
MCMC Sampling (wrap-up)

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Using MCMC samples to make predictions

▪ Using the 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆), our approx. 𝑝 𝒁 ≈
1

𝑆
σ𝑠=1

𝑆 𝛿𝒁(𝑠)(𝒁)

▪ Any expectation that depends on 𝑝(𝒁) can be approximated as

▪ For Bayesian lin. reg., assuming 𝒘, 𝛽, 𝜆 to be unknown, the PPD approx. will be

▪ Sampling based approx. for PPD of other models can also be obtained likewise

2

𝔼 𝑓 𝒁 = ∫ 𝑓 𝒁 𝑝 𝒁 𝑑𝒁 ≈
1

𝑆
 ෍

𝑠=1

𝑆

𝑓(𝒁(𝑠))

∫ 𝑝 𝑦∗ 𝒙∗, 𝒘, 𝛽 𝑝 𝒘, 𝛽, 𝜆 𝑿, 𝒚 𝑑𝒘𝑑𝛽𝑑𝜆 ≈
1

𝑆
 ෍

𝑠=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝒘 𝑠 , 𝛽(𝑠)

Thus, in this case, the PPD

is a sum of 𝑆 Gaussians

Mean: 𝔼 𝒘⊤𝒙∗ ≈
1

𝑆
 σ𝑠=1

𝑆 𝒘 𝑠 ⊤
𝒙∗

Variance: Exercise! Use definition

of variance and use Monte-Carlo

approximation

Joint posterior over all

unknowns

Sampling based

approximation of PPDCan also think of it as an ensemble

consisting of 𝑆 members

CS772A: PML

Using Gradients in MCMC: Langevin Dynamics

▪ MCMC uses a random-walk based proposal to generate the next sample, e.g.,

▪ Langevin dynamics: Use (unnormalized) posterior’s gradient info in the proposal as

▪ Note that the above is equivalent to

▪ After some waiting period 𝑇0, iterates 𝜃(𝑡)
𝑡=𝑇0+1

𝑇0+𝑆
 are MCMC samples from 𝑝(𝜃|𝒟)

3

𝜃(𝑡) ∼ 𝒩(𝜃 𝑡−1 , 𝜂𝑡)And then accept/reject (MH)

𝜃(𝑡) ∼ 𝒩(𝜃∗, 𝜂𝑡)
And then accept/reject (MH)

Move towards the mode of the

posterior (like finding MAP est)

And then accept/reject (MH)

Likelihood Prior

Can use automatic

differentiation methods for this

Known as Metropolis-Adjusted

Langevin Algorithm (MALA)

Will use 𝜃 to denote

all the unknowns

𝜂 set s.t. acceptance

rate is around 0.6

If gradient is pre-multiplied by a preconditioner

matrix 𝑀(𝜃(𝑡−1)): Simplified Manifold MALA

One option to use for

𝑀(𝜃(𝑡−1)) is the second

derivative of the unnorm.

posterior

Helps also incorporate the

curvature info of the posterior

Same as doing a gradient ascent step

towards the posterior and injecting

noise 𝜖𝑡 ∼ 𝒩 0, 𝜂𝑡 . Noise ensures

we aren’t stuck at the MAP solution

Using gradient info in the

proposal helps us move faster

towards high-prob regions

“Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011)

CS772A: PML

Langevin Dynamics: A Closer Look

▪ Is generating MCMC samples really as easy as computing MAP?

▪ Recall the form of Langevin Dynamics updates

▪ Equivalent to discretization of an SDE with equilibrium distribution ∝ exp(log 𝑝(𝒟, 𝜃))

 where 𝐿 𝜃𝑡 = −log 𝑝(𝒟, 𝜃𝑡) and 𝐵𝑡 𝑡≥0 is Brownian motion s.t. Δ𝐵𝑡 are i.i.d. Gaussian r.v.s

▪ Discretization introduces some error which is corrected by MH accept/reject step

▪ Note: As learning rate 𝜂𝑡 decreases, discretization error also decreases and rejection
rate tends to zero

▪ Note: Gradient computations require all the data (thus slow)
▪ Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)

4

And then accept/reject (MH)

𝑑𝜃𝑡 = −∇𝐿 𝜃𝑡 𝑑𝑡 + 2𝑑𝐵𝑡

Same as our

target posterior

Note that this is

continuous time

Above update is

its discretiization

CS772A: PML

Stochastic Gradient Langevin Dynamics (SGLD)

▪ An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

▪ Given minibatch 𝒟𝑡 = {𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑁𝑡
}, the (stochastic) Langevin dynamics update:

▪ Choice of the learning rate is important. For convergence, 𝜂𝑡 = 𝑎 𝑏 + 𝑡 −𝜅

▪ Switching to constant learning rates (after a few iterations) often helps convergence

▪ As 𝜂𝑡 becomes very very small, acceptance prob. becomes close to 1

▪ Recent flurry of work on this topic (see “Bayesian Learning via Stochastic Gradient
Langevin Dynamics” by Welling and Teh (2011) and follow-up works)

5

𝜃(𝑡) ∼ 𝒩(𝜃∗, 𝜂𝑡)
And then accept/reject (MH)

No need for

accept/reject (MH)

Almost as fast as

doing SGD updates ☺

CS772A: PML

Improvements to SGLD

▪ The basic SGLD, although fairly simple, has many limitations, e.g.

▪ Exhibits slow convergence and mixing. Uses same learning rate 𝜂𝑡 in all dimensions of 𝜃
▪ Doesn’t apply to models where 𝜃 is constrained (e.g., non-neg or prob. vector)

▪ Needs to the model to be differentiable (since it needs ∇𝜃log 𝑝(𝒟, 𝜃))

▪ A lot of recent work on improving the basic SGLD to handle such limitations

▪ Introducing the curvature information in the gradients, e.g.,
▪ Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and

Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

▪ These methods use a preconditioner matrix in the learning rate to improve convergence

▪ This also allows different amounts of updates in different dimensions

▪ SLGD in Riemannian space to handle constrained variables
▪ Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 2013)

6

Based on reparametrizing the constrained

variables to make them unconstrainted

CS772A: PML

Applications of SGLD

▪ Popular for Bayesian neural networks and other complex Bayesian models

▪ Reason: SGLD = backprop based updates + Gaussian noise

7

CS772A: PML

Other Recent “SGD-inspired” Sampling Algorithms

▪ Run SGD and use SGD iterates 𝜃1, 𝜃2, . . . , 𝜃𝑇 to construct a Gaussian approximation

▪ Recently Maddox et al (2019) proposed an idea using stochastic weight avging (SWA)

▪ If we want full cov., we can use a low-rank approx. of Σ (see Maddox et al for details)

▪ Reason it works: SGD is asymptotically Normal under certain conditions

▪ For a more detailed theory of SGD and MCMC, may also refer to this very nice paper:
Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

▪ Such algos can give not too accurate but very fast posterior approx for complex models

8

Approach known as

SWA-Gaussian (SWAG)

A Simple Baseline for Bayesian Uncertainty in Deep Learning, Maddox et al (2019)

CS772A: PML

Hamiltonian/Hybrid Monte Carlo (HMC)

▪ HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info

▪ Uses the idea of simulating a Hamiltonian Dynamics of a physical system

▪ Consider the target posterior 𝑝 𝜃 𝒟 ∝ exp(−𝑈 𝜃)

▪ Think of 𝜃 as “position” then 𝑈 𝜃 = −log 𝑝 𝒟 𝜃 𝑝(𝜃) is like “potential energy”

▪ Let’s introduce an auxiliary variable - the momentum 𝒓 of the system

▪ Can now define a joint distribution over the position and momentum as

▪ The total energy (potential + kinetic) or the Hamiltonian of the system

▪ Given a sample (𝜃, 𝒓) from 𝑝(𝜃, 𝒓), ignoring 𝒓, 𝜃 will be a sample from 𝑝(𝜃|𝒟)

9

Constant w.r.t. time

𝑝 𝜃, 𝒓 𝒟 ∝ exp −𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 ∝ 𝑝 𝜃 𝒟 𝑝(𝒓)

𝐻 𝜃, 𝒓 = 𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 = 𝑈 𝜃 + 𝐾(𝒓)

CS772A: PML

Generating Samples in HMC

▪ Given an initial (𝜃, 𝒓), Hamiltonian Dynamics defines how (𝜃, 𝒓) changes w.r.t. time 𝑡

▪ We can use these equations to update 𝜃, 𝒓 → (𝜃∗, 𝒓∗) by discretizing time

▪ For 𝑠 = 1: 𝑆, sample as follows
▪ Initialize

▪ Do 𝐿 “leapfrog” steps with learning rates 𝜌ℓ = 𝜌 for ℓ < 𝐿 and 𝜌𝐿 = 𝜌/2
▪ For ℓ = 1: 𝐿

▪ Perform MH accept/reject test on 𝜃𝐿, 𝒓𝐿 . If accepted 𝜃(𝑠) = 𝜃𝐿

▪ The momentum forces exploring different regions instead of getting driven to regions
where the MAP solution is

10

A single sample generated

by taking 𝐿 steps

Reason: Getting analytical

solutions for the above

requires integrals which is

in general intractable

𝐿 usually set to 5 and learning rate tuned

to make acceptance rate around 90%

CS772A: PML

HMC in Practice

▪ HMC typically has very low rejection rate (that too, primarily due to discretization error)

▪ Performance can be sensitive to 𝐿 (no. of leapfrog steps) and step-sizes, tuning hard

▪ A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler –
doesn’t require setting 𝐿)

▪ Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC

▪ Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)

▪ An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

11

CS772A: PML

Parallel/Distributed MCMC

▪ Suppose our goal is to compute the posterior of 𝜃 ∈ ℝ𝐷 (assuming 𝑁 is very large)

▪ Suppose we have 𝐽 machines with data partitioned as 𝐗 = {𝐗 𝑗 }𝑗=1
𝐽

▪ Let’s assume that the posterior 𝑝(𝜃|𝐗) factorizes as

▪ Here is known as the “subset posterior”

▪ Assume the 𝑗𝑡ℎ machine generates 𝑇 MCMC samples {𝜃𝑗,𝑡}𝑡=1
𝑇

▪ We need a way to combine these subset posteriors using a “consensus”

12

CS772A: PML

Parallel/Distributed MCMC

▪ Many ways to compute the consensus samples. Let’s look at two of them

▪ Approach 1: Weighted Average: መ𝜃𝑡 = σ𝑗=1
𝐽

𝑊𝑗𝜃𝑗,𝑡 where 𝑊𝑗 can be learned as follows

▪ Assuming Gaussian likelihood and Gaussian prior on 𝜃

▪ Approach 2: Fit 𝐽 Gaussians, one for each {𝜃𝑗,𝑡}𝑡=1
𝑇 and take their product

▪ For detailed proofs and other approaches, may refer to the reference below

13

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)

These approaches can

also be used to make VI

parallel/distributed

CS772A: PML

Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿)

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*

14

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝 𝑥∗ 𝑍 𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples

into something more compact

Closed form if integral is

tractable (otherwise Monte

Carlo avg still needed for PPD)

CS772A: PML

Inference Methods: Summary

▪ MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)

▪ Conjugate models with one “main” parameter: Straightforward posterior updates

▪ MLE-II/MAP-II: Often useful for estimating the hyperparameters

▪ EM: If we want to do MLE/MAP for models with latent variables
▪ Very general algorithm, can also be made online

▪ Used when we want point estimates for some unknowns and posterior over others

▪ Can use it for hyperparameter estimation as well

▪ Often better than using direct gradient methods

▪ VI and sampling methods can be used to get full posterior for complex models
▪ Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

▪ In other cases, we have general VI with Monte-Carlo gradients, MH sampling

▪ MCMC can also make use of gradient info (LD/SGLD)

▪ For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx

15

	Slide 1: MCMC Sampling (wrap-up)
	Slide 2: Using MCMC samples to make predictions
	Slide 3: Using Gradients in MCMC: Langevin Dynamics
	Slide 4: Langevin Dynamics: A Closer Look
	Slide 5: Stochastic Gradient Langevin Dynamics (SGLD)
	Slide 6: Improvements to SGLD
	Slide 7: Applications of SGLD
	Slide 8: Other Recent “SGD-inspired” Sampling Algorithms
	Slide 9: Hamiltonian/Hybrid Monte Carlo (HMC)
	Slide 10: Generating Samples in HMC
	Slide 11: HMC in Practice
	Slide 12: Parallel/Distributed MCMC
	Slide 13: Parallel/Distributed MCMC
	Slide 14: Approximate Inference: VI vs Sampling
	Slide 15: Inference Methods: Summary

