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Deep Generative Models

CS772A: Probabilistic Machine Learning
Piyush Rai



Hamiltonian/Hybrid Monte Carlo (HMC)

* HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info
» Uses the idea of simulating a Hamiltonian Dynamics of a physical system

» Consider the target posterior p(6|D) x exp(—U(6))

» Think of 8 as “position” then U(0) = —log p(D|0)p(0) is like “potential energy”

" | et's introduce an auxiliary variable - the momentum 7 of the system

» Can now define a joint distribution over the position and momentum as
p(0,1r|D) < exp <—U(9) — %rTM‘1r> < p(60|D)p(r)
" The total energy (potential + kinetic) or the Hamiltonian of the system
constantwrt I L [q(9,1) = U(9) — %rTM‘lr = U(0) + K (1)
* Given a sample (8, 1) from p(0,r), ignoring r, 8 will be a sample from p(8|D)
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Generating Samples in HMC

" Given an initial (8, r), Hamiltonian Dynamics defines how (8, 1) changes wirt. time t

00  9H 9K
8t - Br N ar 1 - Tiag—1
H(@,r) = U(@)+5r M r=U(0)+ K
or _ OH _ U CH(O,r) = U(0) + 3r r=U(0)+K(r))
ot 00 06 . | -
» \We can use these equations to update (8,r) — (6%, r*) by discretizing time
" ors = 1: S, Sam p|€ as follows Reason: Getting analytical
= |nitiali (s—1) p U solutions for the above
nitialize gy = 60 , r« ~N(0,1) and rg = r. — 5 %|90 requires integrals which is
* Do L “leapfrog” steps with learning rates p, = p for £ < L and p;, = p/2 | In general intractable
" Forf =1:L K
93 = 95_1 + pE |J,-F__1 L usually set to 5 and learning rate tuned

aU to make acceptance rate around 90%
ffsz—l—mebg |
‘ (s) A single sample generated
= Perform MH accept/reject test on (QL, rL). If accepted 0%/ = 61— by taking L steps

" The momentum forces exploring different regions instead of getting driven to regions

where the MAP solution is CS7T72A: PML



HMC Iin Practice

= HMC typically has very low rejection rate (that too, primarily due to discretization error)
" Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, tuning hard

= A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler —
doesn't require setting L)

* Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC
" Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)
" An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)
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Parallel/Distributed MCMC

" Suppose our goal is to compute the posterior of H € RP (assuming N is very large)
p(8]1X) o p(8)p(X|6) = p(0 Hp X,0)

= Suppose we have | machines with data part|t|oned as X = {X(j)}f=1

" | et's assume that the posterior p(6|X) factorizes as
J

p(01X) = [ [ P (6]X1)

=1
" Here pU)(0]XY)) o p(6)*/” [« exv P(xn|0) is known as the “subset posterior”
= Assume the j" machine generates T MCMC samples {6} ¢}{=1

= We need a way to combine these subset posteriors using a “consensus”
f1,...,0T = CONSENSUSSAMPLES({f;1,...,6;. r}-1)
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Parallel/Distributed MCMC

= Many ways to compute the consensus samples. Let's look at two of them

= Approach 1: Weighted Average: 0, = Z§=1 W;0; + where W; can be learned as follows

= Assuming Gaussian likelihood and Gaussian prior on 8
. These approaches can

Y; = sample covariance of {6;1,...,60; 1} 2150 be used to make V] A
b , , o o
. arallel/distributed v 4
E = Bl Z Zj_l)_1 (X0 is the prior's covariance) g / 4 »/
et e'v
W, = X(% /J+E7)

= Approach 2. Fit J Gaussians, one for each {H]-,t}fﬂand take their product

fij = sample mean of {01,...,0; 7}, X;= sample covariance of {6,1,...,0; 1}
J J

S, = (Z ij_l)_l, B = fJ(Z ijf_lﬁj) (cov and mean of prod. of Gaussians)
j=1 j=1

0. ~ N(ps,%)),t=1,...,T (the final consensus samples)
" For detailed proofs and other approaches, may refer to the reference below

Patterns of Scalable Bayesian Inference (Angelino et al, 2016) CS772A: PML



Approximate Inference: VI vs Sampling

= VI approximates a posterior distribution p(Z|X) by another distribution g(Z|¢®)
= Sampling uses S samples Z(1), Z2(2) .., Z(5) to approximate p(Z|X)
= Sampling can be used within VI (ELBO approx using Monte-Carlo)

" |n terms of "‘comparison” between VI and sampling, a few things to be noted
= Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
= Storage: Sampling based approx needs to storage all samples, VI only needs var. params ¢

= Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

Closed form if integral is

18 i
P . _ ~ (s)) | tractable (otherwise Monte
PPD if using sampling: p(x.|X) = [ p(x.|2)p(Z|X)dZ 5 E Szlp(x* Z ) Carlo avg still needed for PPD)
PPD if using VI: p(x.|X) = fp(x*|Z)p(Z|X)dZ ~ fp(x*lZ)q(Zlgb)dZ Compressing the S samples

into something more compact

" There is some work on “compressing” sampling-based approximations*

CS772A: PML
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Inference Methods: Summary

= MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)
» Conjugate models with one "main” parameter: Straightforward posterior updates
= MLE-I[/MAP-II: Often useful for estimating the hyperparameters

" EM: It we want to do MLE/MAP for models with latent variables
= \ery general algorithm, can also be made online
» Used when we want point estimates for some unknowns and posterior over others
= Can use it for hyperparameter estimation as well
= Often better than using direct gradient methods

= VI and sampling methods can be used to get full posterior for complex models
= Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

= |n other cases, we have general VI with Monte-Carlo gradients, MH sampling
= MCMC can also make use of gradient info (LD/SGLD)

* [For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx
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Latent Variable Models for Generation Tasks

* Assume a K-dim latent variable z,, is transformed to generate to D-dim observation x,,

Also possible to use a

p(z) p(x|f(z; W)) GP to model f
Zn f can be some linear or nonlinear model
which defines the parameters of the
distribution of p(x|z) and W denotes the

parameters of this model

" [t is common to use a Gaussian prior for z, (though other priors can be used)

" |[f we use a neural net or GP, such models can generate very high-quality data
= Take the trained network, generate a random z from prior, pass it through the model to generate x

Some sample images generated by Vector Quantized Variational Auto-Encoder
(VQ-VAE), a state-of-the-art latent variable model for generation
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p(2zy|¢): A suitable prio

, . siprsasme o cetnmetensermmss, ()
Factor Analysis and Probabilistic PCA g

Oan®

N

* FA and PPCA assume f to be a linear model

= |n FA/PPCA, latent variables z,, € R¥ typically assumed to have a Gaussian prior
" |[f we want sparse latent variabled, can use Laplace or spike-and-slab prior on z,
* More complex extensions of FA/PPCA use a mixture of Gaussians prior on z,,

= Assumption: Observations x,, € R typically assumed to have a Gaussian likelihood
= Other likelihood models (e.g., exp-family) can also be used it data not real-valued

" Relationship between z,, and x,, modeled by a noisy linear mapping

K
p(zn) = N(anO, I)
X, =Wz, +¢€, = Wy Zn, + €
n n n Zk:l fink h P(XnlZyn) = N (x,|Wzp, V)

Zero-mean and diagonal or Linear combination

spherical Gaussian noise of the columns of W Diagonal for FA,
spherical for PPCA

" | inear Gaussian Model. W, z,,'s, and W can be learned (e.g, using EM, VI, MCMC)
CS772A: PML



SO m e va rl a ntS Of FA/P P CA Non-negative priors often give a nice

Popular for modeling count- interpretability to such latent

: valued data (in text analysis, variable models (will see some more
" Gamma-Poisson latent factor model recommender systems, etc) | | examples of such models shortly)

" Assumes K-dim non-negative latent variable z, and D-dim count-valued observations X,
" An example: Each x,, is the word-count vector representing a document

This is the rate of the Poisson. It should

p(zn) — I]§=1 Gamma(znk | dk, bk)) beTnon-negative, exp(W, z,,), or simply
_ L if wyis al negative (e.g.
p(Xp|Zy) = [14-1 Poisson(Xpqlf (Wg, Zp)) g 2 garmrma/Dirchiet prior o iifg

" This can be thought of as a probabilistic non-negative matrix factorization model

= Dirichlet-Multinomial/Multinoulli PCA

= Assumes K-dim non-negative latent variable z, and D categorical obs X, = {X,q}0-1
= An example: Each x,, is a document with D words in it (each word is a categorical value)

Also sums to 1 . hl This should give the probability vector of
7. ) = Dirichlet(z.|a the multinoulli over x,,4. It should be
p( n) D ( _n | ) ] non-negative and should sums to 1
P(Xn|Zn) = [lg=1 Multinoulli(xnq|f (W4, Zn))
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A Deep Generative Model: Variational Auto-encoder (VAE)

= VAE* is a probabilistic extension of autoencoders (AE). An AE is shown below

Reconstructed

Input < Ideally they are identical. ------------------ > input

~

Bottleneck!
ecoder 1 = i i
% @ . ( x/ Lag(6,9) = n - (x( ) — fo(gs (x( })))2

An compressed low dimensional
representation of the input.

* The basic difference is that VAE assumes a prior p(z) on the latent code z
" This enables it to not just compress the data but also generate synthetic data
* How: Sample z from a prior and pass it through the decoder

= Thus VAE can learn good latent representation + generate novel synthetic data
" The name has "Variational” in it since it is learned using VI principles

*Autoencoding Variational Bayes (Kingma and Welling, 2013) Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html CS772A: PML



Variational Autoencoder (VAE)

" VAE has three main components | Here 6 collectively denotes all the Using the idea of
‘Amortized Inference’

= A prior Do (z) over latent codes | parameters of the prior and likelihood
ilisti t slid
= A probabilistic decoder/generator pg (x|z), modeled by a deep neural net (next slide)

= A posterior or probabilistic encoder pg(z|x) approx. by an “inference network” q4(z]x)
Here ¢ collectively denotes all
the parameters that define the

inference network

ELBO for a - -
single data E(O, Qb‘X) — 4“qq5(z|x) _10gp9 (X, Z) — 10g q()b(Z‘X)]

point

» VAE is learned by maximizing the ELBO

]E/Iazjxir;ized to | — i‘qu(z\x) [Og Pe (X‘Z)] — KL (QQﬁ(Z‘X) HpQ (Z))
Hmantd ibopnma q¢ should be such that data x is q¢ should also be simple (close
reconstructed well from z (high log-lik) to the prior)

" The Reparametrization Trick is commonly used to optimize the ELBO
= Posterior is inferred only over z, and usually only point estimate on 6 .-l



Amortized Inference

» | atent variable models need to infer the posterior p(z,|x,,) for each observation x,,

= This can be slow if we have lots of observations because

1. We need to iterate over each p(Z,,|x;,)
2. Learning the global parameters needs wait for step 1 to finish for all observations

* One way to address this is via Stochastic VI

* Amortized inference is another appealing alternative (used in VAE and other LVMs too)
If q is Gaussian then the NN will

p(znlxn) ~ Q(and)n) = Q(anNN(xn, W)) output a mean and a variance

" Thus no need to learn ¢,,'s (one per data point) but just a single NN with params W
= This will be our “encoder network” for learning z,

= Also very efficient to get p(z,|x,) for a new data point x,
CS772A: PML



Variational Autoencoder: The Complete Pipeline

» Both probabilistic encoder and decoder learned jointly by maximizing the ELBO

Input «---

Reparametrization trick
used for computing
ELBO’s gradient wirt. ¢

Probabilistic Encoder
¢ (z|x)
Mean 7

Ideally they are identical.

L0, p|x) = Ey, (z/x) [log pe(x,2) — log ¢4 (z|x)]
= By (2lx) 108 po(x|2)] — KL (g¢ (z|x)[|pe(z))

Reconstructed

______________________ »

X~ x'

Sampled /
latent vector

g

Std. dev

Z—=pm+0oOE
e ~N(0,I)

Probabilistic
>.—> Decoder
po(x|z)

—~

An compressed low dimensional
representation of the input.

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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Generative Adversarial Network (GAN)

, , . . Unlike VAE, no explicit parametric
= GAN is an implicit generative latent variable model likelihood model p(x|z)

» Can generate from it but can't compute p(x) - the model doesn't define it explicitly

G D

= GAN is trained using an adversarial way (Goodfellow et al, 2013) 1hus can train
‘ The discriminator can be a “S'”9 m'eth’ods that
Assuming data X binary classifier or any method require likelihood
S eds _— Differentiable module that can compare b/w two (MLE, VI, etc)
Real wor ——= Sample [~
images % Real D(x) distributions (real and fake here)
Y - i c Discriminator network is trained to
s G /7| B & @ make D (x) close to 1
8 G(z)
o O | Fake p(G
§ g 1 Generstor | —| samvie J Sl Discriminator network is trained to make D (G (z))
5 (O wy | e/ g’! close to O and generator network is trained to make it
g - . to be close to 1 to fool the discriminator into
3 \_/ Differentiable module believing that G(z) is a real sample
Min-max OptiMIZAtION |- cce oo
— i
- min max V(D, G) = Ex~pys(x)[108 D(X)] + Eznp,(2)[log(1l — D(G(2))]
i 1
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Generative Adversarial Network (GAN)

" The GAN training criterion was

- V\/|th G fixed, the optimal D (exercise)

Dg(x) =

Distribution of real data

pdata(x) 5 S : - .
istribution of synthetic data
Paata(Xx) + Pg (x) )

" Given the optimal D, The optimal generator G is found by minimizing

Pdata (x) - pg (x) ]
G X~Pdata gpdata(x) + Dy (x)_ X~Pg gpdata(x) + pg (x)

Jensen-Shannon

. x) +p,(x) x)+ p,(x
d|vergence between — KL [pdata(x) pdata( )2 pg( ) + KL [pg (X) pdata( )2 pg( ) _
Pdata and pg- -

Minimized when Thus GAN can learn the true data
Py = Pdata distribution if the generator and

discriminator have enough modeling power CS772A: PML



" The GAN training procedure can be summarized as

64 and 6, denote the params of the deep neural nets

YT defining the generator and discriminator, respectivel
Initialize 0, 0,; gmed pectively

1

2 for each training iteration do | |n practice, for stable training, we run K > 1 steps of

3 for K steps do optimizing w.rt. D and 1 step of optimizing wirt. G

4 Sample minibatch of M noise vectors z,, ~ ¢.(z);

5 Sample minibatch of M examples x,,, ~ pp;

6 Update the discriminator by performing stochastic gradient ascent using this gradient:
Vo, 1 Yo 108 D(x,) +log(1 = D(G(2,)))].

7 Sample minibatch of M noise vectors z,, ~ q.(z);

8 Update the generator by performing stochastic gradient descent using this gradient:

| Vo, Coei log(1 = D(G(z,0))).

9 Return 6,, 6,

Reason: Generator is bad initially so
discriminator will always predict correctly
initially and log(1 — D (G (z)) will saturate

In practice, in this step, instead of minimizing
log(1 — D(G(z)), we maximize log (D(G(Z)))

CS772A: PML



GANSs that also learn latent representations

19

" The standard GAN can only generate data. Can't learn the latent z from x
®» Bidirectional GAN* (BiGAN) is a GAN variant that allows this

Consists of an
encoder as well

*Adversarial Feature Learning (Donahue et a Dumoulin |, 2017)

-

.

-

,

Opd

o

Can be shown*

to “invert" G

©

L

’

#Adversarially Learned Inference (Dumoulin et al, 2017)

Real pair/fake pair?

D —
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Evaluating GANSs igh S and on

FID is desirable

" Two measures that are commonly used to evaluate GANs Both IS and FID measure how

= |nception score (IS): Evaluates the distribution of generated data realistic the generated data is

= Frechet inception distance (FID): Compared the distribution of real data and generated data

" Inception Score defined as exp(Ey~p, [KL(p(y|x)||p(¥))]) will be high if

= Very few high-probability classes in each sample x: Low entropy for p(y|x)
= We have diverse classes across samples: Marginal p(y) is close to uniform (high entropy)

» F[D uses extracted features (using a deep neural net) of real and generated data
» Usually from the layers closer to the output layer

® [hese features are used to estimate two Gaussian distributions

Using real data N(HR, ZR) N(‘LlG, ZG) Using generated data
= FID is then defined as FID = |ug; — ur|? + trace(Z; + Zr — (Z:25)Y2)
" [hese measures can also be used for evaluating other deep gen models like’VAEVE



GAN: Some Issues/Comments

= GAN training can be hard and the basic GAN suffers from several issues
" |nstability of training procedure

» Mode Collapse problem: Lack of diversity in generated samples
* Generator may find some data that can easily fool the discriminator
= |t will stuck at that mode of the data distribution and keep generating data like that

GAN 1: No mode collapse (all 10
modes captured in generation)
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* Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)
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