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Recap: Prob. Models for Supervised Learning
2

▪ Goal: Learn the conditional distribution 𝑝(𝑦|𝒙). Broadly, two approaches

𝑝 𝑦 𝒙 = 𝑝(𝑦|𝑓 𝒙, 𝒘 )
𝑝 𝑦 𝒙 =

𝑝(𝑦, 𝒙)

𝑝(𝒙)

Discriminative Approach Generative Approach

𝑝 𝑦 𝒙 = 𝒩(𝑦|𝒘⊤𝒙, 𝛽−1)

𝑝 𝑦 𝒙 = Bernoulli(𝑦|𝜎(𝒘⊤𝒙))

Some examples

𝑓 can be any function which uses inputs and 

weights 𝒘 to defines parameters of distr. 𝑝
Requires estimating the joint distribution of 

inputs and outputs to get the conditional 

𝑝 𝑦 𝒙  (unlike the discriminative approach 

which directly estimates the conditional 𝑝 𝑦 𝒙  

and does not model the distribution of 𝒙)
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Generative Classification: A Basic Idea
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▪ Learn the probability distribution 𝑝(𝑥|𝑦 = 𝑘) of inputs from each class 𝑘

           

▪We usually assume some form for 𝑝(𝑥|𝑦 = 𝑘)(e.g., Gaussian) and estimate the 
parameters of that distribution (MLE/MAP/fully posterior)

▪We then predict label of test input 𝒙∗ by comparing probabilities under each class
▪ Or can report the probability of belonging to each class (soft prediction)

𝑝(𝒙|"red")

𝑝(𝒙|"green")

𝒙∗ 𝒙∗𝒙∗

𝑝(𝒙∗|class)
𝑝(𝒙∗|class)

𝑝(𝒙∗|class)

What if  I expect that the 

green class is more likely 

for a test input because 

the training data also had 

more green examples?

Can I incorporate 

this knowledge?

Yes. Possible with generative model. 

We can do it by estimating class 

marginal probabilities 𝑝(𝑦) (class 

proportions in the training data) in 

our model

Then we can combine 𝑝(𝑦) and 

𝑝(𝑥|𝑦) to compute 𝑝(𝑦|𝑥) - 

conditional probability of label for 

any given input

Going to talk about this next
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=
𝑝 𝑦𝑛 = 𝑘 × 𝑝(𝒙𝑛|𝑦𝑛 = 𝑘)

𝑝(𝒙𝑛)

Generative Classification
4

▪ Suppose we have training data { 𝒙𝑛, 𝑦𝑛 }𝑛=1
𝑁 from 𝐾 classes

▪ The conditional probability of label 𝑦𝑛 given the input 𝒙𝑛

▪We use the training data to estimate the class-marginal and class-conditionals

𝑝 𝑦𝑛 = 𝑘 𝑥𝑛 =
𝑝(𝒙𝑛, 𝑦𝑛 = 𝑘)

𝑝(𝑥𝑛) Probability distribution of the 

inputs from class 𝑘

Known as the “class-conditional” 

distribution

Known as “class-marginal” or 

“class-prior” distribution

Marginal distribution 

of the input 𝒙𝑛

The numerator (joint distribution 

of 𝑥𝑛 and 𝑦𝑛) summed over all 

𝐾 values of 𝑦𝑛Marginal distribution of just 

the labels (not looking at the 

inputs) – Bernoulli/multinoulli
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Estimating Class Marginals
5

▪ Estimating class marginals 𝑝(𝑦 = 𝑘) is usually straightforward

▪ Since labels are discrete, we assume class marginal 𝑝(𝑦) to be a multinoulli

▪ Given 𝑁 i.i.d. labelled examples { 𝑥𝑛, 𝑦𝑛 }𝑛=1
𝑁 , 𝑦𝑛 ∈ {1,2, … , 𝐾} the MLE soln

▪MLE solution is 𝑝 𝑦 = 𝑘 =  𝜋𝑘 = 𝑁𝑘/𝑁 where 𝑁𝑘 =  σ𝑛=1
𝑁 𝕀[𝑦 = 𝑘]

▪ Thus 𝑝 𝑦 = 𝑘 =  𝜋𝑘 is simply the fraction of inputs from class 𝑘

▪ Can also compute MAP estimate or full posterior of 𝝅 using a Dirichlet prior 

𝑝 𝑦 𝝅 = multinoulli(𝑦|𝜋1, 𝜋2, … , 𝜋𝐾) =  ς𝑘=1
𝐾 𝜋𝑘

𝕀[𝑦=𝑘]
 

𝜋𝑘  =  𝑝(𝑦 = 𝑘)

𝝅𝑀𝐿𝐸 = argmax
𝝅

 ෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝝅)

These probabilities sum to 1: σ𝑘=1
𝐾 𝜋𝑘 = 1

Subject to constraint σ𝑘=1
𝐾 𝜋𝑘 = 1

If  only two classes, 

assume Bernoulli
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Estimating Class-Conditionals
6

▪ Can assume a distribution 𝑝 𝒙 𝑦 = 𝑘 = 𝑝(𝒙|𝜃𝑘) for inputs of each class 𝑘

▪ If  𝒙 is 𝐷-dimensional, 𝑝(𝒙|𝜃𝑘) will be a 𝐷-dimensional distribution

▪ Can compute MLE/MAP estimate or full posterior of 𝜃𝑘
▪ This essentially is a density estimation problem for the class-cond.

▪ In principle, can use any density estimation method

▪ Choice of the form of 𝑝(𝒙|𝜃𝑘) depends on various factors
▪ Nature of input features, e.g., 

▪ If  𝒙 ∈ ℝ𝐷, can use a 𝐷-dim Gaussian 𝒩 𝒙 𝝁𝑘 , 𝚺𝑘

▪ If  𝒙 ∈ {0,1}𝐷 , can use 𝐷 Bernoullis (one for each feature)

▪ Can also choose other more sophisticated distributions

▪ Amount of training data available (important)

▪ If  𝐷 large and 𝑁𝑘 small, it will be difficult to get a good estimate 𝜃𝑘

Especially if  the number of features (𝐷) is very large because 

large value of 𝐷 means 𝑘 consists of a large number of 

parameters (e.g., in the Gaussian case, 𝜃𝑘 = 𝝁𝑘, 𝚺𝑘 , 𝐷 params 

for 𝝁𝑘 and 𝑂(𝐷2) params for 𝚺𝑘 . Can overfit

To be estimated using the 

𝑁𝑘 training inputs 

{𝒙𝑛: 𝑦𝑛 = 𝑘} from class 𝑘

In such cases, we may need to regularize 𝜃𝑘 or make 

some simplifying assumptions on 𝑝 𝒙 𝜃𝑘 , such as 

features being conditionally independent given class 

e.g., 𝑝 𝒙 𝜃𝑘 =  ς𝑑=1
𝐷 𝑝(𝑥𝑑|𝜃𝑘𝑑) - naïve Bayes

Such assumptions greatly reduce the 

number of parameters to be estimated

E.g., if  𝑝 𝒙 𝜃𝑘  is multivariate 

Gaussian then assume it to have 

a diagonal covariance matrix 

instead of full covariance matrix
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Generative Classification: At Test Time
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▪ Recall the form of the conditional distribution of the label

▪ If  we assume the class-marginal to be uniform (𝑝 𝑦∗ = 𝑘 = 1/𝐾) then

▪ The most likely label is 𝑦∗ =  argmax𝑘∈{1,2,…,𝐾} 𝑝 𝑦∗ = 𝑘 𝒙∗

𝑝 𝑦∗ = 𝑘 𝒙∗ =
𝑝 𝑦∗ = 𝑘 × 𝑝(𝒙∗|𝑦∗ = 𝑘)

𝑝(𝒙∗)

∝ 𝑝 𝑦∗ = 𝑘 × 𝑝(𝒙∗|𝑦∗ = 𝑘)

Class-conditional distribution of 

inputs accounts for the 

shape/spread of class 𝑘

Class-marginal accounts for the 

frequency of class 𝑘 labels in 

the training data

𝑝 𝑦∗ = 𝑘 𝒙∗ ∝ 𝑝(𝒙∗| ෠𝜃𝑘)

∝  ො𝜋𝑘 × 𝑝(𝒙∗| ෠𝜃𝑘)

Probability of 𝑥∗ belonging to class 

𝑘 is proportional to the fraction of 

training inputs from class 𝑘 times 

the probability of 𝑥∗ under the 

distribution of inputs from class 𝑘
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Gen. Classifn. using Gaussian Class-conditionals
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▪ The generative classification model 𝑝 𝑦 = 𝑘 𝒙 =
𝑝(𝑦=𝑘)𝑝(𝒙|𝑦=𝑘)

𝑝(𝒙)

▪ Assume each class-conditional 𝑝(𝒙|𝑦 = 𝑘) to be a Gaussian

▪ Class marginal is multinoulli 𝑝 𝑦 = 𝑘 = 𝜋𝑘 , 𝜋𝑘 ∈ 0,1 , σ𝑘=1
𝐾 𝜋𝑘 = 1

▪ Let’s denote the parameters of the model collectively by 𝜃 = {𝜋𝑘 , 𝝁𝑘 , 𝚺𝑘} 𝑘=1
𝐾

▪ Can estimate these using MLE/MAP/Bayesian inference

▪ Already saw the MLE solution for 𝝅: 𝜋𝑘 = 𝑁𝑘/𝑁 (can also do MAP)

▪ MLE solution for 𝝁𝑘 =
1

𝑁𝑘
 σ𝑦𝑛=𝑘 𝒙𝑛, 𝚺𝑘 =

1

𝑁𝑘
 σ𝑦𝑛=𝑘(𝒙𝑛−𝝁𝑘)(𝒙𝑛−𝝁𝑘)⊤

▪ If  using point est (MLE/MAP) for 𝜃, predictive distribution will be

𝒩 𝒙 𝝁𝑘 , 𝚺𝑘 =
1

2𝜋 𝐷 𝚺𝑘

exp − 𝒙 − 𝝁𝑘
⊤𝚺−1(𝒙 − 𝝁𝑘)

Since the Gaussian’s 

covariance models its 

shape, we can learn the 

shape of each class ☺

A benefit of modeling 

each class by a 

distribution (recall that 

LwP had issues)

Exercise: Try to derive this. I will 

provide a separate note 

containing the derivation

Can predict the most likely 

class for the test input 𝒙∗ by 

comparing these probabilities 

for all values of 𝑘

Note that the exponent has a 

Mahalanobis distance like term. 

Also, accounts for the fraction 

of training examples in class k

Can also do MAP estimation for 

𝝁𝑘, 𝚺𝑘 using a Gaussian prior on 

𝝁𝑘 and inverse Wishart prior on 𝚺𝑘 
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Decision Boundary with Gaussian Class-Conditional
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▪ As we saw, the prediction rule when using Gaussian class-conditional

           

▪ The decision boundary between any pair of classes will be a quadratic curve

Reason: For any two classes 𝑘 and 𝑘′ at the decision boundary, 

we will have 𝑝 𝑦 = 𝑘 𝑥, 𝜃 = 𝑝(𝑦 = 𝑘′|𝑥, 𝜃). Comparing their 

logs and ignoring terms that don’t contain 𝒙, can easily see that

Decision boundary contains all inputs 𝒙 that satisfy the above

This is a quadratic function of 𝒙 (this model is sometimes referred 

to Quadratic Discriminant Analysis)
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Reason: Again using 𝑝 𝑦 = 𝑘 𝑥, 𝜃 = 𝑝(𝑦 = 𝑘′|𝑥, 𝜃), comparing their 

logs and ignoring terms that don’t contain 𝒙, we have

Quadratic terms of 𝒙 will cancel out; only linear terms will remain; hence decision boundary will 

be a linear function of 𝒙 (Exercise: Verify that we can indeed write the decision boundary 

between this pair of classes as 𝒘⊤𝒙 + 𝑏 = 0 where 𝒘 and 𝑏 depend on 𝝁𝑘 , 𝝁𝑘′ and 𝚺)

Decision Boundary with Gaussian Class-Conditional
10

▪ Assume all classes are modeled using the same covariance matrix 𝚺𝑘 = 𝚺, ∀𝑘

▪ In this case, the decision boundary b/w any pair of classes will be linear

If  we assume the covariance matrices of 

the assumed Gaussian class-conditionals 

for any pair of classes to be equal, then 

the learned separation boundary b/w this 

pair of classes will be linear; otherwise, 

quadratic as shown in the figure on left
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A Closer Look at the Linear Case
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▪ For the linear case (when 𝚺𝑘 = 𝚺, ∀𝑘), the class conditional probability 

           

▪ Expanding further, we can write the above as

▪ Therefore, the above class posterior probability can be written as

▪ The above has exactly the same form as softmax classification(thus softmax is a special 
case of a generative classification model with Gaussian class-conditionals)

If  all Gaussians class-cond have the same 

covariance matrix (basically, of all classes 

are assumed to have the same shape)
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A Very Special Case: LwP Revisited
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▪Note the prediction rule when 𝚺𝑘 = 𝚺, ∀𝑘

           

▪ Also assume all classes to have equal no. of training examples, i.e., 𝜋𝑘 = 1/𝐾. Then

▪ Equivalent to assigning 𝒙 to the “closest” class in terms of a Mahalanobis distance

▪ If  we further assume 𝚺 = 𝑰𝐷 then the above is exactly the LwP rule
▪ Thus LwP assumes spherical classes with roughly equal number of inputs from each class

The Mahalanobis 

distance matrix = 𝚺−𝟏



CS771: Intro to ML

Unsupervised Generative Classification
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▪ In generative classification, we estimate
▪ Class marginal distribution 𝑝 𝑦 =  multinoulli(𝑦|𝝅) 

▪ 𝐾 class-conditional distributions 𝑝 𝑥 𝜃𝑘 , 𝑘 = 1,2, … , 𝐾

▪ Can we estimate {𝜋, 𝜃1, 𝜃2, … , 𝜃𝐾} if  the training labels are not known?

▪ It then becomes an unsupervised learning problem
▪ Mixture modeling or clustering

▪We will look at it later but the general idea is based on ALT-OPT
1. Guess the label of each input given current estimate of {𝜋, 𝜃1, 𝜃2, … , 𝜃𝐾} 

2. Re-estimate {𝜋, 𝜃1, 𝜃2, … , 𝜃𝐾} given the label guesses

3. Alternate between steps 1 and 2 till convergence 
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Generative Models for Regression
14

▪ Yes, we can even model regression problems using a generative approach

▪ Note that the output y is not longer discrete (so no notion of a class-conditional)

▪ However, the basic rule of recovering a conditional from joint would still apply

           

▪ Thus we can model the joint distribution 𝑝 𝒙, 𝑦 𝜃  of features 𝒙 and outputs 𝑦 ∈ ℝ

▪ If  features are real-valued the we can model 𝑝 𝒙, 𝑦 𝜃  using a (𝐷 + 1)-dim Gaussian

▪ From this (𝐷 + 1)-dim Gaussian, we can get 𝑝 𝑦 𝒙, 𝜃 using Gaussian conditioning formula

▪ If  joint is Gaussian, any subset of variables (𝑦 here), given the rest (𝒙 here) is also a Gaussian!

▪ Refer to the Gaussian results from maths refresher slides for the result

𝑝 𝑦 𝒙, 𝜃 =
𝑝 𝒙, 𝑦 𝜃

𝑝(𝒙|𝜃)
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Discriminative vs Generative
15

▪ Recall that discriminative approaches model 𝑝(𝑦|𝒙) directly

▪ Generative approaches model 𝑝(𝑦|𝒙) via 𝑝(𝒙, 𝑦)

▪ Number of parameters: Discriminative models have fewer parameters to be learned 

▪ Just the weight vector/matrix 𝒘/𝑾 in case of logistic/softmax classification

▪ Ease of parameter estimation: Debatable as to which one is easier

▪ For “simple” class-conditionals, easier for gen. classifn model (often closed-form solution)

▪ Parameter estimation for discriminative models (logistic/softmax) usually requires iterative 

methods(although objective functions usually have global optima)

▪Dealing with missing features: Generative models can handle this easily
▪ E.g., by integrating out the missing features while estimating the parameters (will see later)

▪ Inputs with features having mixed types: Generative model can handle this
▪ Appropriate 𝑝(𝑥𝑑|𝑦) for each type of feature in the input. Difficult for discriminative models

           

Proponents of discriminative 

models: Why bother 

modeling 𝒙 if  𝑦 is what you 

care about? Just model 𝑦 

directly instead of working 

hard to model 𝒙 by learning 

the class-conditional
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Discriminative vs Generative (Contd)
16

▪ Leveraging unlabeled data: Generative models can handle this easily by treating the 
missing labels are latent variables and are ideal for Semi-supervised Learning. 
Discriminative models can’t do it easily

▪ Adding data from new classes: Discriminative model will need to be re-trained on all 
classes all over again. Generative model will just require estimating the class-cond of newly 
added classes

▪ Have lots of labeled training data? Discriminative models usually work very well

▪ Final Verdict? Despite generative classification having some clear advantages, both 
methods can be quite powerful (the actual choice may be dictated by the problem)
▪ Important to be aware of their strengths/weaknesses, and also the connections between these

▪ Possibility of a Hybrid Design? Yes, Generative and Disc. models can be combined, e.g.,

▪ “Principled Hybrids of Generative and Discriminative Models” (Lassere et al, 2006)

▪ “Deep Hybrid Models: Bridging Discriminative & Generative Approaches” (Kuleshov & Ermon, 2017)
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