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Using MCMC samples to make predictions

▪ Using the 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆), our approx. 𝑝 𝒁 ≈
1

𝑆
σ𝑠=1

𝑆 𝛿𝒁(𝑠)(𝒁)

▪ Any expectation that depends on 𝑝(𝒁) can be approximated as

▪ For Bayesian lin. reg., assuming 𝒘, 𝛽, 𝜆 to be unknown, the PPD approx. will be

▪ Sampling based approx. for PPD of other models can also be obtained likewise
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𝔼 𝑓 𝒁 = ∫ 𝑓 𝒁 𝑝 𝒁 𝑑𝒁 ≈
1

𝑆
 ෍

𝑠=1

𝑆

𝑓(𝒁(𝑠))

∫ 𝑝 𝑦∗ 𝒙∗, 𝒘, 𝛽 𝑝 𝒘, 𝛽, 𝜆 𝑿, 𝒚 𝑑𝒘𝑑𝛽𝑑𝜆 ≈
1

𝑆
 ෍

𝑠=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝒘 𝑠 , 𝛽(𝑠)

Thus, in this case, the PPD 

is a sum of 𝑆 Gaussians

Mean: 𝔼 𝒘⊤𝒙∗ ≈
1

𝑆
 σ𝑠=1

𝑆 𝒘 𝑠 ⊤
𝒙∗ 

Variance: Exercise! Use definition 

of variance and use Monte-Carlo 

approximation 

Joint posterior over all 

unknowns

Sampling based 

approximation of PPDCan also think of it as an ensemble 

consisting of 𝑆 members
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Using Gradients in MCMC: Langevin Dynamics

▪ MCMC uses a random-walk based proposal to generate the next sample, e.g., 

▪ Langevin dynamics: Use (unnormalized) posterior’s gradient info in the proposal as

▪ Note that the above is equivalent to

▪ After some waiting period 𝑇0, iterates 𝜃(𝑡)
𝑡=𝑇0+1

𝑇0+𝑆
 are MCMC samples from 𝑝(𝜃|𝒟) 
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𝜃(𝑡) ∼ 𝒩(𝜃 𝑡−1 , 𝜂𝑡)And then accept/reject (MH)

𝜃(𝑡) ∼ 𝒩(𝜃∗, 𝜂𝑡)
And then accept/reject (MH)

Move towards the mode of the 

posterior (like finding MAP est)

And then accept/reject (MH)

Likelihood Prior

Can use automatic 

differentiation methods for this

Known as Metropolis-Adjusted 

Langevin Algorithm (MALA)

Will use 𝜃 to denote 

all the unknowns 

𝜂 set s.t. acceptance 

rate is around 0.6

If gradient is pre-multiplied by a preconditioner 

matrix 𝑀(𝜃(𝑡−1)): Simplified Manifold MALA

One option to use for 

𝑀(𝜃(𝑡−1)) is the second 

derivative of the unnorm. 

posterior

Helps also incorporate the 

curvature info of the posterior

Same as doing a gradient ascent step 

towards the posterior and injecting 

noise 𝜖𝑡 ∼ 𝒩 0, 𝜂𝑡 . Noise ensures 

we aren’t stuck at the MAP solution 

Using gradient info in the 

proposal helps us move faster 

towards  high-prob regions

“Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011)
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Langevin Dynamics: A Closer Look

▪ Is generating MCMC samples really as easy as computing MAP?

▪ Recall the form of Langevin Dynamics updates

▪ Equivalent to discretization of an SDE with equilibrium distribution ∝ exp(log 𝑝(𝒟, 𝜃))

    where 𝐿 𝜃𝑡 = −log 𝑝(𝒟, 𝜃𝑡) and 𝐵𝑡 𝑡≥0 is Brownian motion s.t. Δ𝐵𝑡 are i.i.d. Gaussian r.v.s

▪ Discretization introduces some error which is corrected by MH accept/reject step

▪ Note: As learning rate 𝜂𝑡 decreases, discretization error also decreases and rejection 
rate tends to zero

▪ Note: Gradient computations require all the data (thus slow)
▪ Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
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And then accept/reject (MH)

𝑑𝜃𝑡 = −∇𝐿 𝜃𝑡 𝑑𝑡 + 2𝑑𝐵𝑡

Same as our 

target posterior

Note that this is 

continuous time

Above update is 

its discretiization
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Stochastic Gradient Langevin Dynamics (SGLD)

▪ An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

▪ Given minibatch 𝒟𝑡 = {𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑁𝑡
}, the (stochastic) Langevin dynamics update:

▪ Choice of the learning rate is important. For convergence, 𝜂𝑡 = 𝑎 𝑏 + 𝑡 −𝜅

▪ Switching to constant learning rates (after a few iterations) often helps convergence

▪ As 𝜂𝑡 becomes very very small, acceptance prob. becomes close to 1

▪ Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient 
Langevin Dynamics” by Welling and Teh (2011) and follow-up works)
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𝜃(𝑡) ∼ 𝒩(𝜃∗, 𝜂𝑡)
And then accept/reject (MH)

No need for 

accept/reject (MH)

Almost as fast as 

doing SGD updates ☺
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Improvements to SGLD

▪ The basic SGLD, although fairly simple, has many limitations, e.g.

▪ Exhibits slow convergence and mixing. Uses same learning rate 𝜂𝑡 in all dimensions of 𝜃
▪ Doesn’t apply to models where 𝜃 is constrained (e.g., non-neg or prob. vector)

▪ Needs to the model to be  differentiable (since it needs ∇𝜃log 𝑝(𝒟, 𝜃)) 

▪ A lot of recent work on improving the basic SGLD to handle such limitations

▪ Introducing the curvature information in the gradients, e.g., 
▪ Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and 

Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

▪ These methods use a preconditioner matrix in the learning rate to improve convergence

▪ This also allows different amounts of updates in different dimensions

▪ SLGD in Riemannian space to handle constrained variables
▪ Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)
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Based on reparametrizing the constrained 

variables to make them unconstrainted 
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Applications of SGLD

▪ Popular for Bayesian neural networks and other complex Bayesian models

▪ Reason: SGLD = backprop based updates + Gaussian noise
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Other Recent “SGD-inspired” Sampling Algorithms

▪ Run SGD and use SGD iterates 𝜃1, 𝜃2, . . . , 𝜃𝑇 to construct a Gaussian approximation

▪ Recently Maddox et al (2019) proposed an idea using stochastic weight avging (SWA)

▪ If  we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

▪ Reason it works: SGD is asymptotically Normal under certain conditions

▪ For a more detailed theory of SGD and MCMC, may also refer to this very nice paper: 
Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

▪ Such algos can give not too accurate but very fast posterior approx for complex models
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Approach known as 

SWA-Gaussian (SWAG)

A Simple Baseline for Bayesian Uncertainty in Deep Learning, Maddox et al (2019)  
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Hamiltonian/Hybrid Monte Carlo (HMC)

▪ HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info

▪ Uses the idea of simulating a Hamiltonian Dynamics of a physical system

▪ Consider the target posterior 𝑝 𝜃 𝒟 ∝  exp(−𝑈 𝜃 )

▪ Think of 𝜃 as “position” then 𝑈 𝜃 = −log 𝑝 𝒟 𝜃 𝑝(𝜃) is like “potential energy”

▪ Let’s introduce an auxiliary variable - the momentum 𝒓 of the system

▪ Can now define a joint distribution over the position and momentum as

▪ The total energy (potential + kinetic) or the Hamiltonian of the system

▪ Given a sample (𝜃, 𝒓) from 𝑝(𝜃, 𝒓), ignoring 𝒓, 𝜃 will be a sample from 𝑝(𝜃|𝒟)
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Constant w.r.t. time

𝑝 𝜃, 𝒓 𝒟 ∝ exp −𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 ∝ 𝑝 𝜃 𝒟 𝑝(𝒓)

𝐻 𝜃, 𝒓 = 𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 = 𝑈 𝜃 + 𝐾(𝒓)
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Generating Samples in HMC

▪ Given an initial (𝜃, 𝒓), Hamiltonian Dynamics defines how (𝜃, 𝒓) changes w.r.t. time 𝑡

▪ We can use these equations to update 𝜃, 𝒓 → (𝜃∗, 𝒓∗) by discretizing time

▪ For 𝑠 =  1: 𝑆, sample as follows
▪ Initialize                                                                             

▪ Do 𝐿 “leapfrog” steps with learning rates 𝜌ℓ = 𝜌 for ℓ < 𝐿 and 𝜌𝐿 = 𝜌/2
▪ For ℓ = 1: 𝐿

▪ Perform MH accept/reject test on 𝜃𝐿, 𝒓𝐿 . If  accepted 𝜃(𝑠) = 𝜃𝐿

▪ The momentum forces exploring different regions instead of getting driven to regions 
where the MAP solution is
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A single sample generated 

by taking 𝐿 steps

Reason: Getting analytical 

solutions for the above 

requires integrals which is 

in general intractable

𝐿 usually set to 5 and learning rate tuned 

to make acceptance rate around 90%
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HMC in Practice

▪ HMC typically has very low rejection rate (that too, primarily due to discretization error)

▪ Performance can be sensitive to 𝐿 (no. of leapfrog steps) and step-sizes, tuning hard

▪ A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler – 
doesn’t require setting 𝐿)

▪ Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC

▪ Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)

▪ An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)
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Parallel/Distributed MCMC

▪ Suppose our goal is to compute the posterior of 𝜃 ∈ ℝ𝐷 (assuming 𝑁 is very large)

▪ Suppose we have 𝐽 machines with data partitioned as 𝐗 =  {𝐗 𝑗 }𝑗=1
𝐽

▪ Let’s assume that the posterior 𝑝(𝜃|𝐗) factorizes as

▪ Here                                                            is known as the “subset posterior” 

▪ Assume the 𝑗𝑡ℎ machine generates 𝑇 MCMC samples {𝜃𝑗,𝑡}𝑡=1
𝑇

▪  We need a way to combine these subset posteriors using a “consensus”
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Parallel/Distributed MCMC

▪ Many ways to compute the consensus samples. Let’s look at two of them

▪ Approach 1: Weighted Average: መ𝜃𝑡 = σ𝑗=1
𝐽

𝑊𝑗𝜃𝑗,𝑡 where 𝑊𝑗 can be learned as follows

▪ Assuming Gaussian likelihood and Gaussian prior on 𝜃 

▪ Approach 2: Fit 𝐽 Gaussians, one for each {𝜃𝑗,𝑡}𝑡=1
𝑇 and take their product 

▪ For detailed proofs and other approaches, may refer to the reference below
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Patterns of Scalable Bayesian Inference (Angelino et al, 2016)

These approaches can 

also be used to make VI 

parallel/distributed
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Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿) 

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with 
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*
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𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝 𝑥∗ 𝑍 𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples 

into something more compact

Closed form if  integral is 

tractable (otherwise Monte 

Carlo avg still needed for PPD)
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Inference Methods: Summary

▪ MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)

▪ Conjugate models with one “main” parameter: Straightforward posterior updates

▪ MLE-II/MAP-II: Often useful for estimating the hyperparameters

▪ EM: If  we want to do MLE/MAP for models with latent variables
▪ Very general algorithm, can also be made online

▪ Used when we want point estimates for some unknowns and posterior over others

▪ Can use it for hyperparameter estimation as well

▪ Often better than using direct gradient methods

▪ VI and sampling methods can be used to get full posterior for complex models
▪ Quite easy if  we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

▪ In other cases, we have general VI with Monte-Carlo gradients, MH sampling

▪ MCMC can also make use of gradient info (LD/SGLD)

▪ For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx
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