
Gaussian Process
(Bayesian Learning meets Kernels)

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Discriminative Models

▪ Discriminative models learn a function 𝑓 that maps inputs 𝒙 to outputs 𝒚

▪ We usually define the function 𝑓 using weights (i.e., the model parameters), e.g.,

▪ Linear: 𝑓 𝒙 = 𝒘⊤𝒙, used in linear/logistic regression and GLM

▪ Nonlinear: 𝑓 𝒙 = NN(𝒙, 𝒘), used in deep neural nets based models

▪ Since these models use parameters, we call them “parametric” models

▪We can also define the function 𝑓 “directly” without using parameters
▪ Essentially, this can be done using a “nonparametric” approach

▪ It would be similar to nearest neighbors or kernel SVMs which are also “nonparametric”

▪ Gaussian Process (GP) is such a Bayesian nonparametric approach

2The function 𝑓 gives a real-valued score 𝑓(𝑥)

to each input 𝒙. Parameters of the likelihood

model 𝑝(𝑦|𝑓, 𝒙) depend on this score

CS772A: PML

Gaussian Process (GP)

▪ A Gaussian Process (GP) defines a distribution over functions and is denoted as

▪Mean function defines what functions drawn from this GP look like on average

▪ Covariance/kernel function defines the similarity between a pair of inputs

▪ Covariance/kernel function controls the shape of the functions drawn from GP

▪ If 𝜅(𝑥𝑖 , 𝑥𝑗) is high then 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗) will have similar values

3

𝒢𝒫(𝜇(.), 𝜅(. , .))
Mean Function Covariance Function

𝑥

𝑓(𝑥)

𝜇 𝑥 = 𝔼𝑓∼𝒢𝒫(𝜇,𝜅)[𝑓 𝑥]

𝐾𝑖𝑗 = 𝜅(𝑥𝑖 , 𝑥𝑗)

Functions drawn

from a GP

Should be a positive

definite function

CS772A: PML

Covariance/kernel functions

▪ Kernel functions are popular in learning nonlinear functions (e.g., kernel SVMs)

▪ Using a kernel corresponds to applying a nonlinear mapping function 𝜙 on inputs, s.t.,

▪ A wide variety of kernel functions exists that suit different types of data

▪ Linear kernel, polynomial kernel, Squared exponential (RBF) kernel

▪ Automatic Relevance Determination (ARD) kernel

▪ Matérn kernel, Periodic kernel, and many others

▪We can combine multiple kernels and use them for GP, e.g., possible kernels

▪ 𝜅1 + 𝜅2, 𝜅1 × 𝜅2, 𝛼𝜅1 + 𝜅2, etc (add, mult, positive scalar mult, or combinations, etc)

▪We can learn how to combine multiple kernels and learn their hyperparameters

▪ Possible naturally with the Bayesian approach

4

𝜅 𝑥, 𝑥′ = 𝜙 𝑥 ⊤𝜙(𝑥′)

Kernel function 𝜅(. , .) gives the

pairwise similarity between two inputs

𝑥 and 𝑥′ in the new feature space

defined by mapping function 𝜙(.)

CS772A: PML

Covariance/kernel functions

▪ Visualization of some kernel functions (how similarity changes with “distance”)

5

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

Kernel for all the plots is

𝜅(𝑥, 𝑥′), i.e., fixing one input

as 𝑥′ and varying the other

input 𝑥 (along the X axis)

CS772A: PML

Covariance/kernel functions

▪ Examples of functions 𝑓 ∼ GP(𝜇, 𝜅) drawn from a GP using some standard kernels

6

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

Each plot shows 3

random functions drawn

from the corresponding

GP with the specified

kernel function

CS772A: PML

Combining two (or more) covariance/kernel functions

▪ Adding two kernels and its effect on the function 𝑓 defined by the resulting kernel

7

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

Two randomly

drawn functions

from the GP

with this kernel

combination

Kernel for all 4

plots is 𝜅(𝑥, 𝑥′),

i.e., fixing 𝑥′ as 1

and varying the

other input 𝑥

(along the X axis)

CS772A: PML

Combining two (or more) covariance/kernel functions

▪ Multiplying two kernels and its effect on the function 𝑓 defined by the resulting kernel

8

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

Two randomly

drawn functions

from the GP

with this kernel

combination

Kernel for all 4

plots is 𝜅(𝑥, 𝑥′),

i.e., fixing 𝑥′ as 1

and varying the

other input 𝑥

(along the X axis)

CS772A: PML

Gaussian Process: The Predictive Model

▪ If 𝑓 ~ 𝒢𝒫(𝜇, 𝜅) then 𝑓’s value at any finite set of inputs is jointly Gaussian

▪Denoting 𝑓’s score for a new test input 𝑥∗ as 𝑓∗ = 𝑓(𝒙∗), we must also have

▪ Very useful result: Easy to see that, given the above, the GP predictive distribution

▪ Thus score of 𝑓 on 𝒙∗ given scores on training inputs has a Gaussian distribution

9

𝑝

𝑓(𝑥1)

𝑓 𝑥2

⋮
𝑓(𝑥𝑁)

= 𝒩

𝜇(𝑥1)

𝜇 𝑥2

⋮
𝜇(𝑥𝑁)

,

𝜅 𝑥1, 𝑥1

𝜅 𝑥2, 𝑥1
⋯

𝜅(𝑥1, 𝑥𝑁)

𝜅 𝑥2, 𝑥𝑁

⋮ ⋱ ⋮
𝜅(𝑥𝑁, 𝑥1) ⋯ 𝜅(𝑥𝑁, 𝑥𝑁)

𝑝(𝐟)= 𝒩(𝐟|𝛍,𝐊)

𝑁 × 𝑁𝑁 × 1𝑁 × 1

𝑝
𝐟
𝑓∗

= 𝒩
𝛍
𝜇∗

,
𝐊 𝐤∗

𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗

𝑝 𝑓∗ 𝐟 = 𝒩 𝑓∗| 𝜇∗ + 𝐤∗
⊤𝐊−1(𝐟 − 𝛍), 𝜅 𝑥∗, 𝑥∗ − 𝐤∗

⊤𝐊−1𝐤∗

𝐤∗ = [𝜅 𝑥1, 𝑥∗ , 𝜅 𝑥2, 𝑥∗ , … , 𝜅 𝑥𝑁 , 𝑥∗]⊤

𝑁 + 1 dim Gaussian

CS772A: PML

Gaussian Process: The Predictive Model

▪ Assuming the mean function 𝜇 𝒙 = 0, the conditional distribution of score becomes

▪ Note that the predictive mean ො𝜇 can be written in the following two equivalent ways

▪ Advantage: GP also gives the score’s variance ො𝜎2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐊−1𝐤∗

▪ Thus GP can be viewed as a probabilistic/Bayesian version of kernel methods

10

𝑝 𝑓∗ 𝐟 = 𝒩 𝑓∗|𝐤∗
⊤𝐊−1𝐟, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗

⊤𝐊−1𝐤∗ = 𝒩(𝑓∗| Ƹ𝜇, ො𝜎2)

Ƹ𝜇 = ෍
𝑖=1

𝑁

𝛽𝑖𝑓𝑖

Ƹ𝜇 = ෍
𝑖=1

𝑁

𝛼𝑖𝜅(𝑥𝑖 , 𝑥∗)

Weighted sum of

the scores of the

𝑁 training inputs

Weighted sum of kernel

based similarities of 𝒙∗ with

the 𝑁 training inputs

Like doing a “weighted” nearest

neighbors using all the 𝑁 training inputs

as neighbors with weight 𝛽𝑖 given to

input 𝑥𝑖 with score 𝑓𝑖 = 𝑓(𝑥𝑖)

Methods like kernel regression or kernel

SVM have their predictions in this form

CS772A: PML

From GP Scores (𝐟) to Actual Outputs (𝒚)

▪ Assume a supervised learning problem with 𝑁 training examples 𝑿, 𝒚 = 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁

▪ Denoting 𝑓𝑖 = 𝑓(𝑥𝑖), for regression with added noise 𝒩(0, 𝛽−1)

▪ Likewise, for binary classification, likelihood 𝑝(𝒚 𝐟 = ς𝑖=1
𝑁 Bernoulli(𝑦𝑖|𝜎(𝑓𝑖))

▪ In general, when using GP, the PPD 𝑝(𝑦∗|𝒚) of output 𝑦∗ for a new test input 𝑥∗

11

𝑦𝑖 = 𝑓𝑖 + 𝜖𝑖 𝑝(𝑦𝑖 𝑓𝑖 = 𝒩(𝑦𝑖|𝑓𝑖 , 𝛽−1)

𝑝(𝒚 𝐟 = 𝒩(𝒚|𝐟, 𝛽−1𝐈𝑁)

This GP score 𝑓𝑖 = 𝑓(𝑥𝑖) is the

mean of this Gaussian likelihood

The likelihood function for all the

training outputs (assuming i.i.d.)

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗, 𝐟 𝒚)𝑑𝐟𝑑𝑓∗

= ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝐟 𝑝 𝐟 𝒚 𝑑𝐟𝑑𝑓∗

GP predictive:

Always a GaussianSkipping the training

and test inputs from

the PPD notation

The GP posteriorLikelihood 𝑝 𝐟 𝒚 ∝ 𝒑 𝐟 𝒑(𝒚|𝒇)
The GP prior: Gaussian 𝑝(𝐟)= 𝒩(𝐟|𝛍,𝐊) or

𝑝(𝐟)= 𝒩(𝐟|0,𝐊) is mean function is zero

Likelihood function for

training outputThe GP posterior

Averaging over 𝑓

For multi-class case with 𝐶 classes,

we will use a multinoulli with

probability vector softmax(𝑓𝑖) where

𝑓𝑖 will be a 𝐶-dim vector of logits

CS772A: PML

GP Prediction with Gaussian Likelihood

▪ In general, the PPD when using GP is defined as

▪ For Gaussian likelihood (and fixed hyperparams), we don’t need to do above integral

▪ Reason: The marginal likelihood is Gaussian

▪ 𝑝 𝑦∗ 𝒚 is almost identical to 𝑝 𝑓∗ 𝐟 with 𝐊 replaced by 𝐂N + extra 𝛽−1 noise variance

12

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝑓∗ 𝑝 𝑓∗ 𝐟 𝑝 𝐟 𝒚 𝑑𝐟𝑑𝑓∗

𝑝 𝒚 = ∫ 𝑝 𝒚 𝐟 𝑝 𝐟 𝑑𝒇 = 𝒩 𝒚 𝟎, 𝐊 + 𝛽−1𝐈𝑵 = 𝒩 𝒚 𝟎, 𝐂N

𝑝
𝒚
𝑦∗

= 𝒩
𝒚
𝑦∗

|
𝟎
0

,
𝐂N 𝐤∗

𝐤∗
⊤ 𝜅 𝑥∗, 𝑥∗ + 𝛽−1

𝑝(𝒚 𝐟 = 𝒩(𝒚|𝐟, 𝛽−1𝐈𝑁) 𝑝(𝐟)= 𝒩(𝐟|𝟎,𝐊)Gaussian likelihood

(assuming 𝛽 is fixed)

Marginal likelihood

of training outputs

Marginal likelihood of

training and test outputs

GP prior

𝑝 𝑦∗ 𝒚 = 𝒩 𝑦∗|𝐤∗
⊤𝐂𝑁

−1𝒚, 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1
PPD obtained using

joint to conditional

results of Gaussians

Assuming zero

mean function

And don’t even have to

compute/use the posterior

𝑝 𝐟 𝒚 (which in this case is

a Gaussian by the way ☺)

to get the PPD

CS772A: PML

Learning Hyperparameters in GP based Models

▪ Can learn the hyperparameters of the GP prior as well as of the likelihood model

▪ Assuming 𝜇 = 0, the hyperparams of GP are cov/kernel function hyperparams

▪ MLE-II is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc)

▪ Denoting the covariance/kernel matrix as 𝐊𝜃, for Gaussian likelihood case, the marg-lik

▪ This can be maximized to learn 𝜃 and 𝛽

▪ For non-Gaussian likelihoods, the marg-lik itself will need to be approximated

13

Different RBF

kernel bandwidth

𝛾𝑑 for each feature

Can help in feature selection (irrelevant

features will tend to have very large 𝛾𝑑)

𝑝 𝒚|𝜃, 𝛽−1 = 𝒩 𝒚 𝟎, 𝐊𝜃 + 𝛽−1𝐈𝑵

Ability to learn

kernel hyperparams

(without cross-

valid) is another

very appealing

property of GP

CS772A: PML

Weight Space View vs Function Space View

▪ GPs are defined w.r.t. a function space that models input-output relationship

▪ In contrast, we have seen models that are defined w.r.t. a weight space, e.g.,

▪ Thus the joint marginal of the 𝑁 responses 𝑦1, 𝑦2, … , 𝑦𝑁 is a multivariate Gaussian

▪ Thus GPs can be seen as bypassing the weight space and directly defining the
model using a marginal likelihood via a function space defined by the GP

14

𝑝 𝒚 𝑿, 𝒘 = 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

𝑝(𝒘) = 𝒩(𝒘|𝝁0, 𝚺0)

𝑝 𝒚 𝑿 = ∫ 𝑝 𝒚 𝑿, 𝒘 𝑝 𝒘 𝑑𝒘 = 𝒩(𝒚|𝑿𝝁0, 𝛽−1𝑰𝑁 + 𝑿𝚺0𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝛽−1𝑰𝑁 + 𝑿𝑿⊤)

𝑝 𝒚 𝑿 = 𝒩(𝒚|𝟎, 𝑿𝑿⊤)

𝑝

𝑦1

𝑦2

⋮
𝑦𝑁

= 𝒩

0
0
⋮
0

,

𝑥1
⊤𝑥1

𝑥2
⊤𝑥1

⋯
𝑥1

⊤𝑥𝑁

𝑥2
⊤𝑥𝑁

⋮ ⋱ ⋮
𝑥𝑁

⊤𝑥1 ⋯ 𝑥𝑁
⊤𝑥𝑁

Same as a GP 𝑓(𝑥𝑖) = 𝑦𝑖 , 𝜇 𝑥 = 0 and linear

covariance/kernel function 𝜅 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖
⊤𝑥𝑗

Likelihood

Prior over weight vector
Marginal likelihood

after integrating

out the weights

Marginal likelihood assuming 𝝁0 = 𝟎 and 𝚺0 = 𝑰

Assuming noise-free likelihood

This equivalence also shows

that Bayesian linear regression

is a special case of GP with

linear kernel

CS772A: PML

Scalability of GPs

▪ Computational costs in some steps of GP models scale in the size of training data

▪ For example, prediction cost is 𝑂(𝑁)

▪ GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) – takes 𝑂(𝑁3)

▪ Storage also requires 𝑂(𝑁2) since need to store the covariance matrix

▪ A lot of work on speeding up GPs1. Some prominent approaches include

▪ Inducing Point Methods (condition predictions only on a small set of “learnable” points)

▪ Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)

▪ Kernel approximations

▪Note that nearest neighbor methods and kernel methods also face similar issues
▪ Many tricks to speed up kernel methods can be used for speeding up GPs too

15

𝑝 𝑦∗ 𝒚 = 𝒩(𝑦∗| Ƹ𝜇, ො𝜎2) Ƹ𝜇 = 𝐤∗
⊤𝐂𝑁

−1𝒚 ො𝜎2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1

𝑂(𝑁) cost assuming C𝑁

is already inverted

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

𝑀 ≪ 𝑁 pseudo-inputs

and pseudo-outputs

CS772A: PML

Neural Networks and Gaussian Process

▪ An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP

▪ Shown formally by (Neal2, 1994). Based on applying the central limit theorem

▪ This equivalence is useful for several reasons
▪ Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

▪ With GPs, inference is easy (at least for regression and with known hyperparams)

▪ A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

▪ Connection generalized to infinitely wide multiple hidden layer NN (Lee et al3, 2018)

16

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)

CS772A: PML

GP: Some other comments

▪ GPs can be thought of as Bayesian analogues of kernel methods

▪ Can get estimate of the uncertainty in the function and its predictions

▪ Can learn the kernel (by learning the hyperparameters of the kernels)

▪ In some ways, GPs and (Bayesian/ensembles of) deep neural nets have same goals
▪ These methods are also very related (though appear different based on their formulation)

▪ Several recent papers have investigated these connections

▪ GP can be a nice alternative to (Bayesian/ensembles of) deep neural networks
▪ GP may be preferable if we don’t have that much training data (deep networks requires lots of data to train well)

▪ When we have lots of training data, training and test speed may be an issue for GP (but faster versions exist)

▪ Not limited to supervised learning problems
▪ 𝑓 could even define a mapping of low-dim latent variable 𝑧𝑛 to an observation 𝑥𝑛

17

𝒙𝑛 = 𝑓 𝒛𝑛 + "noise" GP latent variable model for dimensionality reduction

(like a kernel version of probabilistic PCA)

CS772A: PML

GP: A Visualization

▪ Assumed zero mean function and a squared exponential kernel

Each curve below is obtained by

drawing a random 𝐟 from the GP

prior 𝑝(𝐟) = 𝒩(𝟎, 𝐊) and

plotting it.

𝑥

𝑓

Each curve below is obtained by drawing random 𝐟’s

from the GP posterior 𝑝(𝐟|𝒚) which is also a Gaussian

(The + symbols denote the training data and we

assume noiseless outputs, i.e., 𝑦𝑖 = 𝑓𝑖) .

Shaded area shows the predictive

uncertainty for each of the test

inputs (+/- 2 std)

𝐊 is the kernel matrix of a finite

number of inputs represented on the

x axis (say 100 equi-spaced points

between -5 and 5). 𝐟 will be a vector

of 𝑓’s values at these inputs

𝑥

𝑦 = 𝑓

Figure courtesy: MLAPP (Murphy)

18

CS772A: PML

GP packages

▪ Many mature implementations of GP exist. You may check out
▪ GPyTorch (PyTorch), GPFlow (Tensorflow)

▪ sklearn (Python with some basic GP implementations)

▪ GPML (MATLAB), GPsuff (MATLAB/Octave)

▪ Many others such as Stan, GPJax

▪ A comparison of the various packages:
https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software

19

https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software

	Slide 1: Gaussian Process (Bayesian Learning meets Kernels)
	Slide 2: Discriminative Models
	Slide 3: Gaussian Process (GP)
	Slide 4: Covariance/kernel functions
	Slide 5: Covariance/kernel functions
	Slide 6: Covariance/kernel functions
	Slide 7: Combining two (or more) covariance/kernel functions
	Slide 8: Combining two (or more) covariance/kernel functions
	Slide 9: Gaussian Process: The Predictive Model
	Slide 10: Gaussian Process: The Predictive Model
	Slide 11: From GP Scores (bold f) to Actual Outputs (bold italic y)
	Slide 12: GP Prediction with Gaussian Likelihood
	Slide 13: Learning Hyperparameters in GP based Models
	Slide 14: Weight Space View vs Function Space View
	Slide 15: Scalability of GPs
	Slide 16: Neural Networks and Gaussian Process
	Slide 17: GP: Some other comments
	Slide 18: GP: A Visualization
	Slide 19: GP packages

