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Plan today
2

▪ Probabilistic Linear Models for supervised learning (learning 𝑝 𝑦 𝒙 )   

▪ Focus will be the “discriminative” setting (assume a form and learn 𝑝 𝑦 𝒙  directly)

▪ Probabilistic Linear Regression

▪ Logistic and Softmax Classification

▪ Generalized Linear Models for supervised learning
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Probabilistic Linear Regression

▪ Assume training data {𝒙𝑛, 𝑦𝑛}𝑛=1
𝑁 , with features 𝒙𝑛 ∈ ℝ𝐷 and responses 𝑦𝑛 ∈ ℝ

▪ Assume 𝑦𝑛 generated by a noisy linear model with wts 𝒘 = 𝑤1, … , 𝑤𝐷 ∈ ℝ𝐷

▪Notation alert: 𝛽 is the precision of Gaussian noise (and 𝛽−1 the variance)
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Each weight assumed real-valued

𝑦𝑛 = 𝒘⊤𝒙𝑛 + 𝜖𝑛
Gaussian noise drawn 

from  𝒩(𝝐𝑛|0, 𝛽−1)

𝑝 𝑦𝑛 𝒙𝑛, 𝒘, 𝛽 = 𝒩 𝑦𝑛 𝒘⊤𝒙𝑛, 𝛽−1)

𝒘⊤𝒙𝑛

Gaussian

The line represents the 

mean 𝒘⊤𝒙𝑛 of the output 

random variable 𝑦𝑛

The zero mean 

Gaussian noise 

perturbs the output 

from its mean

𝑥

𝑦

Likelihood model

Thus NLL is like 

squared loss

Input 𝑥𝑛 being 

treated as given 

and not modeled 

by any probability 

distribution

Will later study models 

in which both input and 

output are modeled by 

distributions

Unknown to be estimated

A discriminative model 

for regression problems
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Prior on weights

▪ Assume a zero-mean Gaussian prior on 𝒘

▪ Zero-mean Gaussian prior corresponds to ℓ2 regularizer
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𝑝 𝒘|𝜆 = ෑ

𝑑=1

𝐷

𝑝 𝑤𝑑|𝜆 = ෑ

𝑑=1

𝐷

𝒩(𝑤𝑑|0, 𝜆−1)

= 𝒩(𝒘|𝟎, 𝜆−1𝐈𝐷)

∝
𝜆

2𝜋

𝐷
2

exp −
𝜆

2
 𝒘⊤𝒘

𝜆 controls the uncertainty around our 

prior belief about value of 𝑤𝑑  

This prior assumes that a priori each 

weight has a small value (close to zero)

May also use a non-zero mean Gaussian 

prior, e.g., 𝒩(𝑤𝑑|𝜇, 𝜆−1) if  we expect 

weights to be close to some value 𝜇

Reason: The negative log 

prior −log 𝑝(𝒘) ∝
𝜆

2
 𝒘⊤𝒘

The precision 

𝜆 controls how 

aggressively the 

prior pushes 𝑤𝑑 

towards mean (0)

Large 𝜆 means 

more aggressive 

push towards zero

In zero-mean case, 𝜆 sort 

of denotes each feature’s 

importance. Think why? Can also use a full covariance 

matrix Λ−1 for the prior to 

impose a priori correlations 

among different weights 

Prior’s hyperparameters (𝝀/𝚲/𝝁) 

etc can be learned as well using 

point estimation (e.g., MLE-II) or 

fully Bayesian inference
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Probabilistic Linear Regression

▪ For all the training data, we can write the above model in matrix-vector notation

▪ Linear Gaussian model and 𝒘 is the Gaussian r.v. with 𝑝 𝒘|𝜆 = 𝒩(𝒘|𝟎, 𝜆−1𝐈𝐷)

▪ A simple “plate diagram” for this model would look like this (hyperparameters not 
shown in the diagram) 
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𝒚 = 𝑿𝒘 + 𝝐

𝒚 = [𝑦1; 𝑦2; … ; 𝑦𝑁] is the 

𝑁×1 response vector

𝑿 = [𝒙1
⊤; 𝒙2

⊤; … ; 𝒙𝑁
⊤]

is the 𝑁 × 𝐷 input matrix
𝝐 = [𝜖1; 𝜖2; … ; 𝜖𝑁] is the 𝑁×1 noise 

vector drawn from 𝒩(𝟎, 𝛽−1𝑰𝑁)

Same as writing 

𝑝 𝒚 𝑿, 𝒘, 𝛽 = 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)

Direction of arrow 

show dependency The plate/box with number 

𝑁 shows that we have 𝑁 

such i.i.d. observations

White nodes denote unknown 

quantities, grey nodes denote 

observed quantities (training 

input-output pairs)
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On compact notations..

▪When writing the likelihood (assuming 𝑦𝑛’s are i.i.d. given 𝒘 and 𝒙𝑛)  

▪ Thus a product of 𝑁 univariate Gaussians here (not always) is equivalent to an 
𝑁-dim Gaussian over the vector 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑁]

▪We will prefer to use this equivalence at other places too whenever we have 
multiple i.i.d. random variables, each having a univariate Gaussian distribution
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𝑝 𝒚 𝑿, 𝒘, 𝛽 = ෑ
𝑛=1

𝑁

𝒩 𝑦𝑛 𝒘⊤𝒙𝑛, 𝛽−1)

= 𝒩(𝒚|𝑿𝒘, 𝛽−1𝑰𝑁)



CS772A: PML

The Posterior

▪ The posterior over 𝒘 (for now, assume hyperparams 𝛽 and 𝜆 to be known)

▪ Using the “completing the squares” trick (or linear Gaussian model results)
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Marginal likelihood for this regression model. 

Note that it is conditioned on 𝐗 too which is 

assumed given and not being modeled
Must be a Gaussian 

due to conjugacy

Note that 𝜆 and 𝛽 can be 

learned under the 

probabilistic set-up(though 

assumed fixed as of now) 

MLE/MAP left 

as an exercise

MAP solution turns out to be exactly 

the same (reason: Gaussian’s mean 

and mode are the same)

The form is also similar to the solution to ridge regression 

argmin𝑤 𝑦 − 𝑋𝑤
2

+ 𝜆𝑤⊤𝑤 = 𝑋⊤𝑋 + 𝜆𝐼 −1𝑋⊤𝑦
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The Posterior: A Visualization

▪ Assume a lin. reg. problem with true 𝒘 = 𝑤0, 𝑤1 , 𝑤0 = −0.3, 𝑤1 = 0.5

▪ Assume data generated by a linear regression model 𝑦 =  𝑤0  + 𝑤1𝑥 +  "noise"
▪ Note: It’s actually 1-D regression (𝑤0 is just a bias term), or 2-D reg. with feature [1, 𝑥]

▪ Figures below show the “data space” and posterior of 𝒘 for different number of 
observations (note: with no observations, the posterior = prior)
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Each red line 

represents the 

“data” generated 

for a randomly 

drawn 𝒘 from the 

current posterior
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Posterior Predictive Distribution

▪ To get the prediction 𝑦∗ for a new input 𝒙∗, we can compute its PPD

▪ The above is the marginalization of 𝒘 from 𝒩(𝑦∗|𝒘⊤𝒙∗, 𝛽−1). Using LGM results

▪ So we have a predictive mean 𝝁𝑁
⊤ 𝒙∗ as well as an input-specific predictive variance 

▪ In contrast, MLE and MAP make “plug-in” predictions (using the point estimate of 𝒘)

▪ Unlike MLE/MAP, variance of 𝑦∗ also depends on the input 𝒙∗ (this, as we will see later, 
will be very useful in sequential decision-making problems such as active learning)
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Only 𝒘 is unknown with a 

posterior distribution so only 

𝒘 has to be integrated out

𝒩(𝑦∗|𝒘⊤𝒙∗, 𝛽−1) 𝒩(𝒘|𝝁𝑁, 𝚺𝑁)

Can also derive it by writing 𝑦∗ = 𝒘⊤𝒙∗ + 𝜖 

where 𝒘 ∼ 𝒩(𝝁𝑁, 𝚺𝑁) and 𝜖 ∼ 𝒩(0, 𝛽−1)

Since PPD also takes into 

account the uncertainty in 𝒘, 

the predictive variance is larger
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Posterior Predictive Distribution: An Illustration

▪ Black dots are training examples

▪ Width of the shaded region at any 𝑥 denotes the predictive uncertainty at that 𝑥 (+/- 
one std-dev)

▪ Regions with more training examples have smaller predictive variance

10
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Nonlinear Regression

▪ Can extend the linear regression model to handle nonlinear regression problems

▪ One way is to replace the feature vectors 𝒙 by a nonlinear mapping 𝜙(𝒙)

▪ Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

▪ More on nonlinear regression when we discuss Gaussian Processes

11

Can be pre-defined (e.g., replace a scalar 

𝑥 by polynomial mapping [1, 𝑥, 𝑥2]) or 

extracted by a pretrained deep neural net
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Estimating Hyperparameters via MLE-II

▪ The probabilistic linear reg. model we saw had two hyperparams (𝛽, 𝜆)
▪ Thus total three unknowns (𝒘, 𝛽, 𝜆)

▪ Posterior and PPD computation is intractable. 

▪ If  we just want point estimates for (𝛽, 𝜆) then MLE-II is an option

12

Need posterior over 

all the 3 unknowns

PPD would require 

integrating out all 3 

unknowns

And then compute 

𝑝(𝒘|𝑿, 𝒚, መ𝛽, መ𝜆) 

treating መ𝛽, መ𝜆 as given

Called “MLE-II” because we are maximizing 

marginal likelihood, not the likelihood

መ𝛽, መ𝜆 =  argmax𝛽,𝜆 log 𝑝(𝒚|𝑿, 𝛽, 𝜆)
Will see various other 

methods like EM, variational 

inference, MCMC, etc later
For regression with Gaussian likelihood 

and Gaussian prior on 𝒘, the marginal 

likelihood has an exact expression
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Prob. Linear Regression: Some Other Variations

▪ Can use other likelihoods 𝑝 𝑦𝑛 𝒙𝑛, 𝒘) and/or prior distribution 𝑝(𝒘) 

▪ Laplace distribution for the likelihood

▪ Heteroskedastic noise in the likelihood, e.g., 

▪ Feature-specific variances in the prior for 𝒘

13

𝑝 𝑦𝑛 𝒙𝑛, 𝒘) =  Lap 𝑦𝑛 𝒘⊤𝒙𝑛, 𝑏)

𝑝 𝒘 =  ෑ
𝑑=1

𝐷

𝒩(𝑤𝑑|0, 𝜆𝑑
−1) = 𝒩(𝒘|𝟎, 𝚲−1)

This has the effect of 

having feature-specific 

regularization

Since we can also learn these precisions (e.g., 

using MLE-II), using such a prior, we can learn 

the importance of different features (feature 

selection) which isn’t possible with a 

𝒩(𝒘|𝟎, 𝜆−1𝐈) prior with spherical covariance

Diagonal precision/covariance 

matrix with 𝜆𝑑 ’s along the 

columns of Λ

𝑝 𝑦𝑛 𝒙𝑛, 𝒘) =  𝒩(𝑦𝑛|𝒘⊤𝒙𝑛, 𝛽𝑛
−1)

Gives rise to “absolute loss” 

instead of squared loss

More robust to 

outliers than 

squared loss

Different noise distribution 

𝒩(0, 𝛽𝑛
−1) for each 𝑦𝑛

Can even assume 𝛽𝑛 

to depend on input 𝒙𝑛
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Logistic Regression

▪ A discriminative model for binary classification (𝑦 ∈ {0,1})

▪ A linear model with parameters 𝒘 ∈ ℝ𝐷 computes a score 𝒘⊤𝒙 for input 𝒙

▪ A sigmoid function maps this real-valued score into probability of label being 1 

▪ Thus conditional distribution of label 𝑦 ∈ {0,1} given 𝒙 is the following Bernoulli

▪NLL is the binary cross-entropy loss: −[𝑦𝑛log 𝜇𝑛 + 1 − 𝑦𝑛 log 1 − 𝜇𝑛 ]

▪NLL is convex in 𝒘. Can also use a prior 𝑝 𝒘 𝜆 = 𝒩 𝒘|𝟎, 𝜆−1𝑰  if  interested 
in MAP or full posterior on 𝒘 
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𝑝 𝑦 𝒙, 𝒘 =  Bernoulli 𝑦 𝜇 = 𝜇𝑦 1 − 𝜇 1−𝑦 =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

real-valued score

𝑝 𝑦 = 1 𝒙, 𝒘 = 𝜇 = 𝜎 𝒘⊤𝒙 Large positive score 𝒘⊤𝒙 means 

large prob of label being 1, and large 

negative score means low prob

Likelihood

𝜎 𝑧 =
1

1 + exp(−𝑧)
=

exp(𝑧)

1 + exp(𝑧)

There are other ways too that can convert 

the score into a probability, such as a CDF:

𝑝 𝑦 = 1 𝒙, 𝒘 = 𝜇 = Φ 𝒘⊤𝒙  where Φ is 

the CDF of 𝒩(0,1). This model is known as 

“Probit Regression”.

Also used as a 

nonlinear “activation 

function” in deep 

neural networks
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Logistic Regression: MAP and Posterior

▪ The posterior will be

▪MAP estimation is easy. −log 𝑝 𝒘 𝑿, 𝒚  is convex for LR. Unique minima
▪ Can use first or second order optimization with gradient and Hessian being

▪ Full posterior is intractable because of non-conjugacy
▪ A popular option is to use the Laplace’s approximation (other methods like MCMC and 

variational inference can also be used; will see them later)
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𝑝 𝒘 𝑿, 𝒚 =
𝑝 𝒘 𝑝(𝒚|𝑿, 𝒘)

𝑝(𝒚|𝑿)
=

𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛)

׬ 𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛) 𝑑𝒘

BernoulliGaussian

𝜇𝑛 = 𝜎(𝒘⊤𝒙𝑛)
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Laplace’s (or Gaussian) Approximation

▪ Consider a posterior distribution that is intractable to compute

▪ Laplace approximation approximates the above using a Gaussian distribution

▪ Laplace’s approx. is based on a second-order Taylor approx. of the posterior (will 
see the proof and details later)
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Negative of the Hessian, 

i.e., the second derivative 

of the log joint, at 𝜃𝑀𝐴𝑃 

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟|𝜃)𝑝 𝜃

𝑝(𝒟)

𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)

Tells us about the space 

(curvature) of the true 

posterior around 𝜃𝑀𝐴𝑃 

𝚲 = − ∇𝜃
2  log 𝑝 𝜃 𝒟 ቚ

𝜃=𝜃𝑀𝐴𝑃

= −∇𝜃
2  log 𝑝(𝒟, 𝜃) ቚ

𝜃=𝜃𝑀𝐴𝑃

𝜃𝑀𝐴𝑃 =  argmax𝜃 log 𝑝(𝜃|𝒟)

Related to the Fisher 

Information Matrix 

(FIM); will see shortly
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Derivation of the Laplace’s Approximation

▪ Let’s write the Bayes rule as

▪ Consider second-order Taylor approximation of a function 𝑓 𝜃  around some 𝜃0

▪ Assuming 𝑓 𝜃 =  log 𝑝(𝒟, 𝜃) and 𝜃0 = 𝜃𝑀𝐴𝑃

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟, 𝜃)

׬ 𝑝 𝒟, 𝜃 𝑑𝜃
=

exp[log 𝑝 𝒟, 𝜃 ]

׬ exp[log 𝑝 𝒟, 𝜃 ]𝑑𝜃

𝑓 𝜃 ≈ 𝑓 𝜃0 + 𝜃 − 𝜃0
⊤∇𝜃𝑓 𝜃0 +

1

2
𝜃 − 𝜃0

⊤∇𝜃
2 𝑓(𝜃0) 𝜃 − 𝜃0

log 𝑝(𝒟, 𝜃) ≈ log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) +
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤∇𝜃
2 log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) 𝜃 − 𝜃𝑀𝐴𝑃

Constant w.r.t. 𝜃
Same as ∇2log 𝑝(𝜃𝑀𝐴𝑃|𝒟)

𝑝 𝒟 ≈  exp log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 × 2𝜋 𝐷/2 det 𝚲 1/2

We also get a Laplace 

approximation of the marginal 

likelihood (for free!)

Note: Sometimes marginal 

likelihood is also called 

model evidence

𝑝 𝜃 𝒟 ∝  exp −
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤(−∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 ) 𝜃 − 𝜃𝑀𝐴𝑃

=  𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1) (where 𝚲 =  −∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 = −𝐇)
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Properties of Laplace’s Approximation

▪ Straightforward if  posterior’s derivatives (first/second) can be computed easily

▪ Expensive if  parameter 𝜃 is very high dimensional
▪ Reason: We need to compute and invert Hessian of size 𝐷 × 𝐷 (𝐷 is the # of params)

▪ Can do badly if  the (true) posterior is multimodal

▪ Used only when 𝜃 is a real-valued vector (because of Gaussian approximation)

▪ Note: Even if  we have a non-probabilistic model (loss function + regularization), we 
can obtain an approx “posterior” for that model using the Laplace’s approximation
▪ Optima of the regularized loss function will be Gaussian’s mean

▪ Inverse of the second derivative of the regularized loss function will be covariance matrix

18

True posterior

Gaussian 

approximation

E.g., a deep neural network, or even in 

simpler models (e.g., logistic reg with a 

very large number of features

For multimodal posteriors, 

can use a mixture of 

Laplace approximations*

If  𝐾 local modes, then define the approx. 

posterior as a mixture of 𝐾 Gaussians

𝑝 𝜃 𝐷 ≈ ෍
𝑘=1

𝐾

𝜋(𝑘)𝒩(𝜃|𝜃𝑀𝐴𝑃
𝑘 , 𝐻 𝑘 −1

)

(see paper cited below for details)

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)

Useful for deep 

learning models
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LR: Posterior Predictive Distribution

▪ The posterior predictive distribution can be computed as

▪Monte-Carlo approximation of this integral is one possible way
▪ Draw 𝑀 samples 𝒘1, 𝒘2, … , 𝒘𝑀, from the approx. of posterior 

▪ Approximate the PPD as follows

▪ In contrast, when using MLE/MAP solution ෝ𝒘𝑜𝑝𝑡, the plug-in pred. distribution

19

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = ׬ 𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘 

sigmoid Gaussian (if  using Laplace approx.)
Integral not tractable and 

must be approximated

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈
1

𝑀
෍

𝑚=1

𝑀

𝑝 𝑦∗ = 1 𝒘𝑚, 𝒙∗ =
1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = ׬ 𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘 

≈ 𝑝 𝑦∗ = 1 ෝ𝒘𝑜𝑝𝑡, 𝒙∗ = 𝜎( ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛)
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LR: Plug-in Prediction vs Bayesian Averaging

▪ Plug-in prediction uses a single 𝒘 (point est) to make prediction

▪ PPD does an averaging using all possible 𝒘’s from the posterior

20

Posterior averaging is like 

using an ensemble of 

models. In this example, 

each model is a linear 

classifier but the ensemble-

like effect resulted in 

nonlinear boundaries

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈ 𝜎( ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛) 𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈

1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

Color transitions (red 

to blue) in both plots 

denote how the 

probability of an 

input changes from 

belonging to red 

class to belonging to 

blue class. All inputs 

on a line (or curve 

on RHS plot)have 

the same probability 

of belonging to the 

red/blue class
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Multiclass Logistic (a.k.a. Softmax) Regression
21

▪ Also called multinoulli/multinomial regression: Basically, LR for 𝐾 >  2 classes

▪ In this case, 𝑦𝑛 ∈ 1,2, … , 𝐾  and label probabilities are defined as

           

▪ 𝐾 weight vecs 𝒘1, 𝒘2, … , 𝒘𝐾 (one per class), each 𝐷-dim, and 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]

▪ Each likelihood 𝑝 𝑦𝑛 𝒙𝑛, 𝑾  is a multinoulli distribution. Therefore total likelihood

▪ Can do MLE/MAP/fully Bayesian estimation for 𝑾 similar to LR model

𝑝 𝑦𝑛 = 𝑘 𝒙𝑛, 𝑾 =
exp(𝒘𝑘

⊤𝒙𝑛)

σℓ=1
𝐾 exp(𝒘ℓ

⊤𝒙𝑛)
= 𝜇𝑛𝑘 Also note that σℓ=1

𝐾 𝜇𝑛ℓ =1 

for any input 𝒙𝑛

Softmax function

𝑝 𝒚|𝑿, 𝑾 =  ෑ
𝑛=1

𝑁

ෑ
ℓ=1

𝐾

𝜇𝑛ℓ
𝑦𝑛ℓ Notation: 𝑦𝑛ℓ = 1 if true class of 

𝒙𝑛 is ℓ and 𝑦𝑛ℓ′ = 0 ∀ ℓ′ ≠ ℓ 

Real-valued scores 𝒘𝑘
⊤𝒙𝑛 are also known 

as “logits” (thus 𝐾 logits for each input)
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Generalized Linear Models
▪ (Probabilistic) Linear Regression: when response 𝑦 is real-valued 

▪ Logistic Regression: when response 𝑦 is binary (0/1) 

▪ Both are examples of a Generalized Linear Model (GLM)
▪ The model depends on the inputs 𝒙 via a linear model 𝒘⊤𝒙

▪ GLM is defined using an exponential family distribution

▪ ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
▪ Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

▪ ExpFam distributions are more generally useful in other contexts as well
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𝑝 𝑦 𝒙, 𝒘 = ExpFam[𝑦|𝑓 𝒘⊤𝒙 ]

𝑝 𝑦 𝒙, 𝒘 =  𝒩(𝑦|𝒘⊤𝒙, 𝛽−1)

𝑝 𝑦 𝒙, 𝒘 =  Bernoulli 𝑦 𝜎(𝒘⊤𝒙) =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

MLE/MAP of 𝒘 is easy for GLMs (due 

to convex objective, thanks to exp-

family). Posterior usually requires 

approximations if  likelihood and prior 

are not conjugate pairs (Laplace 

approximation or other methods used) 
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