MCMC Sampling (wrap-up)

CS772A: Probabilistic Machine Learning
Piyush Rai

Using MCMC samples to make predictions

» Using the S samples ZW 72 ZO) our approx. p(Z) = i Yio=1 06, (Z)

» Any expectation that depends on p(Z£) can be approximated as
1 S
B (@) = [f@p@)dz ~ 5) f(Z)
S=

* For Bayesian lin. reg., assuming w, 5, A to be unknown, the PPD approx. will be
Thus, in this case, the PPD
is a sum of § Gaussians

p(y* X, W(S), ﬁ(S))
=1

=
Mean: E[w'x,] ~ % _ w® x,

Joint posterior over all
unknowns S

[pG.lx., W, B)P(W, B, AIX, y)dwdpdA ~ 2

Sampling based
Can also think of it as an ensemble approximation of PPD
consisting of S members

S

Variance: Exercise! Use definition
of variance and use Monte-Carlo
approximation

» Sampling based approx. for PPD of other models can also be obtained likewise
CS772A: PML

Using Gradients in MCMC: Langevin Dynamics

= MCMC uses a random-walk based proposal to generate the next sample, e.g.,

Will use @ to denote

And then accept/reject (MH (t) (t—1) Can use automatic
il) H N(Q ’ Tlt) all the unknowns differentiation methods for this

" | angevin dynamics: Use (unnormalized) posterior's gradient info in the proposal as

Likelihood Prior Move towards the mode of the
- Nt posterior (like finding MAP est)
0 = 6"V 4 ZEV4[log p(D|6) + log p(9)]
2 g(t—1)

Aﬂd theﬂ accept/reject (MH) 9 (t) N 0 * Same as doing a gradient ascent Step Using gradient info in the
~ N(07,1m¢)

towards the posterior and injecting oroposal helps us move faster

noise €; ~ N (0,n;). Noise ensures e .
we aren't stuck at the MAP solution towards high-prob regions

Helps also incorporate the It gradient is pre-multiplied by a preconditioner
curvature info of the posterior || matrix M(6®¢=1): Simplified Manifold MALA

- Nt One option to use for
oY) — glt—1) - EVQ[Iog p(D|9) + log P(G)]Ig(t—l) 7 6?‘ M (61 is the second

derivative of the unnorm.

1 set s.t. acceptance
rate is around 0.6

» Note that the above is equivalent to

And then accept/reject (MH)

Known as Metropolis-Adjusted
Langevin Algorithm (MALA)

To+S posterior

= After some waiting period T, iterates {H(t)}t_T ,q are MCMC samples from p(8|D)
—10

"Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) CS772A: PML

Langevin Dynamics: A Closer Look

" |s generating MCMC samples really as easy as computing MAP?
" Recall the form of Langevin Dynamics updates

And th ject (MH
nd then accept/reject (MH) o) — g(t-1) 4 %VH[Iog p(D|0) + log P(H)”g(t—l) T €

Same as our
target posterior

» Equivalent to discretization of an SDE with equilibrium distribution &« exp(log p(D, 0))

Above update is Note that this is

its discretiization continuous time dgt — _VL(Ht)dt + \/det

where L(8;) = —log p(D, 0;) and (B;)¢sq is Brownian motion sit. AB; are i.i.d. Gaussian r.v.s

" Discretization introduces some error which is corrected by MH accept/reject step

» Note: As learning rate n; decreases, discretization error also decreases and rejection

rate tends to zero
» Note: Gradient computations require all the data (thus slow)

= Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)

CS772A: PML

Stochastic Gradient Langevin Dynamics (SGLD)

" An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

* Given minibatch Dy = {x¢1, X¢9, ...,xtNt} the (stochastic) Langevin dynamics update:

Almost as fast as

g = @b + e V Z log p(x:n|0) + log P(Q)} doing SGD updates ©

| Dy

H(t) ~ N(H*, nt)

= Choice of the learning rate is important. For convergence, n, = a(b +t)™F
= Switching to constant learning rates (after a few iterations) often helps convergence

And then accept/reject (MH)

No need for

" As n, becomes very very small, acceptance prob. becomes close to 1 — accept/reject (MH)

" Recent flurry of work on this topic (see "Bayesian Learning via Stochastic Gradient
Langevin Dynamics™ by Welling and Teh (2011) and follow-up works)

CS772A: PML

Improvements to SGLD

" The basic SGLD, although fairly simple, has many limitations, e.g.
= Exhibits slow convergence and mixing. Uses same learning rate n; in all dimensions of 6

= Doesn't apply to models where 8 is constrained (e.g., non-neg or prob. vector)
= Needs to the model to be differentiable (since it needs Vglog n(D, 0))

= A lot of recent work on improving the basic SGLD to handle such limitations

" Introducing the curvature information in the gradients, e.g.,

» Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

= These methods use a preconditioner matrix in the learning rate to improve convergence

* This also allows different amounts of updates in different dimensions
Based on reparametrizing the constrained

» SL.GD in Riemannian space to handle constrained variables variables to make them unconstrainted
= Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 201 3)

CS772A: PML

Applications of SGLD

* Popular for Bayesian neural networks and other complex Bayesian models
" Reason: SGLD = backprop based updates + Gaussian noise

Feedforward Neural Net on MNIST Convolutional Neural Net on MNIST
24 " 1.6 : :
——-SGD ----SGD
- ----SGLD = --=-SGLD
Soof ——RMSprop| | 1.2 ——RMSprop| |
S —pSGLD S |——pSGLD
L L M
2 B08|
RTR W b 112 s | E— fi’
1.2 ~ . 0.4 | | —
0 S0 100 5 10 15 20
Epochs

(Figure: Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016))

CS772A: PML

Other Recent “SGD-inspired” Sampling Algorithms

» Run SGD and use SGD iterates 04, 65, ..

., 81 to construct a Gaussian approximation

» Recently Maddox et al (2019) proposed an idea using stochastic weight avging (SWA)

L
Oswa = ?;@

Approach known as 6°

SWA-Gaussian (SWAG)
p(0|D)

~
~Y

b

1 :

? Z 9?, Zdiag = dlag(9_2 — 9§WA)
t=1

N(HSWAa zdiag)

" |f we want full cov., we can use a low-rank approx. of X (see Maddox et al for details)

" Reason it works: SGD is asymptotically Normal under certain conditions

" For a more detailed theory of SGD and MCMC, may also refer to this very nice paper:
Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

" Such algos can give not too accurate but very fast posterior approx for complex models

A Simple Baseline for Bayesian Uncertainty in Deep Learning, Maddox et al (2019)

CS772A: PML

Hamiltonian/Hybrid Monte Carlo (HMC)

* HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info
» Uses the idea of simulating a Hamiltonian Dynamics of a physical system

» Consider the target posterior p(6|D) x exp(—U(F))

» Think of 8 as “position” then U(8) = —log p(D|0)p(0) is like “potential energy”

" | et's introduce an auxiliary variable - the momentum 7 of the system
» Can now define a joint distribution over the position and momentum as

p(0,1r|D) < exp <—U(9) — %rTM‘1r> < p(6|D)p(r)
" The total energy (potential + kinetic) or the Hamiltonian of the system
sonstantwrt I L (9, 1) = U(9) — %rTM‘lr = U(0) + K (1)
* Given a sample (8, 1) from p(0,r), ignoring r, 8 will be a sample from p(8|D)

CS772A: PML

Generating Samples in HMC

" Given an initial (8, r), Hamiltonian Dynamics defines how (8, 1) changes w.rt. time t

9 9H 0K
8t - Br N ar 1 - Tiag—1
H@,r)=U0)+35r' M = U0)+ K
or _ OH _ U CH(O,r) = U(0) + 3r r=U(0) +K(r))
ot 00 06 . | -
» \We can use these equations to update (8,r) — (6%, r*) by discretizing time
" Fors = 1: S, Sam p|e as follows Reason: Getting analytical
= |nitiali (s—1) p U solutions for the above
nitialize gy = 6 , r« ~N(0,1) and rg = r. — 5 %|90 requires integrals which is
* Do L “leapfrog” steps with learning rates p, = p for £ < L and p;, = p/2 | In general intractable
" For? =1:L K
93 = 95_1 + pE |J,-F__1 L usually set to 5 and learning rate tuned

aU to make acceptance rate around 90%
ffsz—l—mebg |
. (s) A single sample generated
» Perform MH accept/reject test on (HL,TL). If accepted 6%/ = 61~ by taking L steps

" The momentum forces exploring different regions instead of getting driven to regions

where the MAP solution is CS772A: PML

HMC Iin Practice

* HMC typically has very low rejection rate (that too, primarily due to discretization error)
" Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, tuning hard

= A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler —
doesn't require setting L)

* Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC
= Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)
" An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

Feedforward Neural Net on MNIST
0.05

SGD
0.045F . —=— SGD with momentu m |4
—=— SGLD

0.04 - SGHMC

S 0.035

g o003} 1
L
-

0.025 ¥

002}

0.015 —)
(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014)) 0 200 n:gtoo 600 800 CS772A: PML
ration

Parallel/Distributed MCMC

" Suppose our goal is to compute the posterior of H € RP (assuming N is very large)
p(8]1X) o p(8)p(X|6) = p(0 Hp X,0)

= Suppose we have | machines with data part|t|oned as X = {X(j)}f=1

" | et's assume that the posterior p(0|X) factorizes as
J

p(01X) = [[P (6]X1)

=1
" Here pU)(0]XY)) o p(6)*/” [« exv P(xn|0) is known as the “subset posterior”
= Assume the j" machine generates T MCMC samples {6} ¢ }{=1

= We need a way to combine these subset posteriors using a “consensus”
f1,...,0T = CONSENSUSSAMPLES({f;1,...,6;. r}-1)

CS772A: PML

Parallel/Distributed MCMC

= Many ways to compute the consensus samples. Let's look at two of them

= Approach 1: Weighted Average: 0, = Z§=1 W;0; + where W; can be learned as follows

= Assuming Gaussian likelihood and Gaussian prior on 8
. These approaches can

Y; = sample covariance of {6;1,...,60; 1} 2150 be used to make V] A
b , , o o
. arallel/distributed v 4
E = Bl Z Zj_l)_1 (X0 is the prior's covariance) g d 4 »/
et e'v
W, = X(% /J+E7)

= Approach 2. Fit J Gaussians, one for each {H]-,t}fﬂand take their product

fij = sample mean of {01,...,0; 7}, X;= sample covariance of {6,1,...,0; 1}
J J

S, = (Z ij_l)_l, B = fJ(Z ijf_lﬁj) (cov and mean of prod. of Gaussians)
j=1 j=1

0. ~ N(ps,%)),t=1,...,T (the final consensus samples)
" For detailed proofs and other approaches, may refer to the reference below

Patterns of Scalable Bayesian Inference (Angelino et al, 2016) CS772A: PML

Approximate Inference: VI vs Sampling

= VI approximates a posterior distribution p(Z|X) by another distribution g(Z|¢®)
= Sampling uses S samples Z(1), Z2(2) | .., Z(5) to approximate p(Z|X)
= Sampling can be used within VI (ELBO approx using Monte-Carlo)

" |n terms of "‘comparison” between VI and sampling, a few things to be noted
= Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
= Storage: Sampling based approx needs to storage all samples, VI only needs var. params ¢

= Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

Closed form if integral is

1 S .
P . . ~ (s)) | tractable (otherwise Monte
PPD if using sampling: p(x.|X) = [p(x.|2)p(Z|X)dZ 5 E Szlp(x* Z) Carlo avg still needed for PPD)
PPD if using VI: p(x.|X) = [p(x.|2D)p(Z|X)dZ ~ [p(x.12)q(Z|p)dZ Compressing the S samples

into something more compact

" There is some work on “compressing” sampling-based approximations*

CS772A: PML

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Inference Methods: Summary

= MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)
» Conjugate models with one "main” parameter: Straightforward posterior updates
= MLE-I[/MAP-II: Often useful for estimating the hyperparameters

" EM: It we want to do MLE/MAP for models with latent variables
= \ery general algorithm, can also be made online
» Used when we want point estimates for some unknowns and posterior over others
= Can use it for hyperparameter estimation as well
= Often better than using direct gradient methods

= VI and sampling methods can be used to get full posterior for complex models
= Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

= |n other cases, we have general VI with Monte-Carlo gradients, MH sampling
= MCMC can also make use of gradient info (LD/SGLD)

* [For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx

CS772A: PML

	Slide 1: MCMC Sampling (wrap-up)
	Slide 2: Using MCMC samples to make predictions
	Slide 3: Using Gradients in MCMC: Langevin Dynamics
	Slide 4: Langevin Dynamics: A Closer Look
	Slide 5: Stochastic Gradient Langevin Dynamics (SGLD)
	Slide 6: Improvements to SGLD
	Slide 7: Applications of SGLD
	Slide 8: Other Recent “SGD-inspired” Sampling Algorithms
	Slide 9: Hamiltonian/Hybrid Monte Carlo (HMC)
	Slide 10: Generating Samples in HMC
	Slide 11: HMC in Practice
	Slide 12: Parallel/Distributed MCMC
	Slide 13: Parallel/Distributed MCMC
	Slide 14: Approximate Inference: VI vs Sampling
	Slide 15: Inference Methods: Summary

