


Random Variables

" Informally, a random variable (rv.) X denotes possible outcomes of an event
= Can be discrete (i.e., finite many possible outcomes) or continuous

" Some examples of discrete rv,
= X € {0,1} denoting outcomes of a coin-toss

() |
=X € {1,2,...,6} denoting outcome of a dice roll 3 TIHhT

4

X(a d|screte rv)

" Some examples of continuous r.v.
= X € (0,1) denoting the bias of a coin |
= X € Rdenoting heights of students in a class p(X)
= X € Rdenoting time to get to your hall from the department

X (a continuous r.v.)
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Discrete Random Variables

" For a discrete rv. X, p(x) denotes p(X = x) - probability that X = x

" p(X) is called the probability mass function (PMF) of rv. X

" p(x) or p(X = x) is the value of the PMF at x

p(x) =0 :
p(x) <1 p(X) .|

Exp(x) =1
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Continuous Random Variables

®» For a continuous rv. X, a probability p(X = x) or p(x) is meaningless

=" For cont. rv., we talk in terms of prob. within an interval X € (x,x + 0x)

=" p(x)dx is the prob. that X € (x,x + 6x) as 6x — 0
" p(x) is the probability density at X = x

Yes, probability density at a p(x) >0

point x can very well be P@Q—S—l-

larger than 1. The integral

A however must be equal to 1 f p(x)dx =1
voa /

g

_
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A word about notation

" p(.) can mean different things depending on the context

" p(X) denotes the distribution (PMF/PDF) of an rv. X

"p(X = x)or px(x) or simply p(x) denotes the prob. or prob. density at value x

= Actual meaning should be clear from the context (but be careful)
= Exercise same care when p(.) is a specific distribution (Bernoulli, Gaussian, etc.)

* The following means generating a random sample from the distribution p(X)

x ~ p(X)
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Joint Probability Distribution

= Joint prob. dist. p(X,Y) models probability of co-occurrence of two rv. X, Y
= For discrete rv., the joint PMF p(X,Y ) is like a table (that sums to 1)

X
similar analogy holds

Y p(X:Y) y ZZP(X:X,,Y:}/)::[

For 3 rv.'s, we will likewise A /
“ I | ‘
p(X=x,Y=y) have a “cube” for th’e PMFE, »
For more than 3 rv.'s too, e-y

= For two continuous rv.'s X and Y, we have joint PDF n(X,Y)

P\

For more than two rv.'s, we "

p(X = X, Y = y)d)(dy — 1 1 Fkewise h . 2
/x/y Wil lIkewise have a multi-aim &

integral for this property B

/




Marginal Probability Distribution

" Consider two rv.'s X and Y (discrete/continuous — both need not of same type)
= Marg. Prob. is PMF/PDF of one rv. accounting for all possibilities of the other rv,
= For discrete rv.'s, p(X) = 2, p(X,Y =y) and p(Y) = Xy p(X = x,Y)

= For discrete rv. it is the sum of the PMF table along the rows/columns

X P(X=x,Y=y) . .
X The definition also applied for two sets "
/ Sum over of rv.'s and marginal of one set of rv.’s i /

Y P(X,Y) V:>p(Y) is obtained by summing over all e’»
possibilities of the second set of rv.'s
Sum over
ﬂ o For discrete rv.'s, marginalization is
p(X) called summing over, for continuous

rv.'s, it is called “integrating out”

= For continuous rv.'s, p(X) = fy p(X,Y =y)dy, p(Y)=[ p(X=x,Y)dx
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Conditional Probability Distribution

" Consider two rv.'s X and Y (discrete/continuous — both need not of same type)

= Conditional PMF/PDF p(X|Y) is the prob. dist. of one rv. X, fixing other rv. Y

"p(X|Y = y)orp(Y |X = x) like taking a slice of the joint dist. p(X,Y )

Continuous Random Variables

P(x.y)

Discrete Random Variables

X X

Y 0 o O N e y Y

n
Yy
Y2

N,

P(xly=y,)

BRREN -
e

P(XIY=Y,)

* Note: A conditional PMF/PDF may also be conditioned on something that is not

the value of an rv. but some fixed quantity in general We will see cond. dist. of output

y given weights w(r.v.) and
features X written as p(y|w, X)
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Some Basic Rules

= Sum Rule: Gives the marginal probability distribution from joint probability distribution

For discrete r.v.: p(X)=>_, p(X,Y)
For continuous r.v.: p(X) = [, p(X,Y)dY

= Product Rule: p(X,Y) = p(Y |X)p(X) = p(X|Y )p(Y)

* Bayes' rule: Gives conditional probability distribution (can derive it from product rule)

: p(X[Y)p(Y)
S(YIX) = p(X|Y)p(Y) For discrete r.v.: p(Y|X) = Zyp(xlp) )
p(X) For continuous r.v.: P(Y‘X) — fv;;{/;” ]) E ])dy

= Chain Rule: p(Xl'XZI"'IXN) — p(Xl)p(X2|X1)p(XN |X1,...,XN_1)
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Independence

* X and Y are independent when knowing one tells nothing about the other

p(X|Y =y) = p(X) X pe)
p(Y|X — X) — P( Y) Y P(X,Y) = pM)
p(X,Y) = p(X)p(Y)

* The above is the marginal independence (X Il Y)

" Two rv.'s X and Y may not be marginally indep but may be given the value of another rv. Z
p(X. Y|Z = 2) = p(X|Z = 2)p(Y|Z = 2) X 1L Y|Z
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Expectation

= Expectation of a random variable tells the expected or average value it takes

» Expectation of a discrete random variable X € Sy having PMF p(X)
Probability that X = x
E[X] = ) xp(x)

XESy

= Expectation of a continuous random variable X € Sy having PDF p(X)
Probability density at X = x

]E [X] — f xp (x) dx Note that this exp. is w.rt. the

distribution p(f (X)) of the rv. f(X)
Often the subscript is omitted

= The definition applies to functions of rv. too (e.g.., E[f(X)]) but do keep in mind the

underlying distribution

xESX

= Exp. is always wirt. the prob. dist. p(X) of the rv. and often written as E, [X]
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Expectation: A Few Rules end ¥ ceed kb oo

discrete or continuous

= Expectation of sum of two rv.'s: E[X + Y] = E|X]| + E[Y]

= Proof is as follows
" Define = X +Y

ElZ] = Yzes,2 - 0(Z = 2) st.z= x+ywherex € Syandy € Sy
= Dixesy Lyesy X +¥) - pX =xY =y)
= 2x2yX pX=xY=y)+ 22y y - pX =xY =y)
= 2xX2ypX =xY =y)+ 2y y2xpX =xY =y)
=YX pX=x)+ 2,y -p{Y =y) of pint st of tho s
= E[X] + E[Y]
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Expectation: A Few Rules (Contd)

a is a real-valued scalar
a and f are real-valued scalars

= Expectation of a scaled rv.: E[aX] = aE|X]
» Linearity of expectation: E[aX + BY] = aE|X]| + BE|Y] f and g are arbitrary functions
» (More General) Lin. of exp.: Elaf(X) + Bg(Y)] = aE[f(X)] + BE|g(Y)]

= Exp. of product of two independent rv.'s: E|XY] = E|X]|E[Y]

" [ aw of the Unconscious Statistician (LOTUS): Given an rv. X with a known prob.

dist. p(X) and another random variable Y = g(X) for some function g
Requires finding p(Y) Requires only p(X) which we already have

E[Y] = E[g(X)] = Z yp(y) = ers g(x)p(x) LOTUS also applicable

yESY for continuous rv.'s

= Rule of iterated expectation: Epx)[X] = Ep ) [Epx vy [X]Y]]
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Variance and Covariance

" Variance of a scalar rv. tells us about its spread around its mean value E[X] = u
var[X] = E[(X — w)?] = E[X?] — p?
» Standard deviation is simply the square root is variance

" For two scalar rv.'s X and Y, the covariance is defined by
covlX,Y] = E[{X — E[X]{Y — E[Y]}] = E[XY] — E[X]E[Y]

" For two vector rv.'s X and Y (assume column vec), the covariance matrix is defined by
cov[X, Y] = E[{X — E[X][}{¥T — E[Y"]}] = E[XYT] - E[X]E[Y"]

= Cov. of components of a vector rv. X: cov[X] = cov|X, X]
Important result

* Note: The definitions apply to functions of rv. too (e.g., var|[f (X)])
* Note: Variance of sum of independentrv.'s: var|[X + Y] = var|[X]| + var|Y]
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Entropy

o Entropy of a continuous/discrete distribution p(X)

Hp) = — [ p(X)log p(X)dX
H(p) = —> p(X=k)logp(X = k)

o In general, a peaky distribution would have a smaller entropy than a flat distribution

o Note that the KL divergence can be written in terms of expetation and entropy terms
KL(pl|q) = Ep(x)[—log q(X)] — H(p)

o Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
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KL Divergence

o

Q

Q

Q

Kullback-Leibler divergence between two probability distributions p(X) and q(X)
p(X) q(X) - g o
Kl(pllg) = /p X) log dX = —/p X) log dX for continuous distributions
(pllq) (X) o(X) (X) o(X) ( )
K
X =K
Rl = % pek =l ) (for discrete distributions)
s q(X = k)

It is non-negative, i.e., KL(p||q) > 0, and zero if and only if p(X) and g(X) are the same

For some distributions, e.g., Gaussians, KL divergence has a closed form expression

KL divergence is not symmetric, i.e., KL(p||q) # KL(q||p)
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Common Probability Distributions

Important: We will use these extensively to model data as well as parameters of models

* Some common discrete distributions and what they can model
= Bernoulli: Binary numbers, e.g., outcome (head/tail, O/1) of a coin toss
* Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses
= Multinomial/multinoulli;: One of K (>2) possibilities, e.g., outcome of a dice roll
= Poisson: Non-negative integers, e.g., # of words in a document

" Some common continuous distributions and what they can model
= Uniform: numbers defined over a fixed range
= Beta: numbers between O and 1, e.g., probability of head for a biased coin
* Gamma: Positive unbounded real numbers
= Dirichlet: vectors that sum of 1 (fraction of data points in different classes/clusters)
» Gaussian: real-valued numbers or real-valued vectors
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Discrete Distributions



Bernoulli Distribution

= Distribution over a binary random variable X € {0,1}, e.g., outcome of a coin-toss

» Defined by probability parameter u € (0,1) st. u = p(X = 1)
" The probability mass function (PMF) of Bernoulli is L4 !
U
— — X 1—Xx
p(X =x|p) =p (1 —p)
0 1 X

" Expectation: E[X] = u
= Variance: var[X] = u(1 — w)
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Binomial Distribution

= Distribution over number of successes m in N trials, e.g., number of heads in N
coin tosses

» Defined by a parameter u € (0,1), probability of success of each trial
" The probability mass function (PMF) of Binomial is

p(X =m|N,n) = (N)u’"(l — W

m
Binomial with N = 15,u = 0.2
E 025 — —

020 —

» Expectation: E[X] = Nu

015 —f

0.10 —

=] —’—l_lf

000 —|
llllllllllllllll

& 8 -’xa g 10 11 12 13 14 1 CS772: PML

= Variance: var[X] = Nu(1 — u)

Probability of X =




Multinoulli Distribution

» Generalization of Bernoulli distribution for discrete/categorical variable X taking
one of K > 2 outcomes, e.g., outcome of a single dice roll

= Note: If X = i, we can also use a one-hot vector of length K to denote X

Vector of all zeros except the it entry x;
X = [()’ 0,..,0,1,0,...,0, ()] which is 1; all other x;, for j # i are O

Probability of the i* outcome

= Multinoulli is defined by K params = [fy, Uz, -, g ], t; € (0,1) and Yo p; = 1

= The PMF of Multinoulli is K »
p(X|w) = 1_[ 1ui‘
1=

= Expectation: E|x;] = u;. variance: var[x;] = u; (1 — i)
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Multinomial Distribution

rolled N times

" Generalization of multinomial for a K outcome trial repeated N > 1 times
* Defines distribution of random var. X denoting counts of each possible outcome
» Can use a vector of length K to denote X Tne it enry g derores | S

the number of times we
had outcome i

X = [X1, X5, ) Xjy ooy Xg—1, XK |
= Multinomial is defined by K params @ = [uy, Uy, -, g ], i € (0,1) and Yo p; = 1

= The PMF of Multinomial is

aw=(, N ]
p 1 X1,X2, e, XK izllui

» Expectation: E|x;] = Ny;, variance: var[x;] = Nu; (1 — u;)

= Multinomial can also be viewed as a generalization of Binomial for K > 2 outcomes
CS772: PML



Poisson Distribution

= Distribution a non-negative integer (count) random variable X, €.g., number of
events in a fixed interval of time 0.40

035} °¢ ° A=l
o

© A=10

0.30
0.25

p(X = k|2)020) e

0.15

®* Defined by a non-negative rate parameter A

0.10

= [he PMF of Poisson is oost [ A AN N
0 5 !W
Aexp(—A
p(X =k|u) = P(—4) (k=012,..)

k!

= Expectation: E|X] = A, variance: var[X] = 1
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Continuous Distributions



Uniform Distribution

= Distribution over a uniformly distributed random variable in interval |a, b]

" The probability density function (PDF) is

1

Recall that since X is continuous, this -y
is not the probability of X = x but 1 a
probability of X € (x,x + dx) where ( — | ) - _

8x is very small p X = X M — pX = x)

(b —a)

0 a b
(a+b) X
» Expectation: E[X] = ”
12
= \ariance: var[X] = (blg)
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Beta Distribution

= Distribution over a random var. € (0,1), e.g., probability of head for a coin

* Defined by two parameters a, f > 0. They control the shape of the distribution

J

" The probability density function (PDF) is

[(a+ )

p(rla, f) = n* (1 - m)F!
[ denotes the gamma function: a) F (ﬁ) p(ﬂ) 1
M) = f0°° t* exp(=t)dt Also equivalent to a uniform
- Expectatlon ]E [ﬂ] — ﬁ distributionfora =1, =1 L
u
= \ariance: var[m]| = atp
(a+B)?(a+L+1)
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Dirichlet Distribution

= Distribution over a random non-neg vector T = |mq, 7o, ..., Tk | that sums to 1,
e.g., vector of probabilities of a dice roll showing each of the K faces

K
o<m<1 Vi=12..,K, 2 =1
=1

" Fquivalent to a distribution over the K — 1 dimensional simplex

These parameters control the shape

» Defined by K non-negative parameters & = |aq, &y, ..., Q| o the Drichiet distributior

" The PDF is
e KT Hi=1 F(ai) ‘ =
S _ a; - , 1 ai(l-a;) _ VK
» Expectation: E[m;] = 5K o , variance: var[m;] = (2t D) where ag = ).joq1 Q;
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Dirichlet Distribution (contd)

= Shape of the Dirichlet distribution (K = 3), as a@ = [a4, a5, ..., ag] varies

» Fach point within the two-dim (K — 1), simplices (triangles) below is a random
probability vector T = |4, Ty, T3] of length 3, drawn from the Dirichlet

Like a uniform
distribution if

Visualizations of PDFs of some 3-dim |alagsaret jo=(.1.1) o= (10, 10, 10)
Dirichlet distributions (each generated Z 7o N AVAS
using a different conc. Param vector a)

s - T )
g T3 - T3
ﬂl' 1

Draws from a 3-dimensional Dirichlet with different o

All a,'s large results in
peak around the
center of the simplex

a controls the shape
of the Dirichlet (just
like Beta distribution’s
hyperparameters)

region when drawing

the Dirichlet

¢ O O & O o OO o/ o O OO O o O o O
O I VP A YR
4 L]
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Gamma Distribution

= Distribution over non-negative random variable X > 0, e.g., time between phone-
calls at a call center

I

= Defined by a shape parameters k and a scale parame k=106 -20
H (2300 10
= The PDF is - X e \ —iZ1zetie
x"*"exp(— 5) Y 02 |

p(X = x|k, 0) = 6%T (1)

X
= Expectation: E[X] = k@, variance: var[X] = k82

* Note: Sometimes, the gamma distribution can also be defined in another
parameterization (shape and inverse scale (1/6))
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Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables X € R, e.g., height of
students in a class

= Defined by a scalar mean u and a scalar variance ¢

) e f,-"ﬂ".lI
-4 [
1 (x — p)? |
NX =x|u,0%) = exp | — :
2mo? 20
" Mean: E|X] =u
, 2 Gaussian PDF in
= \/ariance:; Va.r[X] =0 terms of precision
. . - 1
® [nverse of variance is called precision: f = —. N =xlu,B) =j§exp [—g(x—u)zl
o
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Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables X € R”
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

y Density

Probabiit

1
NX=x|pX)= MR exp[—(x — ) T2 (x — )]

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian
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Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables X € R”
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

y Density

Probabiit

1
NX=x|pX)= MR exp[—(x — ) T2 (x — )]

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian
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Covariance Matrix for Multivariate Gaussian

Spherical Covariance Diagonal Covariance Full Covariance

Spherical: Equal q

spreads (yanancgs) o a /
along all dimensions l .

Diagonal: Unequal
spreads (variances)
along all directions
but still axis-parallel

Full: Unequal spreads
(variances) along all
directions and also
spreads along oblique
directions
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Multivariate Gaussian: Marginals and Conditionals

o Given x having multivariate Gaussian distribution A/(x|u, X) with A = X', Suppose

S x(l — l‘l’a.
=) w=()
Zaa 23ab Aa.u Aa‘b
Y = i I T —
(Zba Ebb) (Aba Abb)
o The marginal distribution is simply

p(Xa) — N(xalp’aa Zaa)
o The conditional distribution is given by

p(xalxs) = N(x|ptgp Agy)
Hap = Hq— A(TalA(lb(xb 2 p’b)

Thus marginals and conditionals

of Gaussians are Gaussians
CS772: PML



Transformation of Random Variables

" Suppose Y = f(X) = AX + b be alinear function of a vector-valued rv. X (A is a
matrix and b is a vector, both constants)

= Suppose E[X] = u and cov[X] = Z, then for the vector-valued rv. Y

E[Y] = E[AX + b] = Au + b
cov[Y] = cov[AX + b] = AZAT

= Likewise, if Y = f(X) =a'X + b be a linear function of a vector-valued rv. X (a is a
vector and b is a scalar, both constants)

= Suppose E|X] = u and cov[X] = X, then for the scalar-valued rv. Y
E[Y]=E[a'™X + b]=a'u+0b
var[Y] =var[a'X + b] =a'Xa
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Linear Gaussian Model (LGM)

» L GM defines a noisy lin. transform of a Gaussian rv. @ with p(8) = ¥ (0|u, A™)

Both @ and y are vectors (can
be of different sizes)

—_— A 9 b Noise vector - independently
Also assume 4, b, A, L to be y - + + E and drawn from N (€|0,L™1)

known; only @ is unknown

" Fasy to see that, conditioned on 8, y too has a Gaussian distribution

Conditional p(yle) — N(ylAH _|_ b’ L—l)

distribution

= Assume p(@) as prior and p(y|@) as the likelihood, and defining £ = (A + ATLA)™?!

Posterior of @ p (yl 9)p (0)
p(By) =
p(y)
Marginal

ssioen -~ p(y) = | p(y|0)p(8)d6 = N (y|Ap+ b, AN'AT + L)
= Many probabilistic ML models are LGMs

= N(@O|Z(A"L(y — b) + Ap),X)

" These results are very widely used (PRML Chap. 2 contains a proof) CS772A: PML
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