Gaussian Process
(Bayesian Learning meets Kernels)

CS772A: Probabilistic Machine Learning
Piyush Rai

: : : : The function f gives a real-valued score f(x)
D I S C rl m | n at I Ve I\/I O d e | S to each input x. Parameters of the likelihood
model p(y|f, x) depend on this score

= Discriminative models learn a function f that maps inputs x to outputs y

p(ylf,x) = N(ylf(x),577)
plylf,x) = [o(F(x))P[1 = o(f(x))]"
p(y|f,x) = ExpFam(f(x))

= We usually define the function f using weights (i.e., the model parameters), e.g.,
= Linear: f(x) = w'x, used in linear/logistic regression and GLM
= Nonlinear: f(x) = NN(x,w), used in deep neural nets based models

" Since these models use parameters, we call them “parametric” models

» \We can also define the function f “directly” without using parameters

= Essentially, this can be done using a "nonparametric’ approach
" [t would be similar to nearest neighbors or kernel SVMs which are also "nonparametric’

" Gaussian Process (GP) is such a Bayesian nonparametric approach o=

Gaussian Process (GP)

» A Gaussian Process (GP) defines a distribution over functions and is denoted as

Functions drawn

Mean Function Covariance Function f(x) /\ /\ from a GP
f__ /WK &"f/

GP (), k().)) et o

= Mean function defines what functions drawn from this GP look like on average

w(x) = Erogpume f (X)]

» Covariance/kernel function defines the similarity between a pair of inputs
Ki;j = Kk(x;, xj)
» Covariance/kernel function controls the shape of the functions drawn from GP

= If k(x;, %) is high then f(x;) and f(x;) will have similar values
CS772A: PML

Covariance/kernel functions

= Kernel functions are popular in learning nonlinear functions (e.g., kernel SVMs)

= Using a kernel corresponds to applying a nonlinear mapping function ¢ on inputs, s.t.,

Kernel function k(.,.) gives the
pairwise similarity between two inputs

> _ T
S k(i x') = g0 TP (')

= A wide variety of kernel functions exists that suit different types of data
= | inear kernel, polynomial kernel, Squared exponential (RBF) kernel
= Automatic Relevance Determination (ARD) kernel
= Matern kernel, Periodic kernel, and many others

= \We can combine multiple kernels and use them for GP, e.g., possible kernels
" K1 + Ky, K1 X Ky, @K + Ko, €tc (add, mult, positive scalar mult, or combinations, etc)

" \We can learn how to combine multiple kernels and learn their hyperparameters
= Possible naturally with the Bayesian approach CS779A. PML

Covariance/kernel functions

" Visualization of some kernel functions (how similarity changes with “distance”)

Kernel for all the plots is
K(x, x) i.e., fixing one input
as x" and varying the other e S N

mPUt X (along the X aX|S Mateln12 k(x,0.0) I\late1n'32 k(x,0.0) (c) Matern52 k(x,0.0)

1.0 4 14 1-
O_

0.5 1
~1 - 0

—10 0 10 —10 0 10 -10 0 10
(d) Periodic k(x,0.0) (e) Cosine k(x,0.0) (f) RBF k(x,0.0)
1 - 1.05 - 20
A 1.00 0 4 /
0 i T _l_095 T T T 20 T T T
-10 0 10 —10 0 10 -10 0 10
(g) Rational quadratic k(x,0.0) (h) Constant k(x,0.0) (i) Linear k(x,1.0)
5 1
100
0
0 1 1 T —5 T T T O
—10 0 10 —10 0 10 -10 0 10
(j) Quadratic k(x,1.0) (k) Polynomial k(x,1.0) (I) White noise k(x,0.0)

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

CS772A: PML

Covariance/kernel functions

= Examples of functions f ~ GP(u, k) drawn from a GP using some standard kernels

Each plot shows 3
random functions drawn
from the corresponding
GP with the specified
kernel function

2.5
0.0
-2.5

e

1 1 1

—-10 0 10
(a) Matern12

DR

HORAURG = AR

-10 0 10
(d) Periodic

O,

—10 0 10
(g) Rational quadratic

N

-10 0 10

(j) Quadratic

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

2.5

s o pahays

—2.5

L 1 1 1

—-10 0 10 —-10 0 10
(b) Matern32 (c) Matern52

—-10 0 10 —-10 0 10
(e) Cosine (f) RBF
1
0
0
-10
Ll 1 Ll L L 1
—10 0 10 —10 0 10
(h) Constant (i) Linear

S e

-10 0 10 -10 0 10

(k) Polynomial (1) White noise

CS772A: PML

Combining two (or more) covariance/kernel functions

7

» Adding two kernels and its effect on the function f defined by the resulting kernel

Kernel for all 4
plots is x(x, x"),
e, fixing x” as 1
and varying the
other input x
(along the X axis)

Two randomly
drawn functions
from the GP
with this kernel
combination

Lin + Per

x (with 2’ = 1)

periodic plus trend

(a)

SE + Per

0.0 -

—2.5

z (with 2’ = 1)

periodic plus noise

(b)

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

SE + Lin

2.5
0.0 A

»~

—2.5 1

x (with 2’ = 1)

linear plus variation

(c)

SEtong + SESIIO‘I‘t

x (with 2’ = 1)

0.0 1

2.9

slow & fast variation

(d)

CS772A: PML

Combining two (or more) covariance/kernel functions

= Multiplying two kernels and its effect on the function f defined by the resulting kernel

Kernel for all 4
plots is k(x, x"),
e, fixing x" as 1
and varying the
other input x
(along the X axis)

Two randomly
drawn functions
from the GP
with this kernel
combination

20 A

O..

Lin x Lin

0_

._1() -

x (with 2’ = 1)

quadratic functions

(a)

1.0 A

0.5 -

SE x Per

z (with 2’ = 1)

Lin x SE

x (with 2’ = 1)

locally periodic

(b)

Fig source: Probabilistic Machine Learning - Advanced Topics (Murphy, 2023)

increasing variation

(c)

Lin x Per

x (with 2’ = 1)

growing amplitude

(d)

CS772A: PML

Gaussian Process: The Predictive Model

uf f ~GP(u, k) then f's value at any finite set of inputs is jointly Gaussian

f(x1) T (x1)
p(f(xz)) N(Ii(icz) ’
f (xn)] L (xy)]

Kk(xqy, x1)

K(xy,%1)

_K(XN,xl) ee

. K(xl'xN)-

K(x9, XN)

K(fo xN)-

N X1 N X1 N %X N

) == p(f)=N(f|nK)

* Denoting f's score for a new test input X, as f, = f(x), we must also have

" \ery usefu

p(filf) = N (fu| p + KIKTH(F -

o]

f]) ([] []) Kk, = [k(xq,x.), k(x0, %), ., k(xp, x)]T
-ﬁ" M kT K(.X'*, X) N + 1 dim Gaussian

result: Easy to see that, given the above, the GP predictive distribution

w), k(x,, x,) — kI K™ 1k,)

* Thus score of f on x, given scores on training inputs has a Gaussian distribution

CS772A: PML

Gaussian Process: The Predictive Model

» Assuming the mean function u(x) = 0, the conditional distribution of score becomes

p(flf) = N (f.|[kTKf, k(x,, x,) —KIK'Kk,) = N (£, |/, 62)

= Note that the predictive mean (i can be written in the following two equivalent ways

oo f Like doing a "weighted” nearest
helg te SU?”‘E A N neighbors using all the N training inputs
the scores of the U = lglfl as neighbors with weight f; given to
=1
N

N training inputs input x; with score f; = f(x;)

\éV@theFj 'slurT;of k?rnel h A Methods like kernel regression or kernel
A5ec SIMIATHES © X W U= aiK(xi’ x*) SVM have their predictions in this form
the N training inputs i=1

= Advantage: GP also gives the score’s variance 64 = k(x,,x,) — k] K 1k,

" Thus GP can be viewed as a probabilistic/Bayesian version of kernel methods

CS772A: PML

From GP Scores (f) to Actual Outputs (y)

= Assume a supervised learning problem with N training examples (X, y) = {(x;, ;) 1,
= Denoting f; = f(x;), for regression with added noise NV'(0, B~1) | This GP score f; = f(x) is the

mean of this Gaussian likelihood

vi=fi+e€ =) pWilf) =NWlf.B™)

For multi-class case with C classes,
The likelihood function for all the -1 we will use a multinoulli with
training outputs (assuming i.i.d.) p (y | f) — N (y | f’ ﬁ IN) probability vector softmax(f;) where

fi will be a C-dim vector of logits

= Likewise, for binary classification, likelihood p(y|f) = [1i-, Bernoulli(y;|a(f;))
* [n general, when using GP, the PPD p(y,|y) of output y, for a new test input x,

A)
veraging over f Likelihood function for

p (y* |J’) — f p (y* |ﬁk)p (ﬁk, f | y) dfdﬁk The GP posterior training output
The GP posterior D (f | y) Xp (f)p (y |f)

The GP prior: Gaussi f)=N(fInK
f) p (f | Y) dfdﬁk p(?):]\F;r(l(f)qo,lissizlarlr?ezrg f>unctio<n isuzer>oor

CS772A: PML

GP predictive:
— -~ Likelihood P |
Skipping the training Always a Gaussian

and test inputs from
the PPD notation — p (y* | ﬁk) p (ﬁk

GP Prediction with Gaussian Likelihood

And don't even have to

" In general, the PPD when using GP is defined as compute/use the posterior
p(f|y) (which in this case is

p(y*ly) — fp(y*lﬁ)p(ﬂlf)p(fly)dfd/—; a Gaussian by the way ©)

to get the PPD

= -or Gaussian likelihood (and fixed hyperparams), we don't need to do above integral
Assuming zero
GP prior mean function

o e ves) =~ PYIE) = N (|f, B~ y) p(f)= N (f[0.K)
e — @) = [pyIDpEdf = N()’IO K+ 7 1y) =N (¥0,Cy)

g 31 st s ([;’ D ([y] | [O] [K(x., x) +p71 D

PPD obtained using
joint to conditional

results of Gaussians p(y*ly) = ‘N‘(y*lk;rCN y’ K(x*’ x*) — kICle* -+ ﬁ_l)
= p(y,|y) is aimost identical to p(fi|f) with K replaced by Cy + extra B~ noise variance

CS772A: PML

* Reason: The marginal likelihood is Gaussian

Learning Hyperparameters in GP based Models

» Can learn the hyperparameters of the GP prior as well as of the likelihood model
= Assuming 4 = 0, the hyperparams of GP are cov/kernel function hyperparams

| |X X | |2 Ability to learn a /
_ _ n— Am kernel hyperparams N\~ 4
ﬁ:(x,,, xm) = exp (~) (RBF keme” . (without cross- .'
Can help in feature selection (irrelevant Different RBF‘ valid) is another
D 2 features will tend to have very large y4) kernel bandwidth very appealing

B (xnd — xmd) ¥4 for each feature oroperty of GP

K(XpsXm) = exp| — E (ARD kernel)
d=1 Td

K(Xn, Xm) = Ko, (Xn, Xm) + Ko, (Xn, Xm) + ... + Koy, (Xn, Xm) (flexible composition of multiple kernels)

= MLE-Il'is a popular choice for learning these hyperparams (otherwise MCMC, VI, etc)

= Denoting the covariance/kernel matrix as Kg, for Gaussian likelihood case, the marg-lik
p(¥|6,7) = N(¥|0,Kq + B 1y)

" This can be maximized to learn 8 and S

* For non-Gaussian likelihoods, the marg-lik itself will need to be approximated
CS772A: PML

Weight Space View vs Function Space View

» GPs are defined wi.rt. a function space that models input-output relationship
" |n contrast, we have seen models that are defined w.r.t. a weight space, e.qg.,

p(y|X,w) = N(y|Xw, B~ 1I,)- tikelihood

: : Marginal likelihood
D (W) —]\/‘(Wluo’ ZO) Prior over weight vector after integrating

P(y X) = fp(ylx, W)p(w)dw — N(le”O”B—llN + XZOXT) out the weights
p(y X) = N(le, IB_llN + XXT) Marginal likelihood assuming py = 0 and Xy = I
P(y X) = N(y|O0, XXT) Assuming noise-free likelihood

" Thus the joint marginal of the N [ESPONSES Y1, Yy, -, YN is a multivariate Gaussian

(X{ X x{x
This equivalence also shows V1] 0] }r .. 1T N Same as a GP f(x;) = v;. u(x) = 0 and linear
that Bayesian linear regression p 2= 0 |x2 % X XN

, . . covariance/kernel function K(xi,xj) = x/ Xj
is a special case of GP with
linear kernel

9.
" Thus GPs can be seen as bypassmg the weight space and directly defining the

model using a marginal likelihood via a function space defined by the GP
CS772A: PML

0] Lxgxy -+ xyxy.

Scalability of GPs

= Computational costs in some steps of GP models scale in the size of training data
= For example, prediction cost is O(N) O(N) cost assuming Cy

is already inverted

p(y.ly) = NO.li, 62 A=KkICy'y 6% = k(x,,x,) —KICy'k, + 71

* GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) — takes O(N3)

= Storage also requires O (N?) since need to store the covariance matrix
M < N pseudo-inputs

= A lot of work on speeding up GPst. Some prominent approaches include 31 pseudo-outputs
* [nducing Point Methods (condition predictions only on a small set of “learnable” points)
= Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
= Kernel approximations

= Note that nearest neighbor methods and kernel methods also face similar issues
= Many tricks to speed up kernel methods can be used for speeding up GPs too

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

CS772A: PML

Neural Networks and Gaussian Process

= An infinitely-wide single hidden layer NN with i.i.d. priors on weights = GP
= Shown formally by (Neal?, 1994). Based on applying the central limit theorem

Sum of infinite many
')"n i.i.d. random variables

(thus ¥, Gaussian and so
is any finite collection of ‘1".1:'

" This equivalence is useful for several reasons
= Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
= With GPs, inference is easy (at least for regression and with known hyperparams)
= A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik's theorem)

= Connection generalized to infinitely wide multiple hidden layer NN (Lee et al®, 2018)
CS772A: PML

2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)

GP: Some other comments

" GPs can be thought of as Bayesian analogues of kernel methods
» Can get estimate of the uncertainty in the function and its predictions
» Can learn the kernel (by learning the hyperparameters of the kernels)

" |n some ways, GPs and (Bayesian/ensembles of) deep neural nets have same goals
" These methods are also very related (though appear different based on their formulation)
= Several recent papers have investigated these connections

* GP can be a nice alternative to (Bayesian/ensembles of) deep neural networks

= GP may be preferable if we don't have that much training data (deep networks requires lots of data to train well)
= When we have lots of training data, training and test speed may be an issue for GP (but faster versions exist)

= Not limited to supervised learning problems
= f could even define a mapping of low-dim latent variable z,, to an observation x,

— " : " GP latent variable model for dimensionality reduction
xn f(Zn) + 'noise (like a kernel version of probabilistic PCA)

CS772A: PML

GP: A Visualization) - oo 27
[

» Assumed zero mean function and a squared exponential kernel

Shaded area shows the predictive

Each curve below is obtained b
y uncertainty for each of the test

drawing a random f from the GP inputs (+/- 2 std) Each curve below is obtained by drawing random f's
orior p(F) = N (0,K) and from the GP posterior p(f|y) which is also a Gaussian
plotting it. (The + symbols denote the training data and we
K'is the kernel matrix of a finite assume noiseless outputs, i.e., y; = f;) .
2- number of inputs represented on the 25
x axis (say 100 equi-spaced points)
157 between -5 and 5). f will be a vector
L of f's values at these inputs 1.5
f 1
0.5r y=f
0.5
0_
0
0.5
-0.5
“1F 1r
1.5 1.5
_2 | | _2
%5 0 5 -5 0 5
X X

Figure courtesy: MLAPP (Murphy) CS772A: PML

GP packages

= Many mature implementations of GP exist. You may check out
= GPyTorch (PyTorch), GPFlow (Tensorflow)
= sklearn (Python with some basic GP implementations)
= GPML (MATLAB), GPsuff (MATLAB/Octave)
= Many others such as Stan, GPJax

= A comparison of the various packages:
https://en.wikipedia.org/wiki/Comparison of Gaussian process software

CS772A: PML

https://en.wikipedia.org/wiki/Comparison_of_Gaussian_process_software

	Slide 1: Gaussian Process (Bayesian Learning meets Kernels)
	Slide 2: Discriminative Models
	Slide 3: Gaussian Process (GP)
	Slide 4: Covariance/kernel functions
	Slide 5: Covariance/kernel functions
	Slide 6: Covariance/kernel functions
	Slide 7: Combining two (or more) covariance/kernel functions
	Slide 8: Combining two (or more) covariance/kernel functions
	Slide 9: Gaussian Process: The Predictive Model
	Slide 10: Gaussian Process: The Predictive Model
	Slide 11: From GP Scores (bold f) to Actual Outputs (bold italic y)
	Slide 12: GP Prediction with Gaussian Likelihood
	Slide 13: Learning Hyperparameters in GP based Models
	Slide 14: Weight Space View vs Function Space View
	Slide 15: Scalability of GPs
	Slide 16: Neural Networks and Gaussian Process
	Slide 17: GP: Some other comments
	Slide 18: GP: A Visualization
	Slide 19: GP packages

