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Plan today
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▪ PPD for Logistic regression

▪ Model Selection and Model Averaging

▪ More on Laplace’s Approximation

▪ How to make LA scalable when 𝜃 is very high dimensional Exponential family distributions

▪ Exponential Family Distributions
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LR: Posterior Predictive Distribution

▪ The posterior predictive distribution can be computed as

▪Monte-Carlo approximation is one possible way to approximate such integrals
▪ Draw 𝑀 samples 𝒘1, 𝒘2, … , 𝒘𝑀, from the posterior 𝑝 𝒘 𝑿, 𝒚  

▪ Now approximate the PPD as follows

▪ In contrast, when using MLE/MAP solution ෝ𝒘𝑜𝑝𝑡, the plug-in pred. distribution
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𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 =  𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘 

sigmoid Gaussian (if  using Laplace approx.)
Integral not tractable and 

must be approximated

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈
1

𝑀


𝑚=1

𝑀

𝑝 𝑦∗ = 1 𝒘𝑚, 𝒙∗ =
1

𝑀


𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 =  𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘 

≈ 𝑝 𝑦∗ = 1 ෝ𝒘𝑜𝑝𝑡, 𝒙∗ = 𝜎( ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛)
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LR: Plug-in Prediction vs Bayesian Averaging

▪ Plug-in prediction uses a single 𝒘 (point est) to make prediction

▪ PPD does an averaging using all possible 𝒘’s from the posterior
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Posterior averaging is like 

using an ensemble of 

models. In this example, 

each model is a linear 

classifier but the ensemble-

like effect resulted in 

nonlinear boundaries

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈ 𝜎( ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛) 𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈

1

𝑀


𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

Color transitions (red 

to blue) in both plots 

denote how the 

probability of an 

input changes from 

belonging to red 

class to belonging to 

blue class. All inputs 

on a line (or curve 

on RHS plot)have 

the same probability 

of belonging to the 

red/blue class
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More on Marginalization

▪ PPD is a weighted average over all possible parameter values of one model

▪ PPD marginalization can be done even over several choices of models
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𝑝(𝑦∗|𝒙∗, 𝒟, 𝑚) =  𝑝 𝑦∗ 𝒙∗, 𝜃, 𝑚 𝑝 𝜃 𝒟, 𝑚 𝑑𝜃

𝑝(𝑦∗|𝒙∗, 𝒟) =  σ𝑚=1
𝑀 𝑝 𝑦∗ 𝒙∗, 𝒟, 𝑚 𝑝(𝑚|𝒟) 

𝑝(𝑦∗|𝒙∗, 𝒟, 𝑚) =  𝑝 𝑦∗ 𝒙∗, 𝜃, 𝑚 𝑝 𝜃 𝒟, 𝑚 𝑑𝜃

≈
1

𝑆


𝑖=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝜃(𝑖), 𝑚

Marginalization over all 

weights of a single model 𝑚

Marginalization over all finite 

choices 𝑚 = 1,2, … , 𝑀 of 

the model

Like a double averaging 

(over all model choices, and 

over all weights of each 

model choice)

Each 𝜃(𝑖) is drawn 

i.i.d. from the 

distribution 𝑝 𝜃 𝒟, 𝑚  

Above integral replaced by a “Monte-

Carlo Averaging” (an approximation 

when PPD integral is intractable)

For example, deep nets with 

different architectures

Haven’t yet told you how 

to compute this quantity 

but will see shortly

Note: 𝑚 is just a 

model identifier; can 

ignore when writing
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Model Selection and Model Averaging

▪ Can use Bayes rule to find the best model from a set of models 𝑚 = 1,2, … , 𝑀

▪ If  all models equally likely a priori then

▪ For PPD, can use either the best model ෝ𝑚 or can average over all models 
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𝑝 𝑚 𝐗 =
𝑝(𝐗|𝑚)𝑝 𝑚

𝑝(𝐗)
=

𝑝(𝐗|𝑚)𝑝 𝑚

σ𝑚=1
𝑀 𝑝(𝐗|𝑚)𝑝 𝑚

ෝ𝑚 = arg max
𝑚

 𝑝 𝑚 𝐗Best model

Posterior 

probability 

of model 𝑚 

Marginal likelihood 

of model 𝑚 

Prior probability of 

choosing model 𝑚 

Marginal likelihood 

over all models

= arg max
𝑚

 𝑝(𝐗|𝑚)𝑝 𝑚

ෝ𝑚 = arg max
𝑚

 𝑝(𝐗|𝑚)

Will discuss later how 

to compute marginal 

likelihood

In general, intractable 

to compute exactly

𝑝 𝑥∗ 𝐗 =  
𝑚=1

𝑀

𝑝 𝑥∗ 𝐗, 𝑚 𝑝(𝑚|𝐗) 𝑝 𝑥∗ 𝐗 ≈ 𝑝 𝑥∗ 𝐗, ෝ𝑚 OR

𝑝 𝐗 𝑚 =  𝑝 𝐗 𝜃, 𝑚 𝑝 𝜃 𝑚 𝑑𝜃

Test data Training data

Integrating out all 

possible parameter 

values under model 𝑚
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Recap: Laplace’s Approximation

▪ Consider a posterior distribution that is intractable to compute

▪ Laplace approximation approximates the above using a Gaussian distribution

▪ Laplace’s approx. is based on a second-order Taylor approx. of the posterior
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Negative of the Hessian, 

i.e., the second derivative 

of the log joint, at 𝜃𝑀𝐴𝑃 

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟|𝜃)𝑝 𝜃

𝑝(𝒟)

𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)

Tells us about the space 

(curvature) of the true 

posterior around 𝜃𝑀𝐴𝑃 

𝚲 = − ∇𝜃
2  log 𝑝 𝜃 𝒟 ቚ

𝜃=𝜃𝑀𝐴𝑃

= −∇𝜃
2  log 𝑝(𝒟, 𝜃) ቚ

𝜃=𝜃𝑀𝐴𝑃

𝜃𝑀𝐴𝑃 =  argmax𝜃 log 𝑝(𝜃|𝒟)

Related to the Fisher 

Information Matrix 

(FIM); will see shortly
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Detour: Hessian and Fisher Information Matrix

▪Hessian is related to the Fisher Information Matrix (FIM)

▪ Gradient of the log likelihood is also called score function: 𝑠 𝜃 = ∇𝜃  log 𝑝(𝑦|𝜃)
▪ Note: At some places (some generative models) ∇𝑦 log 𝑝(𝑦|𝜃) also called score function

▪ Expectation of score function is zero: 𝔼𝑝(𝑦|𝜃) 𝑠 𝜃 = 0 (exercise)

▪ Fisher Information Matrix (FIM) is covariance matrix of score function

▪ 𝐅 = − 𝔼𝑝(𝑦|𝜃) ∇𝜃
2 log 𝑝 𝑦 𝜃 , i.e., negative of expected Hessian (exercise)

▪ Each entry 𝐹𝑖𝑗 tells us how “sensitive” the model is w.r.t. the pair (𝜃𝑖 , 𝜃𝑗)

▪ Each diagonal entry 𝐹𝑖𝑖 = (∇𝜃𝑖
 log 𝑝 𝑦 𝜃 )2 tells “important” 𝜃𝑖 is by itself

▪ Can compute empirical FIM using data: 𝐅 =
1

𝑁
σ𝑛=1

𝑁 ∇𝜃 log 𝑝(𝑦𝑛|𝜃)∇𝜃 log 𝑝(𝑦𝑛|𝜃)⊤
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𝐅 = 𝔼𝑝(𝑦|𝜃) 𝑠 𝜃 − 0 𝑠 𝜃 − 0 ⊤ = 𝔼𝑝(𝑦|𝜃) ∇𝜃 log 𝑝(𝑦|𝜃)∇𝜃 log 𝑝(𝑦|𝜃)⊤

Note: If  we have a prior 𝑝 𝜃  too, then also 

add the second derivative of log 𝑝(𝜃)
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Laplace Approx. for High-Dimensional Problems

▪ For high-dim 𝜃, Laplace’s approx 𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1) can be expensive

▪Many methods to address this, e.g., 
▪ Use a diagonal of (empirical) Fisher as the precision

▪ Use a block-diagonal approximation* of 𝚲 (better than diagonal approx)

▪ For deep nets, use LA only for some weights + point estimates for others
▪ Option 1: Use LA only for last layer weights - “last layer Laplace’s approximation” (LLLA)

▪ Option 2: Use LA for weights from an identified “subnetwork”

▪ See the “Laplace Redux” paper for more options and discussion on scalability of LA
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𝚲 ≈ diag(𝐅)

*KFAC paper: “A Scalable Laplace Approximation for Neural Networks” (Ritter et al, ICLR 2018)

Diagonal approximation assumes that 

the weights are all independent 

whereas block-diagonal assumes that 

the weights within each block may 

have correlations

*Laplace Redux -- Effortless Bayesian Deep Learning ” (Daxberger et al, NeurIPS 2021)
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Exp. Family (Pitman, Darmois, Koopman, 1930s)

▪Defines a class of distributions. An Exponential Family distribution is of the form

▪ 𝒙 ∈  𝒳𝑚 is the r.v. being modeled (𝒳 denotes some space, e.g., ℝ or {0,1}) 

▪ 𝜃 ∈  ℝ𝑑 : Natural parameters or canonical parameters defining the distribution

▪ 𝜙(𝒙)  ∈  ℝ𝑑 : Sufficient statistics (another random variable)

▪ Knowing this quantity suffices to estimate parameter 𝜃 from 𝑥

▪𝑍 𝜃 =  ℎ 𝒙 exp 𝜃⊤𝜙 𝒙 𝑑𝒙: Partition Function

▪𝐴 𝜃 =  log 𝑍(𝜃): Log-partition function (also called cumulant function)

▪ℎ(𝒙): A constant (doesn’t depend on 𝜃)

10
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Expressing a Distribution in Exp. Family Form

▪ Recall the form of exp-fam distribution 𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

▪ To write any exp-fam dist 𝑝() in the above form, write it as exp(log 𝑝()) 

▪Now compare the resulting expression with the exponential family form

 .. to identify the natural parameters, sufficient statistics, log-partition function, etc.
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𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃
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(Univariate) Gaussian as Exponential Family

▪ Let’s try to write a univariate Gaussian in the exponential family form

▪ Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

12
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Other Examples

▪Many other distribution belong to the exponential family
▪ Bernoulli

▪ Beta

▪ Gamma

▪ Multinoulli/Multinomial

▪ Dirichlet

▪ Multivariate Gaussian

▪ .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

▪Note: Not all distributions belong to the exponential family, e.g.,
▪ Uniform distribution (x ∼ Unif(a, b))

▪ Student-t distribution

▪ Mixture distributions (e.g., mixture of Gaussians)

13

https://en.wikipedia.org/wiki/Exponential_family
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Log-Partition Function

▪ The log-partition function is 

▪ 𝐴(𝜃) is also called the cumulant function

▪ Derivatives of 𝐴(𝜃) can be used to generate the cumulants of the sufficient statistics

▪ Exercise: Assume 𝜃 to be a scalar (thus 𝜙(𝑥) is also scalar). Show that the first and 
the second derivatives of 𝐴(𝜃) are

▪ Above result also holds when 𝜃 and 𝜙(𝑥) are vector-valued (the “var” will be “covar”)

▪ Important: 𝐴(𝜃) is a convex function of 𝜃. Why?

14
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MLE for Exponential Family Distributions

▪ Assume data 𝒟 =  {𝑥1, . . . , 𝑥𝑁} drawn i.i.d. from an exp. family distribution

▪ To do MLE, we need the overall likelihood -- a product of the individual likelihoods

▪ To estimate 𝜃 (as we’ll see shortly), we only need

▪ Size of 𝜙 𝒟 = σ𝑖=1
𝑁 𝜙 𝑥𝑖  does not grow with 𝑁 (same as the size of each 𝜙 𝑥𝑖 )

▪ Only exponential family distributions have finite-sized sufficient statistics
▪ No need to store all the data; can simply update the sufficient statistics as data comes

▪ Useful in probabilistic inference with large-scale data sets and “online” parameter estimation

15

𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃
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Bayesian Inference for Expon. Family Distributions

▪ Already saw that the total likelihood given 𝑁 i.i.d. observations 𝒟 =  {𝑥1, . . . , 𝑥𝑁} 

▪ Let’s choose the following prior (note: looks similar in terms of 𝜃 within exp)

▪ Ignoring the prior’s log-partition function

▪ Comparing the prior’s form with the likelihood, note that
▪  𝜈0 is like the number of “pseudo-observations” coming from the prior

▪  𝜏0 is the total sufficient statistics of the pseudo-observations (𝜏0/ 𝜈0 per pseudo-obs)

16
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The Posterior

▪ The likelihood and prior were 

▪ The posterior                              therefore will be

▪ Every exp family likelihood has a conjugate prior having the form above

▪ Posterior’s hyperparams 𝜏0
′ , 𝜈0

′  obtained by adding “stuff” to prior’s hyperparams

17

Posterior is also 

from the same 

family as the prior
Happens when the 

prior is conjugate 

to the likelihood

Number of pseudo-observations plus 

number of actual observations

Suff-stats of pseudo-obervations plus 

suff-stats of actual observations

Its log partition function will be 

𝐴𝑐(𝜈0 + 𝑁, 𝜏0 + 𝜙(𝒟))

Assume its log partition 

function denoted as 𝐴𝑐(𝜈0, 𝜏0)

Convex comb of avg 

suff-stats of pseudo 

obs and actual obs

Another equivalent form
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Posterior Predictive Distribution

▪ Assume some training data 𝒟 =  {𝑥1, . . . , 𝑥𝑁} from some exp-fam distribution

▪ Assume some test data 𝒟′ =  { 𝑥1, . . . , 𝑥𝑁′} from the same distribution

▪ The posterior pred. distr. of 𝒟′

▪ This gets further simplified into

18

Exp. Fam. likelihood 

w.r.t. test data

Posterior (same form as the 

prior due to conjugacy)



CS772A: PML

Posterior Predictive Distribution

▪ Since 𝐴𝑐  =  log 𝑍𝑐 or 𝑍𝑐 =  exp(𝐴𝑐), we can write the PPD as

▪ Therefore the posterior predictive is proportional to
▪ Ratio of two partition functions of two “posterior distributions” (one with 𝑁 +  𝑁′ examples and 

the other with 𝑁 examples)

▪ Exponential of  the difference of the corresponding log-partition functions

▪ Note that the form of 𝑍𝑐 (and 𝐴𝑐) will simply depend on the chosen conjugate prior

▪ Very useful result. Also holds for 𝑁 =  0 
▪ In this case                                         is simply the marginal likelihood of test data 𝒟′ 

19
Thus PPD as well as 

marginal likelihood has 

closed form expression 

when working with exp-

family distributions
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Summary

▪ Exp. family distributions are very useful for modeling diverse types of data/parameters

▪ Conjugate priors to exp. family distributions make parameter updates very simple

▪ Other quantities such as posterior predictive can be computed in closed form

▪ Useful in designing generative classification models. Choosing class-conditional from 
exponential family with conjugate priors helps in parameter estimation

▪ Useful in designing generative models for unsupervised learning

▪ Used in designing Generalized Linear Models: Model 𝑝(𝑦|𝑥) using exp. fam distribution
▪ Linear regression (with Gaussian likelihood) and logistic regression are GLMs

▪ Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs 
sampling, and especially variational inference)

20
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