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Plan today
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▪ Exponential Family Distributions
▪ Conjugate priors, posterior, and PPD

▪ Generative approach to supervised learning
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Bayesian Inference for Expon. Family Distributions

▪ Already saw that the total likelihood given 𝑁 i.i.d. observations 𝒟 =  {𝑥1, . . . , 𝑥𝑁} 

▪ Let’s choose the following prior (note: looks similar in terms of 𝜃 within exp)

▪ Ignoring the prior’s log-partition function

▪ Comparing the prior’s form with the likelihood, note that
▪  𝜈0 is like the number of “pseudo-observations” coming from the prior

▪  𝜏0 is the total sufficient statistics of the pseudo-observations (𝜏0/ 𝜈0 per pseudo-obs)
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The Posterior

▪ The likelihood and prior were 

▪ The posterior                              therefore will be

▪ Every exp family likelihood has a conjugate prior having the form above

▪ Posterior’s hyperparams 𝜏0
′ , 𝜈0

′  obtained by adding “stuff” to prior’s hyperparams
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Posterior is also 

from the same 

family as the prior
Happens when the 

prior is conjugate 

to the likelihood

Number of pseudo-observations plus 

number of actual observations

Suff-stats of pseudo-obervations plus 

suff-stats of actual observations

Its log partition function will be 

𝐴𝑐(𝜈0 + 𝑁, 𝜏0 + 𝜙(𝒟))

Assume its log partition 

function denoted as 𝐴𝑐(𝜈0, 𝜏0)

Convex comb of avg 

suff-stats of pseudo 

obs and actual obs

Another equivalent form
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Posterior Predictive Distribution

▪ Assume some training data 𝒟 =  {𝑥1, . . . , 𝑥𝑁} from some exp-fam distribution

▪ Assume some test data 𝒟′ =  { 𝑥1, . . . , 𝑥𝑁′} from the same distribution

▪ The posterior pred. distr. of 𝒟′

▪ This gets further simplified into
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Exp. Fam. likelihood 

w.r.t. test data

Posterior (same form as the 

prior due to conjugacy)
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Posterior Predictive Distribution

▪ Since 𝐴𝑐  =  log 𝑍𝑐 or 𝑍𝑐 =  exp(𝐴𝑐), we can write the PPD as

▪ Therefore the posterior predictive is proportional to
▪ Ratio of two partition functions of two “posterior distributions” (one with 𝑁 +  𝑁′ examples and 

the other with 𝑁 examples)

▪ Exponential of  the difference of the corresponding log-partition functions

▪ Note that the form of 𝑍𝑐 (and 𝐴𝑐) will simply depend on the chosen conjugate prior

▪ Very useful result. Also holds for 𝑁 =  0 
▪ In this case                                         is simply the marginal likelihood of test data 𝒟′ 
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Thus PPD as well as 

marginal likelihood has 

closed form expression 

when working with exp-

family distributions
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Summary

▪ Exp. family distributions are very useful for modeling diverse types of data/parameters

▪ Conjugate priors to exp. family distributions make parameter updates very simple

▪ Other quantities such as posterior predictive can be computed in closed form

▪ Useful in designing generative classification models. Choosing class-conditional from 
exponential family with conjugate priors helps in parameter estimation

▪ Useful in designing generative models for unsupervised learning

▪ Used in designing Generalized Linear Models: Model 𝑝(𝑦|𝑥) using exp. fam distribution
▪ Linear regression (with Gaussian likelihood) and logistic regression are GLMs

▪ Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs 
sampling, and especially variational inference)
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Generative Supervised Learning

▪ The conditional distribution 𝑝(𝑦|𝑥) can also be defined as

▪ Generative sup. learning is usually more work because 𝑝(𝑥, 𝑦) has to be estimated

▪ However, there are some benefits as well. For example, for classification

𝑝 𝑦 𝑥 =
𝑝(𝑥, 𝑦)

𝑝(𝑥)

Requires modeling the 

joint distribution of the 

inputs and outputs

In the discriminative approach 

for learning 𝑝(𝑦|𝑥), we didn’t 

model the inputs 𝑥 but treated 

them as “given”

𝑝 𝑦 𝑥 =
𝑝(𝑥, 𝑦)

𝑝(𝑥)
=

𝑝(𝑦)𝑝(𝑥|𝑦)

𝑝(𝑥)

Can incorporate knowledge of frequency 

(“size”) of each class in training data

Can incorporate knowledge of the distribution 

(“shape”) of each class in training data

Can assume simple/sophisticated types 

of distributions for the “class-conditional” 

distribution 𝑝(𝑥|𝑦) and learned them 

using the training data of each class

𝑝(𝑦) is called the “class-prior” or 

“class-marginal” distribution
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Generative Supervised Learning

▪ The generative classification model

▪ We need to learn 𝑝(𝑦) and 𝑝(𝒙|𝑦) here given training data 𝑿, 𝒚 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁

▪ Class prior/marginal distribution 𝑝(𝑦) will always be a discrete distribution, e.g.,
▪ For 𝑦 ∈  {0,1}, 𝑝 𝑦 = 𝑝 𝑦 𝜋 =  Bernoulli 𝑦|𝜋  with 𝝅 ∈  (0,1)

▪ For 𝑦 ∈  {1,2, … , 𝐾}, 𝑝 𝑦 = 𝑝 𝑦 𝝅 =  multinoulli 𝑦|𝝅  where 𝝅 = [𝜋1, … , 𝜋𝐾]

▪ Class conditional distribution 𝑝(𝒙|𝑦) will depend on the nature of inputs, e.g.,
▪ For 𝒙 ∈ ℝ𝐷 , 𝑝 𝒙 𝑦 = 𝑘  can be a multivariate Gaussian (one per class) 

▪ Can estimate 𝜋 and {θ𝑘}𝑘=1
𝐾  using 𝑿, 𝒚  via point est. or fully Bayesian infer.
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𝑝 𝒙 𝑦 = 𝑘 = 𝑝 𝒙 𝜃𝑘 =  𝒩(𝒙|𝜇𝑘 , Σ𝑘) 

𝑝 𝑦 = 𝑘 𝒙  =
𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

σ𝑘 𝑝(𝑦 = 𝑘)𝑝(𝒙|𝑦 = 𝑘)

Marginal probability of 

belonging to class 𝑘

Probability of belonging to 

class 𝑘, conditioned on the 

input 𝒙

Probability (density) of 

input 𝒙 under class 𝑘


𝑘=1

𝐾

𝜋𝑘 = 1

Note: When estimating 𝜃𝑘 , we 

only need inputs from class 𝑘
𝑿k = {𝒙𝑛:  𝑦𝑛 = 𝑘}

Will need appropriate prior 

distributions for 𝜋 and {θ𝑘}𝑘=1
𝐾

For 𝜋 , can use Beta or Dirichlet 

(we have already seen these 

examples)

Note: Estimating 𝑝(𝒙|𝑦) can be 

difficult especially if  𝒙 is high-

dimensional and we don’t have 

enough data from each class

A way to handle this is to assume simpler forms for 

𝑝(𝒙|𝑦) (e.g., Gaussian with diagonal/spherical covar – 

naïve Bayes) but it might sacrifice accuracy too
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Generative Classification: Making Predictions

▪ Once 𝜋 and {θ𝑘}𝑘=1
𝐾  are learned, we are ready to make prediction for any test input 𝒙∗

▪ Two ways to make the prediction

▪ Approach 1: If  we have point estimates for 𝜋 and {θ𝑘}𝑘=1
𝐾 , say ො𝜋 and { መ𝜃𝑘}𝑘=1

𝐾 . Then

▪ Approach 2: If  we have the full posterior for 𝜋 and {θ𝑘}𝑘=1
𝐾 . Then

▪ Instead of using 𝑝(𝑦∗ = 𝑘| ො𝜋), we will use 𝑝 𝑦∗ = 𝑘 𝒚 = ∫ 𝑝 𝑦∗ = 𝑘 𝜋 𝑝 𝜋 𝒚 𝑑𝜋

▪ Instead of using 𝑝(𝒙∗| 𝜃𝑘), we will use 𝑝 𝒙∗ 𝑿𝑘 = ∫ 𝑝 𝒙∗ 𝜃𝑘 𝑝 𝜃𝑘 𝑿𝑘 𝑑𝜃𝑘

▪ Using these quantities, the prediction will be made as
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𝑝 𝑦∗ = 𝑘 𝑥∗, 𝑿, 𝒚  =
𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

σ𝑘 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

𝑝 𝑦∗ = 𝑘 𝒙∗  =
𝑝(𝑦∗ = 𝑘| ො𝜋)𝑝(𝒙∗| መ𝜃𝑘)

σ𝑘 𝑝(𝑦 = 𝑘| ො𝜋)𝑝(𝒙| መ𝜃𝑘)
∝  ො𝜋𝑘𝑝(𝒙∗| መ𝜃𝑘)

∝ 𝑝 𝑦∗ = 𝑘 𝒚 𝑝 𝒙∗ 𝑿𝑘

PPD of 𝑦∗ 

PPD of 𝒙∗ 

Compute for every value 

of 𝑘 and normalize

Compute for every value 

of 𝑘 and normalize

Note that we aren’t using a single 

“best” value of the params 𝜋 and 𝜃𝑘 

unlike Approach 1
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Generative Sup. Learning: Some Comments

▪ A very flexible approach for classification

▪ Can handle missing labels and missing features

▪ These can be treated as latent variables as estimated using methods such as EM

▪ Ability to handle missing labels makes it suitable for semi-supervised learning

▪ The choice of the class-conditional and proper estimation is important

▪ Can leverage advances in deep generative models to learn very flexible forms for 𝑝(𝒙|𝑦)

▪ Can also use it for regression (define 𝑝(𝒙, 𝑦) via some distr. and obtain 𝑝(𝑦|𝒙) from it)

▪ Can also combine generative and discriminative approaches for supervised learning
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𝑝 𝑦∗ = 𝑘 𝒙∗  =
𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

σ𝑘 𝑝(𝑦∗ = 𝑘)𝑝(𝒙∗|𝑦∗ = 𝑘)

Incorporate info about how frequent each 

class is in the training data (“class prior”)

Incorporate info about the 

shape of each class

Will discuss this later

Consequently, can naturally 

learn nonlinear boundaries, too 

(without using kernel methods 

or deep learning)
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Hybrids of Discriminative and Generative Models

▪ Both discriminative and generative models have their strengths/shortcomings

▪ Some aspects about discriminative models for sup. learning
▪ Discriminative models have usually fewer parameters (e.g., just a weight vector)

▪ Given “plenty” of training data, disc. models can usually outperform generative models

▪ Some aspects about generative models for sup. learning
▪ Can be more flexible (we have seen the reasons already)

▪ Usually have more parameters to be learned

▪ Modeling the inputs (learning 𝑝(𝒙|𝑦)) can be difficult for high-dim inputs

▪ Some prior work on combining discriminative and generative models. Examples:
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Approach 1 (McCullum et 

al, 2006) – modeling the 

joint 𝑝(𝑥, 𝑦|𝜃) using a 

multi-conditional likelihood

Approach 2 (Lasserre et al, 2006) – 

Coupled parameters between 

discriminative and generative models

Approach 3 (Kuleshov and Ermon, 2017) – Coupling discriminative and generative models via a latent 

variable 𝑧 (see “Deep Hybrid Models: Bridging Discriminative and Generative Approaches“, UAI 2017)

Recall prob linear 

regression and logistic reg
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