


Recap: Prob. Models for Supervised Learning

" Goal: Learn the conditional distribution p(y|x). Broadly, two approaches

/Discr'minative Approach\/(ienerative Approach \

p(ylx) =py|f(x,w)) D(ylx) = p(y, x)

f can be any function which uses inputs and p(x)
weights w to defines parameters of distr. p

Requires estimating the joint distribution of

Some examples inputs and outputs to get the conditional
p(y x) = ]\/“(y|WTx’ ﬁ—l) p(y|x) (unlike the discriminative approach
which directly estimates the conditional p(y|x)

{(Y X) = Bernoulli(y|a(way @does not model the distribution of x) /
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Generative Classification: A Basic |dea

" | earn the probability distribution p(x|y = k) of inputs from each class k

Yes. Possible with generative model.

We can do it by estimating class A
marginal probabilities p(y) (class

proportions in the training data) in ‘!v.‘ /

What if | expect that the
green class is more likely
for a test input because
the training data also had
more green examples?

our model

Then we can combine p(y) and
p(x|y) to compute p(y|x) -
conditional probability of label for
any given input

p(x|red")

x,|class

I pex*|cla )

p(x|"green")
Tagt

Can | incorporate
this knowledge?

Going to talk about this next

= \We usually assume some form for p(x|y = k) (e.g., Gaussian) and estimate the
parameters of that distribution (MLE/MAP/fully posterior)

= We then predict label of test input x, by comparing probabilities under each class

= Or can report the probability of belonging to each class (soft prediction) CST71 Intro to ML



Generative Classification

= Suppose we have training data {(x,,, v,)}Y_, from K classes

" The conditional probability of label y,, given the input x,,

Known as the “class-conditional”

p(xn, Yn = k) distribution
p (yn =k |xn) — p(x ) Probability distribution of the
n

inputs from class k

Known as “class-marginal” or The numerator (joint distribution
_class-prior” distribution - yn — k) X (xn|yn = k) of x,, and y,,) summed over all
Marginal distribution of just K values of y,
the labels (not looking at the Marginal distribution

inputs) — Bernoulli/multinoulli of the input x,

= \We use the training data to estimate the class-marginal and class-conditionals
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Estimating Class Marginals

If only two classes,

= Estimating class marginals p(y = k) is usually straightforward assume Bernoull
= Since labels are discrete, we assume class marginal p(y) to be a multinoulli

These probabilities sum to 1: Zlk{ﬂ T =1

p(y|m) = multinoulli(y|m{, 7y, ..., Tg) = II§=17T]H([y=k]

T, = p(y =k)

= Given N i.id. labelled examples {(x,,, v )¥_1. v, € {1,2, ..., K} the MLE soln
N

MTyLE = argmé;lx Z log p(y,|m)

n=1

Subject to constraint YX_. m, =1

= MLE solution is p(y = k) = m, = N, /N where N, = YN__ [y = k]

* Thus p(y = k) = my, is simply the fraction of inputs from class k

= Can also compute MAP estimate or full posterior of 7t using a Dirichlet pgor, . .\



To be estimated using the

Estimating Class-Conditionals | tenigmus

{x,:y, = k} from class k

» Can assume a distribution p(x|y = k) = p(x|6;,) for inputs of each class k

= [f x is D-dimensional, p(x|8;) will be a D-dimensional distribution

, , E.g., if p(x|8y) is multivariate
= Can compute MLE/MAP estimate or full posterior of 8, | Gaussian then assume i to have

= This essentially is a density estimation problem for the class-cond. a diagonal covariance matrix

instead of full covariance matrix
" |n principle, can use any density estimation method
Such assumptions greatly reduce the
number of parameters to be estimated

= Choice of the form of p(x|68;,) depends on various factors

In such cases, we may need to regularize 6 or make

= Nature of IﬂpUt features, SHey some simplifying assumptions on p(x|8y), such as

» f x € RP can use a D-dim Gaussian N (x|uy, ) features being conditionally independent given class

— D - |
= [f x € {0,1}P , can use D Bernoullis (one for each feature) =2 P(x[0k) = llg=1p(*alOka) - naive Bayes
. C : E ially if th ber of f D) i | b
= Can also choose other more sophisticated distributions e valoe of D mome o feanres | a)lgfgvee;yuri[)g:r e
_ . . arameters (e.g., in the Gaussian case, 8, = (U, X ), D params

= Amount of training data available (important) bor g and O(D%) pararme for By Can onarfit |

= It D large and N, small, it will be difficult to get a good estimate 6,
CS771: Intro to ML



Generative Classification: At Test Time

» Recall the form of the conditional distribution of the label

Class-marginal accounts for the
frequency of class k labels in
the training data

p(y* — klx*) —

Class-conditional distribution of
inputs accounts for the
shape/spread of class k

p(y. = k) X p(x.]y. = k)
p(x.)
Probability of x, belonging to class X p(Y* — k) X p(x*ly* — k)

k is proportional to the fraction of

training inputs from class k times A 72y
o T X p(X.|0k)

the probability of x, under the
distribution of inputs from class k

= [f we assume the class-marginal to be uniform (p(y, = k) = 1/K) then

= The most likely label is y, = argmaxyes 2.k (Vs = k|x,)
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Gen. Classitn. using Gaussian Class-conditionals

p(y=k)p(x|y=k) A benefit of modeling

each class by a

» The generative classification model p(y = k|x) =

p(x) distribution (recall that
LwP had issues)
» Assume each class-conditional p(x|y = k) to be a Gaussian P
Since the Gaussian'’s 35
1 covariance models its r /
N(x|py, i) = exp[—(x — uk)TZ‘l(x — i)l shape, we can learn the e»
\/(Zﬂ)D |Zk| shape of each class ©

= Class marginal is multinoulli p(y = k) = my, m, € (0,1), Y 5_m, = 1

= | et's denote the parameters of the model collectively by 8 = {my, ty, Zx} k-1

= Can estimate these using MLE/MAP/Bayesian inference Can also do MAP estimation for
: Ui, Xy using a Gaussian prior on
= Already saw the MLE solution for ir: m,, = N /N (can also do MAP) 1, and inverse Wishart prior on I

: 1 1
= MLE solution for Hi = N_k Zyn:k Xn, L = N_kan=k(xn_”k)(xn_”k)T Exercise: Try to derive this. | will

provide a separate note
" |t using point est (MLE/MAP) for 8, predictive distribution will be | containing the dervation

Can predict the most likely
class for the test input x, by
comparing these probabilities
for all values of k

—1/2 1 Te—1 Note that the exponent has a
7| Zk] exp [_E(x* — ) X (X — l"k)} Mahalanobis distance like term.

Also, accounts for the fraction
K —1/2 _1 _ Ty —1 _ '
D ke Tk| Zk| 7/ 2 exp [ > (% — ) T (% l—"k)] of training examples in class kL

p(y* — klx*ae) —




Decision Boundary with Gaussian Class-Conditional

" As we saw, the prediction rule when using Gaussian class-conditional
— —1
Tl Tk T2 exp [ = (x = ) T (x — )|

—1
S Tkl Eel 2 exp | = R — ) TE (x = )|

p(y = k|x,0) =

" The decision boundary between any pair of classes will be a quadratic curve

= = Reason: For any two classes k and k' at the decision boundary,
we will have p(y = k|x,0) = p(y = k'|x, 8). Comparing their
logs and ignoring terms that don't contain x, can easily see that

(x — #k)Tzk_l(x — ) — (x — P"kf)TZ;:'l(x — ) =0

Decision boundary contains all inputs x that satisty the above
nput dimesion1 This is a quadratic function of x (this model is sometimes referred
to Quadratic Discriminant Analysis)

Input dimesion 2
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Decision Boundary with Gaussian Class-Conditional

» Assume all classes are modeled using the same covariance matrix X, = X, Vk
" |n this case, the decision boundary b/w any pair of classes will be linear

Reason: Again using p(y = k|x,8) = p(y = k'|x, 8), comparing their
logs and ignoring terms that don't contain x, we have

(x—p) " Z7 x =) — (x— ) ETHx = ) =0

Input dimesion 2

Quadratic terms of x will cancel out; only linear terms will remain; hence decision boundary will
be a linear function of x (Exercise: Verify that we can indeed write the decision boundary
between this pair of classes as w'x + b = 0 where w and b depend on gy, gy and X)

= v If we assume the covariance matrices of ﬁ /
) S the assumed Gaussian class-conditionals »
e = for any pair of classes to be equal, then e’
of - | the learned separation boundary b/w this
A pair of classes will be linear; otherwise,
2 : N + ey / | || quadratic as shown in the figure on left

o . - : : CS771: Intro to ML



A Closer Look at the Linear Case

» For the linear case (when X, = X,Vk), the class conditional probability
1 —
ply = klx,6) o meexp | =3 (x = ) "E 7 (x— 1)

" Expanding further, we can write the above as

p(y = k|x,0) < exp [p,kTZ_lx — %uzi_luk + log ?rk} exp [xTZ_lx]

" Therefore, the above class posterior probability can be written as

eXP [WE_X o bk] Wi = z_lﬂ’k bk = —%H;—z_lﬂk + |Og T

p(y — klxﬂg) —

I all Gaussians class-cond have the same
covariance matrix (basically, of all classes
are assumed to have the same shape)

S, exp (i x + by

" The above has exactly the same form as softmax classification (thus softmax is a special

case of a generative classification model with Gaussian class-conditionals) 771 Intro to ML



A Very Special Case: LwP Revisited

» Note the prediction rule when £, = X, Vk

1
- argmaxply = Klx) = argmax meexp | —3(x— ) (x|

k
1
= argmax log 7 — E(x — ) ETHx = )

= Also assume all classes to have equal no. of training examples, i.e., T, = 1/K. Then

A ' T e=—1
y — arg mkln (x o lJ’k) z (x o l"”k) The Mahalanobis

distance matrix = 1

* Fquivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

" |[f we further assume X = I then the above is exactly the LwP rule
" Thus LwP assumes spherical classes with roughly equal number of inputs from each class
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Unsupervised Generative Classification

" |n generative classification, we estimate u N, 2)
N(x]y,.Z,)

= Class marginal distribution p(y) = multinoulli(y|m) o \p
» K class-conditional distributions p(x|8;),k = 1,2, ...,K

= Can we estimate {m, 84, 85, ..., O } if the training labels are not known?

" [t then becomes an unsupervised learning problem
= Mixture modeling or clustering

= We will look at it later but the general idea is based on ALT-OPT
1. Guess the label of each input given current estimate of {m, 08¢, 0>, ..., Ok}
2. Re-estimate {m, 84, 0, ..., Ok} given the label guesses
3. Alternate between steps 1 and 2 till convergence
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Generative Models for Regression

" Yes, we can even model regression problems using a generative approach
* Note that the output y is not longer discrete (so no notion of a class-conditional)

" However, the basic rule of recovering a conditional from joint would still apply
p(x,y|6)
p(x|0)

" Thus we can model the joint distribution p(x, y|0) of features x and outputs y € R

p(ylx, 6) =

= |f features are real-valued the we can model p(x, y|0) using a (D + 1)-dim Gaussian
= From this (D + 1)-dim Gaussian, we can get p(y|x, 8)using Gaussian conditioning formula
" |f joint is Gaussian, any subset of variables (y here), given the rest (x here) is also a Gaussian!

m Refer to the Gaussian results from maths refresher slides for the result
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Proponents of discriminative ||

Discriminative vs Generative roponents of e
modeling x if y is what you Y /

: C : , care about? Just model
= Recall that discriminative approaches model p(y|x) directly | grecty instead of Workgg &

hard to model x by learning

» Generative approaches model p(y|x) via p(x,y) the class-conditiona

= Number of parameters: Discriminative models have fewer parameters to be learned
= Just the weight vector/matrix w/W in case of logistic/softmax classification

" Fase of parameter estimation: Debatable as to which one is easier

" For "simple” class-conditionals, easier for gen. classifn model (often closed-form solution)

= Parameter estimation for discriminative models (logistic/softmax) usually requires iterative
methods (although objective functions usually have global optima)

= Dealing with missing features: Generative models can handle this easily
* [.g., by integrating out the missing features while estimating the parameters (will see later)

" Inputs with features having mixed types: Generative model can handle this
= Appropriate p(x4|y) for each type of feature in the input. Difficult for discriminative models
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Discriminative vs Generative (Contd)

= Leveraging unlabeled data: Generative models can handle this easily by treating the
missing labels are latent variables and are ideal for Semi-supervised Learning.
Discriminative models can't do it easily

= Adding data from new classes: Discriminative model will need to be re-trained on all
classes all over again. Generative model will just require estimating the class-cond of newly

added classes

= Have lots of labeled training data” Discriminative models usually work very well

= Final Verdict? Despite generative classification having some clear advantages, both
methods can be quite powerful (the actual choice may be dictated by the problem)
" Important to be aware of their strengths/weaknesses, and also the connections between these

= Possibility of a Hybrid Design? Yes, Generative and Disc. models can be combined, e.g.,
= "Principled Hybrids of Generative and Discriminative Models™ (Lassere et al, 2006)

= "Deep Hybrid Models: Bridging Discriminative & Generative Approaches” (Kuleshov & Ermon, 2017)
CS771: Intro to ML
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