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Plan today

* PPD for Logistic regression
* Model Selection and Model Averaging

= More on Laplace’s Approximation
= How to make LA scalable when 8 is very high dimensional Exponential family distributions

= Exponential Family Distributions
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LR: Posterior Predictive Distribution

" [he posterior predictive distribution can be computed as

p(y, = 1lx, X, ¥) = [ p(y. = 1w, x)p(W|X, y)dw

Integral not tractable and
must be approximated

= Monte-Carlo approximation is one possible way to approximate such integrals
* Draw M samples wq, W, ..., Wy, from the posterior p(w|X, y)
= Now approximate the PPD as follows

1M 1M
PO =1, XN~ pO =W x) = 22> (Wi
M m=1 M m=1

= In contrast, when using MLE/MAP solution W ., the plug-in pred. distribution

sigmoid Gaussian (if using Laplace approx.)

p(y. = 1x., X, y) = [p(y. = 1w, x.)p(w|X, y)dw

AN\ AN\ T
~ p(y* — 1|Wopt» x*) — U(Wopt xn)
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LR: Plug-in Prediction vs Bayesian Averaging

" Plug-in prediction uses a single w (point est) to make prediction
= PPD does an averaging using all possible w's from the posterior

Input Dimension 2

p()’* — 1|x*,X, y) ~ J(Wopthn)

Logistic Regression decision boundary
when using a point estimate of w
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Color transitions (red
to blue) in both plots
denote how the
probability of an
input changes from
belonging to red
class to belonging to
blue class. All inputs
on a line (or curve
on RHS plot)have
the same probability
of belonging to the
red/blue class
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Logistic Regression decision boundary
when using posterior averaging
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Posterior averaging is like
using an ensemble of
models. In this example,
each model is a linear

" classifier but the ensemble-
= 1 like effect resulted in

8 : nonlinear boundaries
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More on Marginalization

* PPD is a weighted average over all possible parameter values of one model
Note: m is just a
del identifier; can
p(y* |x*; D; m) — f p(y* |x*) 9} m)p(e |2)) m)dg irgr?oree vvign vevriting
Fach 8@ is drawn

1 S . i.i.d. from the
~ — p (y* x*’ H (l)’ m) distribution p(8|D, m)
\ AT}

Above integral replaced by a "Monte-
Carlo Averaging” (an approximation
when PPD integral is intractable)

= PPD marginalization can be done even over several choices of models

vl\\//IZirggkiwrgsli;‘ataios?nz\l/eern?!del m p(y* |x*) D) m) — f p(y* |x*) H; m)p(g |D, m)dg

Marginalization over all finite
choicesm = 1,2, ..., M of

the model p(y*|x*, D) — nM1=1 P()’*|x*; D, m)p(mlﬂ)

For example, deep nets with Like a double averaging Haven't yet told you how
different architectures (over ﬁ” m_oid ck;om:esk,] and to compute this quantity
over all weignts or eac :
9 but will see shortly CS772A: PML
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Model Selection and Model Averaging

» Can use Bayes rule to find the best model from a set of models m = 1,2, ..., M
Will discuss later how

Marginal likelihood Prior probability of £
Posterior of model m choosing model m to compute marginal < 4 /
probability ( |X) p(X|m)p(m) p(le)p(m) likelihood !»
of model m pim = o In general, intractable
Marginal likelihood =P (X) m= , pX|m)p(m) o ?Dmput'e exactly

over all models
Integrating out all

p(le) — f p(XlH, m)p(9|m)d6 possible parameter

values under model m

Bestmodel M = arg max p(m|X) = arg max p(X|m)p(m)
m m
= |t all models equally likely a priori then m = darg max p(X|m)
m

= For PPD, can use either the best model m or can average over all models

Test data Training data M
p(x.|X) = p(x X, m) = pxlX) = Z p(x,|X, m)p(m|X)

m=1 CS772A: PML



Recap: Laplace’s Approximation

» Consider a posterior distribution that is intractable to compute

p(D,0) p(D|8)p6)
p(D) p(D)

® | aplace approximation approximates the above using a Gaussian distribution

p(0|D) =

Tells us about the space Related to the Fisher
(curvature) of the true Information Matrix

Laplace Approx. posterior around Oy 4p (FIM); will see shortly

1 Gaussian /

~ —1
p (0 |D) N(H | HMAP’ A ) Negative of the Hessian,

l.e., the second derivative
Omap = argmaxg log p(6|D) of the log joint, at Oy 4p

A = —V; logp(6]D) ‘ = —Vz log p(D, 8)

0=0pmap 0=0pmap

" | aplace’s approx. is based on a second-order Taylor approx. of the posterior
CS772A: PML



Detour: Hessian and Fisher Information Matrix

" Hessian is related to the Fisher Information Matrix (FIM)

» Gradient of the log likelihood is also called score function: s(8) = Vg log p(y|0)
= Note: At some places (some generative models) V,, log p(y|6) also called score function

= Expectation of score function is zero: [y 9y[s(8)] = 0 (exercise)

= Fisher Information Matrix (FIM) is covariance matrix of score function
F=Epy0)[(s(8) —0)(s(8) —0)'] =E, 0y [Vg log p(¥|0)Vg log p(¥]6) "]

Note: If we have a prior p(8) too, then also
add the second derivative of log p(8)

"F =—E,qy 0 [Vélog p(yl6)]| i.e., negative of expected Hessian (exercise)

= Fach entry F;; tells us how “sensitive” the model is w.rt. the pair (6;, 0;)

= Each diagonal entry Fj; = (Vg, log p(y|6))? tells “important” 6; is by itself
» Can compute empirical FIM using data; F = %Z,’;’zl[vg log p(v,|0)Vg log p(v,|0) "]

CS772A: PML



Laplace Approx. for High-Dimensional Problems

= For high-dim 8, Laplace's approx p(0|D) ~ N (6|0,,4p, A~ 1) can be expensive

Diagonal approximation assumes that

. Many methOdS tO addreSS thlS’ e'g" the weights are all independent
= Use a diagonal of (empirical) Fisher as the precision whereas block-diagonal assumes that
the weights within each block may

A ~ d]ag(F) have correlations

= Use a block-diagonal approximation® of A (better than diagonal approx)

» For deep nets, use LA only for some weights + point estimates for others
= Option 1: Use LA only for last layer weights - “last layer Laplace's approximation™ (LLLA)
= Option 2: Use LA for weights from an identified “subnetwork”

Go0 oo o

(a) All (b) Subnetwork (c) Last-Layer
" See the “Laplace Redux” paper for more options and discussion on scalability of LA

*KFAC paper: “A Scalable Laplace Approximation for Neural Networks” (Ritter et al, ICLR 2018) *Laplace Redux -- Effortless Bayesian Deep Learning ” (Daxberger et al, NeurIPS 2021) CS772A: PML



Exp. Family (Pi

tman, Darmois, Koopman, 1930s)

" Defines a class of distributions. An Exponential Family distribution is of the form

1

p(x10) = gy h0x) R0 o(x)] = h(x) expldT6(x) ~ A)

mx € X™is therv. bei

ng modeled (X denotes some space, e.g., R or {0,1})

=9 € R%: Natural parameters or canonical parameters defining the distribution

= p(x) € R?: Sufficient statistics (another random variable)
= Knowing this quantity suffices to estimate parameter 8 from x

=7(0) = [ h(x)exp
"A(8) = log Z(0):

07 (x)]dx: Partition Function

| og-partition function (also called cumulant function)

" h(x): A constant (d

oesn't depend on 8) CS772A: PML



Expressing a Distribution in Exp. Family Form

= Recall the form of exp-fam distribution p(x|0) = h(x)exp[0Tp(x) — A(6)]
= To write any exp-fam dist p() in the above form, write it as exp(log p())

exp (log Binomial(x| N, n)) = exp ('Og (N) At ”)NX)

X

X

— (2’) exp (xlog - ﬁu — Nlog(1 —M))

= Now compare the resulting expression with the exponential family form

p(x|6) = h(x)exp[0 ' p(x) — A(0)]

. o identity the natural parameters, sufficient statistics, log-partition function, etc.

—  exp (Iog (N) + xlog i+ (N — x) log(1 — ,u))

CS772A: PML



(Univariate) Gaussian as Exponential Family

" | et's try to write a univariate Gaussian in the exponential family form
p(x|0) = h(x)exp[0" ¢(x) — A(0)]

» Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

1 (x — p)? 1 7 1 p
N(x|p, -:72) = s exp [— 5 = Nz exp | —=x — —x*— —— —logo

(5] wo-[a] o[-

h(x) = = A(f) = £, +logo = 72+ — Liog(~26,) — L log(2n)

o

ﬁ
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Other Examples

= Many other distribution belong to the exponential family
= Bernoulli
" Beta
" Gamma
= Multinoulli/Multinomial
= Dirichlet
= Multivariate Gaussian
" . and many more ( https://en.wikipedia.org/wiki/Exponential family )

= Note: Not all distributions belong to the exponential family, e.q.,
= Uniform distribution (x ~ Unif(a, b))
= Student-t distribution
= Mixture distributions (e.g., mixture of Gaussians)

CS772A: PML


https://en.wikipedia.org/wiki/Exponential_family

Log-Partition Function

* The log-partition function is A(#) = log Z(0) = log | h(x) exp[f ' ¢(x)]dx
" A(O) is also called the cumulant function
= Derivatives of A(8) can be used to generate the cumulants of the sufficient statistics

" Exercise: Assume 0 to be a scalar (thus ¢(x) is also scalar). Show that the first and
the second derivatives of A(0) are

dA

@ — Ep(x|6') [Qb(x)]

d2A ’ 2

F Ep(x|9) [Qb (X)] o [EP(-"W)[QS(X)” — var[gb(x)]

= Above result also holds when 6 and ¢ (x) are vector-valued (the “var” will be “covar”)

» Important: A(0) is a convex function of 8. Why?

CS772A: PML



VILE for Exponential Family Distributions

" Assume data D = {xq,...,xy} drawn i.i.d. from an exp. family distribution

p(x]6) = h(x)exp[8' ¢ (x) — A(0)]

* To do MLE, we need the overall likelihood -- a product of the individual likelihoods

N

N N N -
p(D]6) = | | p(xi|6) = [H h(x,-)} exp leTZ B(x;) — NA(Q)] = [H h(x,-)] exp [9 ¢(D) — NA(Q)}

i=1

= To estimate 8 (as we'll see shortly), we only need ¢(D) = Z,/'V:1 ¢(x;) and N
= Size of ¢(D) = ¥, p(x;) does not grow with N (same as the size of each ¢(x;))

* Only exponential family distributions have finite-sized sufficient statistics
* No need to store all the data; can simply update the sufficient statistics as data comes
= Useful in probabilistic inference with large-scale data sets and “online” parameter estimation
CS772A: PML



Bayesian Inference for Expon. Family Distributions

» Already saw that the total likelihood given N i.i.d. observations D = {x4,..., Xy}
N

p(D|0) o exp |07 (D) — NA(6)

where ¢(D) = Z o (xi)

" | et's choose the following prior (note: looks similar in terms of 8 within exp)

p(0]vo, T0) = h(6) exp [9% — A(8) — Ac(o, To)]

= |gnoring the prior's log-partition function Ac(vo, T0) = log [, h(8) exp [0 ' 70 — 16 A(6)] db

p(B|vo, T0) o h(B) exp [9% _ yoA(G)}

» Comparing the prior's form with the likelihood, note that

" 1V, is like the number of "pseudo-observations” coming from the prior

- is the total sufficient statistics of the pseudo-observations (

/v er pseudo-obs
0
CS772A: PML



The Posterior

" The likelihood and prior were )
p(D|6) o exp [0%(19) - NA(@)] where  ¢(D) = > 6(x)

Assume its log partition Blun. 70) o h(8) ex lQTTo — A8 ] _—
function denoted as A, (vy, 7o) p(6]vo, To) (6) exp (6) Posterior is also

. . from the same Happens when the
» The posterior p(8|D) o p(0)p(D|0) therefore will be family as the prior .. prior is conjugate
to the likelihood

Its log partition function will be T _
i log artion urction wilbe | p(9]D) ox h(6) exp |0 (70 + 6(D)) — (vo + N)A(6)

= Fvery exp family likelihood has a conjugate prior having the form above
= Posterior's hyperparams Ty, v obtained by adding “stuff” to prior's hyperparams

Number of pseudo-observations plus , Another equivalent form To = 70/
number of actual observations o — VTt N T 7o + ¢(D)
. , p(8]D) o h(B) exp |67 (1o + N) — (0 + N)A(®)
Suff-stats of pseudo-obervations plus 749" ¢— T + @(D) vo+ N
suff-stats of actual observations o I 5= %
Convex comb of avg . voTo + N
suff-stats of pseudo T *—
vo + N CS772A: PML

obs and actual obs




Posterior Predictive Distribution

» Assume some training data D = {x4,...,xy} from some exp-fam distribution
" Assume some test data D' = {¥y,..., Xy} from the same distribution

" The posterior pred. distr. of D’

Exp. Fam. likelihood
wirt. test data

p(D'D) = [ o(D'16)p(6ID)d8

Posterior (same form as the
prior due to conjugacy)

[ 3
S
_+_
<
3
<)
+
)
Q.
D

N/
= / [H h(i;)] exp [OTd)(D’) - N’A(e)] h(6) exp {(f(m + ¢(D)) — (vo + N)A(0) —

‘#

constant w.r.t. 6

" This gets further simplified into

~~~~~

p(D'|D) = [l} h(i;)} ““““““ exp [A(U6 + N, 76 + ¢(D))]

=~

exp [Ac(vo + N, 7o + ¢(D))] CS772A: PML
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Posterior Predictive Distribution L

marginal likelihood has
closed form expression

= Since AC — log ZC or ZC — exp(AC)’ we can write the PPD as when working with exp-

p(D'|D) = [H h(x;)

i=1

Z(vo+ N+ N, 79 + o(D) + ¢(D"))
Z(vo + N, 70 + ¢(D))

] family distributions

— [H h(x; :I exp [Ac(vo + N+ N', 79 + ¢(D) + ¢(D’)) — Ac(vo + N, To + ¢(D))]

» Therefore the posterior predictive is proportional to

= Ratio of two partition functions of two “posterior distributions” (one with N 4+ N’ examples and
the other with N examples)

= Exponential of the difference of the corresponding log-partition functions

* Note that the form of Z,. (and A.) will simply depend on the chosen conjugate prior

= Very useful result. Also holds for N = 0
= In this case p(D’) = [ p(D'|0)p(6)db is simply the marginal likelihood of test data D’

CS772A: PML



summary

" Exp. family distributions are very useful for modeling diverse types of data/parameters
= Conjugate priors to exp. family distributions make parameter updates very simple
» Other guantities such as posterior predictive can be computed in closed form

= Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

= Useful in designing generative models for unsupervised learning

» Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
* Linear regression (with Gaussian likelihood) and logistic regression are GLMs

= Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs

sampling, and especially variational inference)
CS772A: PML
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