

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

HOHO HONO HOMO HONMO HOMO
APRIORIUS PRAGHATICUS FREQUENTISTUS SAPIENS BAYESIANIS
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