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Plan today

= Exponential Family Distributions
= Conjugate priors, posterior, and PPD

» (Generative approach to supervised learning
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Bayesian Inference for Expon. Family Distributions

» Already saw that the total likelihood given N i.i.d. observations D = {x4,..., Xy}
N

p(D|0) o exp |07 (D) — NA(6)

where ¢(D) = Z o (xi)

" | et's choose the following prior (note: looks similar in terms of 8 within exp)

p(0]vo, T0) = h(6) exp [9% — A(8) — Ac(o, To)]

= |gnoring the prior's log-partition function Ac(vo, T0) = log [, h(8) exp [0 ' 70 — 16 A(6)] db

p(B|vo, T0) o h(B) exp [9% _ yoA(G)}

» Comparing the prior's form with the likelihood, note that

" 1V, is like the number of "pseudo-observations” coming from the prior

- is the total sufficient statistics of the pseudo-observations (

/v er pseudo-obs
0
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The Posterior

" The likelihood and prior were )
p(D|6) o exp [0%(19) - NA(@)] where  ¢(D) = > 6(x)

Assume its log partition Blun. 70) o h(8) ex lQTTo — A8 ] _—
function denoted as A, (vy, 7o) p(6]vo, To) (6) exp (6) Posterior is also

. . from the same Happens when the
» The posterior p(8|D) o p(0)p(D|0) therefore will be family as the prior .. prior is conjugate
to the likelihood

Its log partition function will be T _
i log artion urction wilbe | p(9]D) ox h(6) exp |0 (70 + 6(D)) — (vo + N)A(6)

= Fvery exp family likelihood has a conjugate prior having the form above
= Posterior's hyperparams Ty, v obtained by adding “stuff” to prior's hyperparams

Number of pseudo-observations plus , Another equivalent form To = 70/
number of actual observations o — VTt N T 7o + ¢(D)
. , p(8]D) o h(B) exp |67 (1o + N) — (0 + N)A(®)
Suff-stats of pseudo-obervations plus 749" ¢— T + @(D) vo+ N
suff-stats of actual observations o I 5= %
Convex comb of avg . voTo + N
suff-stats of pseudo T *—
vo + N CS772A: PML
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Posterior Predictive Distribution

» Assume some training data D = {x4,...,xy} from some exp-fam distribution
" Assume some test data D' = {¥y,..., Xy} from the same distribution

" The posterior pred. distr. of D’

Exp. Fam. likelihood
wirt. test data

p(D'D) = [ o(D'16)p(6ID)d8

Posterior (same form as the
prior due to conjugacy)

[ 3
S
_+_
<
3
<)
+
)
Q.
D

N/
= / [H h(i;)] exp [OTd)(D’) - N’A(e)] h(6) exp {(f(m + ¢(D)) — (vo + N)A(0) —

‘#

constant w.r.t. 6

" This gets further simplified into

~~~~~

p(D'|D) = [l} h(i;)} ““““““ exp [A(U6 + N, 76 + ¢(D))]

=~

exp [Ac(vo + N, 7o + ¢(D))] CS772A: PML
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Posterior Predictive Distribution L

marginal likelihood has
closed form expression

= Since AC — log ZC or ZC — eXp(AC)’ we can write the PPD as when working with exp-

p(D'|D) = [H h(x;)

i=1

Z(vo+ N+ N, 79 + o(D) + ¢(D"))
Z(vo + N, 70 + ¢(D))

] family distributions

— [H h(x; :I exp [Ac(vo + N+ N', 79 + ¢(D) + ¢(D’)) — Ac(vo + N, To + ¢(D))]

» Therefore the posterior predictive is proportional to

= Ratio of two partition functions of two “posterior distributions” (one with N 4+ N’ examples and
the other with N examples)

= Exponential of the difference of the corresponding log-partition functions

* Note that the form of Z,. (and A.) will simply depend on the chosen conjugate prior

= Very useful result. Also holds for N = 0
= In this case p(D’) = [ p(D'|0)p(6)db is simply the marginal likelihood of test data D’
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summary

" Exp. family distributions are very useful for modeling diverse types of data/parameters
= Conjugate priors to exp. family distributions make parameter updates very simple
» Other guantities such as posterior predictive can be computed in closed form

= Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

= Useful in designing generative models for unsupervised learning

» Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
* Linear regression (with Gaussian likelihood) and logistic regression are GLMs

= Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs

sampling, and especially variational inference)
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Generative Supervised Learning

In the discriminative approach

= The conditional distribution p(y|x) can also be defined as for learning p(yx). wie didn't

model the inputs x but treated

Requires modeling the .
them as "given”

PO Y) - P
p(x)
» Generative sup. learning is usually more work because p(x, y) has to be estimated

" However, there are some benetfits as well. For example, for classification

p(ylx) =

Can incorporate knowledge of the distribution

p(y) is called the “class-prior” or | | Can incorporate knowledge of frequency
("shape”) of each class in training data

“class-marginal” distribution ("size") of each class in training data
Can assume simple/sophisticated types

p(x’ y) _ p(y)p(x |y) of distributions for the “class-conditional”

distribution p(x|y) and learned them

X) = =
p (yl ) p (x) p (x) using the training data of each class
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Generative Supervised Learning oW

Note: Estimating p(x|y) can be

: . : Marginal probability of Probability (density) of difficult especially if x is high-
u The generatlve C|aSS|flcatlon mOdel belonging to class k input x under class k dimensional and we don't have
enough data from each class
Probability of belonging to = =
class k, conditioned on the p(y =k |x) — P (y k)p (xly k) A way to handle this is to assume simpler forms for
input x Zk p(y = k)p(xly = k) p(x|y) (e.g., Gaussian with diagonal/spherical covar —

naive Bayes) but it might sacrifice accuracy too

= We need to learn p(y) and p(x|y) here given training data (X, y) = {(xy, ¥) tre1

= Class prior/marginal distribution p(y) will always be a discrete distribution, e.g.,
* Fory € {0,1}, p(y) = p(y|m) = Bernoulli(y|r) with T € (0,1) > me=1
»Fory € {1,2,..,K}, p(y) = p(y|m) = multinoulli(y|m) where T = [m4, ..., ]

= Class conditional distribution p(x|y) will depend on the nature of inputs, e.g.,
= For x € R?, p(x|y = k) can be a multivariate Gaussian (one per class) | forr. cn e beta or brichie

(we have already seen these
examples)

Note: When estimating 8 , we p (x | y — k) — p (xl Hk) — N (x | Mk Zk) Will need appropriate prior
only need inputs from class k ) distributions for 1 and {8, }5_,
Xx = {xn: yn =k}

= Can estimate m and {84 }%-, using (X, y) via point est. or fully Bayesian ipfer,
k=1 g 95 EA. PML



Generative Classification: Making Predictions

» Once mand {8,}%_, are learned, we are ready to make prediction for any test input x,
= Two ways to make the prediction

= Approach 1: If we have point estimates for  and {8, }X_,. say #& and {8, }%_,. Then

PO = KIDPGEIG) o s ™
~ A k x| Yk
L Py = k|)p(x|6y)

= Approach 2: If we have the full posterior for  and {0, }+_,. Then PPD of y,

= [nstead of using p(y, = k|f), we will use p(y, = k|y) = [ p(y. = k|m)p(r|y)dr
= [nstead of using p(x.]0x), we will use p(x.1X,) = | p(x.10:)p (04| X)) A0, — PP of x.
= Using these quantities, the prediction will be made as

p(y. = kly)p(x,|Xy)
Y P = kly)p(x.|X)

p(y. = klx,) =

Compute for every value
of k and normalize

X p(y. = k|y)p(x.|Xy)

Note that we aren't using a single

"best” value of the params m and 0,
unlike Approach 1 CS772A: PML
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Generative Sup. Learning: Some Comments

= A very flexible approach for classification

Incorporate info about how frequent each Incorporate info about the
class is in the training data (“class prior”) shape of each class

. pO = Rp(xy. = k)
- Xk pOs = k)p(x.ly. = k)
» Can handle missing labels and missing features

" These can be treated as latent variables as estimated using methods such as EM

Consequently, can naturally
learn nonlinear boundaries, too
(without using kernel methods
or deep learning)

p(y. = klx,)

Will discuss this later

= Ability to handle missing labels makes it suitable for semi-supervised learning

* The choice of the class-conditional and proper estimation is important
= Can leverage advances in deep generative models to learn very flexible forms for p(x|y)

= Can also use it for regression (define p(x, y) via some distr. and obtain p(y|x) from it)

» Can also combine generative and discriminative approaches for supervised learning
CS772A: PML




Hybrids of Discriminative and Generative Models

" Both discriminative and generative models have their strengths/shortcomings

Recall prob linear

" Some aspects about discriminative models for sup. learning regression and logistic reg

= Discriminative models have usually fewer parameters (e.g., just a weight vector)
= Given “plenty” of training data, disc. models can usually outperform generative models

" Some aspects about generative models for sup. learning
= Can be more flexible (we have seen the reasons already)
= Usually have more parameters to be learned
= Modeling the inputs (learning p(x|y)) can be difficult for high-dim inputs

= Some prior work on combining discriminative and generative models. Examples:

alog p(y|x; 0) + flog p(z; 0) p(z,y,8a,04) = po, (y|z)pe, (x)p(0a, b;)
_ ] Approach 2 (Lasserre et al, 2006) —
Alpgroach 1 (M;Crllumhet p(ﬂf, y? Z) T p(y‘:r? Z) p(ﬂj.. Z) Coupled parameters between
& 006) = mo @ing the discriminative and generative models
joint p(x,y|0) using a
multi-conditional likelihood Approach 3 (Kuleshov and Ermon, 2017) — Coupling discriminative and generative models via a latent

variable z (see "Deep Hybrid Models: Bridging Discriminative and Generative Approaches”, UAI 2017)
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