
MCMC Sampling (wrap-up),
Deep Generative Models

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Hamiltonian/Hybrid Monte Carlo (HMC)

▪ HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info

▪ Uses the idea of simulating a Hamiltonian Dynamics of a physical system

▪ Consider the target posterior 𝑝 𝜃 𝒟 ∝ exp(−𝑈 𝜃)

▪ Think of 𝜃 as “position” then 𝑈 𝜃 = −log 𝑝 𝒟 𝜃 𝑝(𝜃) is like “potential energy”

▪ Let’s introduce an auxiliary variable - the momentum 𝒓 of the system

▪ Can now define a joint distribution over the position and momentum as

▪ The total energy (potential + kinetic) or the Hamiltonian of the system

▪ Given a sample (𝜃, 𝒓) from 𝑝(𝜃, 𝒓), ignoring 𝒓, 𝜃 will be a sample from 𝑝(𝜃|𝒟)

2

Constant w.r.t. time

𝑝 𝜃, 𝒓 𝒟 ∝ exp −𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 ∝ 𝑝 𝜃 𝒟 𝑝(𝒓)

𝐻 𝜃, 𝒓 = 𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 = 𝑈 𝜃 + 𝐾(𝒓)

CS772A: PML

Generating Samples in HMC

▪ Given an initial (𝜃, 𝒓), Hamiltonian Dynamics defines how (𝜃, 𝒓) changes w.r.t. time 𝑡

▪ We can use these equations to update 𝜃, 𝒓 → (𝜃∗, 𝒓∗) by discretizing time

▪ For 𝑠 = 1: 𝑆, sample as follows
▪ Initialize

▪ Do 𝐿 “leapfrog” steps with learning rates 𝜌ℓ = 𝜌 for ℓ < 𝐿 and 𝜌𝐿 = 𝜌/2
▪ For ℓ = 1: 𝐿

▪ Perform MH accept/reject test on 𝜃𝐿, 𝒓𝐿 . If accepted 𝜃(𝑠) = 𝜃𝐿

▪ The momentum forces exploring different regions instead of getting driven to regions
where the MAP solution is

3

A single sample generated

by taking 𝐿 steps

Reason: Getting analytical

solutions for the above

requires integrals which is

in general intractable

𝐿 usually set to 5 and learning rate tuned

to make acceptance rate around 90%

CS772A: PML

HMC in Practice

▪ HMC typically has very low rejection rate (that too, primarily due to discretization error)

▪ Performance can be sensitive to 𝐿 (no. of leapfrog steps) and step-sizes, tuning hard

▪ A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler –
doesn’t require setting 𝐿)

▪ Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC

▪ Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)

▪ An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

4

CS772A: PML

Parallel/Distributed MCMC

▪ Suppose our goal is to compute the posterior of 𝜃 ∈ ℝ𝐷 (assuming 𝑁 is very large)

▪ Suppose we have 𝐽 machines with data partitioned as 𝐗 = {𝐗 𝑗 }𝑗=1
𝐽

▪ Let’s assume that the posterior 𝑝(𝜃|𝐗) factorizes as

▪ Here is known as the “subset posterior”

▪ Assume the 𝑗𝑡ℎ machine generates 𝑇 MCMC samples {𝜃𝑗,𝑡}𝑡=1
𝑇

▪ We need a way to combine these subset posteriors using a “consensus”

5

CS772A: PML

Parallel/Distributed MCMC

▪ Many ways to compute the consensus samples. Let’s look at two of them

▪ Approach 1: Weighted Average: መ𝜃𝑡 = σ𝑗=1
𝐽

𝑊𝑗𝜃𝑗,𝑡 where 𝑊𝑗 can be learned as follows

▪ Assuming Gaussian likelihood and Gaussian prior on 𝜃

▪ Approach 2: Fit 𝐽 Gaussians, one for each {𝜃𝑗,𝑡}𝑡=1
𝑇 and take their product

▪ For detailed proofs and other approaches, may refer to the reference below

6

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)

These approaches can

also be used to make VI

parallel/distributed

CS772A: PML

Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿)

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*

7

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆

𝑠=1

𝑆

𝑝 𝑥∗ 𝑍 𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples

into something more compact

Closed form if integral is

tractable (otherwise Monte

Carlo avg still needed for PPD)

CS772A: PML

Inference Methods: Summary

▪ MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)

▪ Conjugate models with one “main” parameter: Straightforward posterior updates

▪ MLE-II/MAP-II: Often useful for estimating the hyperparameters

▪ EM: If we want to do MLE/MAP for models with latent variables
▪ Very general algorithm, can also be made online

▪ Used when we want point estimates for some unknowns and posterior over others

▪ Can use it for hyperparameter estimation as well

▪ Often better than using direct gradient methods

▪ VI and sampling methods can be used to get full posterior for complex models
▪ Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

▪ In other cases, we have general VI with Monte-Carlo gradients, MH sampling

▪ MCMC can also make use of gradient info (LD/SGLD)

▪ For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx

8

CS772A: PML

Latent Variable Models for Generation Tasks

▪ Assume a 𝐾-dim latent variable 𝒛𝑛 is transformed to generate to 𝐷-dim observation 𝒙𝑛

▪ It is common to use a Gaussian prior for 𝒛𝑛 (though other priors can be used)

▪ If we use a neural net or GP, such models can generate very high-quality data
▪ Take the trained network, generate a random 𝒛 from prior, pass it through the model to generate 𝒙

9

𝒛𝑛 𝒙𝑛

𝑝(𝒙|𝑓 𝒛; 𝐖)𝑝(𝒛)

Some sample images generated by Vector Quantized Variational Auto-Encoder
(VQ-VAE), a state-of-the-art latent variable model for generation

f can be some linear or nonlinear model

which defines the parameters of the

distribution of 𝑝(𝑥|𝑧) and 𝑊 denotes the

parameters of this model

Also possible to use a

GP to model 𝑓

CS772A: PML

Factor Analysis and Probabilistic PCA

▪ FA and PPCA assume 𝑓 to be a linear model

▪ In FA/PPCA, latent variables 𝒛𝑛 ∈ ℝ𝐾 typically assumed to have a Gaussian prior

▪ If we want sparse latent variabled, can use Laplace or spike-and-slab prior on 𝒛𝑛

▪ More complex extensions of FA/PPCA use a mixture of Gaussians prior on 𝒛𝑛

▪ Assumption: Observations 𝒙𝑛 ∈ ℝ𝐷 typically assumed to have a Gaussian likelihood

▪ Other likelihood models (e.g., exp-family) can also be used if data not real-valued

▪ Relationship between 𝒛𝑛 and 𝒙𝑛 modeled by a noisy linear mapping

▪ Linear Gaussian Model. 𝑾, 𝒛𝑛’s, and Ψ can be learned (e.g, using EM, VI, MCMC)

10

𝒙𝑛 = 𝑾𝒛𝑛 + 𝜖𝑛 =
𝑘=1

𝐾

𝒘𝑘𝑧𝑛𝑘 + 𝜖𝑛
Zero-mean and diagonal or

spherical Gaussian noise Diagonal for FA,

spherical for PPCA

𝑝 𝐳𝑛 = 𝒩 𝐳𝑛 0, 𝐈

𝑝 𝐱𝑛|𝐳𝑛 = 𝒩 𝒙𝑛 𝐖𝐳𝑛, Ψ
Linear combination

of the columns of 𝑾

CS772A: PML

Some Variants of FA/PPCA

▪ Gamma-Poisson latent factor model

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷-dim count-valued observations 𝐱n

▪ An example: Each 𝐱n is the word-count vector representing a document

▪ This can be thought of as a probabilistic non-negative matrix factorization model

▪Dirichlet-Multinomial/Multinoulli PCA

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷 categorical obs 𝐱n = {𝒙𝑛𝑑}𝑑=1
𝐷

▪ An example: Each 𝐱n is a document with 𝐷 words in it (each word is a categorical value)

11

𝑝 𝐳n = ς𝑘=1
𝐾 Gamma(znk|ak, bk))

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Poisson(xnd|𝑓(𝐰d, 𝐳n))

This is the rate of the Poisson. It should

be non-negative, exp(𝐰𝑑
⊤𝒛𝑛), or simply

𝐰𝑑
⊤𝒛𝑛 if 𝒘𝑑 is also non-negative (e.g.,

using a gamma/Dirichlet prior on it)

Popular for modeling count-

valued data (in text analysis,

recommender systems, etc)

𝑝 𝐳n = Dirichlet(𝐳n|𝜶)

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Multinoulli(xnd|𝑓(𝐰d, 𝐳n))

This should give the probability vector of

the multinoulli over 𝑥𝑛𝑑 . It should be

non-negative and should sums to 1

Also sums to 1

Non-negative priors often give a nice
interpretability to such latent
variable models (will see some more
examples of such models shortly)

CS772A: PML

A Deep Generative Model: Variational Auto-encoder (VAE)

▪ VAE* is a probabilistic extension of autoencoders (AE). An AE is shown below

▪ The basic difference is that VAE assumes a prior 𝑝(𝒛) on the latent code 𝒛
▪ This enables it to not just compress the data but also generate synthetic data

▪ How: Sample 𝒛 from a prior and pass it through the decoder

▪ Thus VAE can learn good latent representation + generate novel synthetic data

▪ The name has “Variational” in it since it is learned using VI principles

12

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html*Autoencoding Variational Bayes (Kingma and Welling, 2013)

CS772A: PML

Variational Autoencoder (VAE)

▪ VAE has three main components

▪ A prior 𝑝𝜃 𝒛 over latent codes

▪ A probabilistic decoder/generator 𝑝𝜃(𝒙|𝒛), modeled by a deep neural net

▪ A posterior or probabilistic encoder 𝑝𝜃 𝒛 𝒙 approx. by an “inference network” 𝑞𝜙 𝒛 𝒙

▪ VAE is learned by maximizing the ELBO

▪ The Reparametrization Trick is commonly used to optimize the ELBO

▪ Posterior is inferred only over 𝒛, and usually only point estimate on 𝜃

13

Using the idea of

“Amortized Inference”

(next slide)

ELBO for a

single data

point

−
𝑞𝜙 should be such that data 𝑥 is

reconstructed well from 𝑧(high log-lik)

𝑞𝜙 should also be simple (close

to the prior)

Maximized to

find the optimal

𝜃 and 𝜙

Here 𝜃 collectively denotes all the

parameters of the prior and likelihood

Here 𝜙 collectively denotes all

the parameters that define the

inference network

CS772A: PML

Amortized Inference

▪ Latent variable models need to infer the posterior 𝑝(𝒛𝑛|𝒙𝑛) for each observation 𝒙𝑛

▪ This can be slow if we have lots of observations because

1. We need to iterate over each 𝑝(𝒛𝑛|𝒙𝑛)
2. Learning the global parameters needs wait for step 1 to finish for all observations

▪ One way to address this is via Stochastic VI

▪ Amortized inference is another appealing alternative (used in VAE and other LVMs too)

▪ Thus no need to learn 𝜙𝑛’s (one per data point) but just a single NN with params 𝑾
▪ This will be our “encoder network” for learning 𝒛𝑛

▪ Also very efficient to get 𝑝 𝒛∗ 𝒙∗ for a new data point 𝒙∗

14

𝑝 𝒛𝑛 𝒙𝑛 ≈ 𝑞 𝒛𝑛 𝜙𝑛 = 𝑞 𝒛𝑛 NN(𝒙𝑛; 𝑾))
If 𝑞 is Gaussian then the NN will

output a mean and a variance

CS772A: PML

Variational Autoencoder: The Complete Pipeline

▪ Both probabilistic encoder and decoder learned jointly by maximizing the ELBO

15

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Reparametrization trick

used for computing

ELBO’s gradient w.r.t. 𝜙

CS772A: PML

Generative Adversarial Network (GAN)

▪ GAN is an implicit generative latent variable model

▪ Can generate from it but can’t compute 𝑝(𝒙) - the model doesn’t define it explicitly

▪ GAN is trained using an adversarial way (Goodfellow et al, 2013)

16

Unlike VAE, no explicit parametric

likelihood model 𝑝(𝑥|𝑧)

Thus can’t train

using methods that

require likelihood

(MLE, VI, etc)

Discriminator network is trained to

make 𝐷(𝑥) close to 1

Discriminator network is trained to make 𝐷 𝐺 𝑧

close to 0 and generator network is trained to make it

to be close to 1 to fool the discriminator into

believing that 𝐺(𝑧) is a real sample

Min-max optimization

Assuming data

is images

The discriminator can be a

binary classifier or any method

that can compare b/w two

distributions (real and fake here)

CS772A: PML

Generative Adversarial Network (GAN)

▪ The GAN training criterion was

▪ With 𝐺 fixed, the optimal 𝐷 (exercise)

▪ Given the optimal 𝐷, The optimal generator 𝐺 is found by minimizing

17

Distribution of synthetic data𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Distribution of real data

𝑉 𝐷𝐺
∗ , 𝐺 = 𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎

log
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝒙∼𝑝𝑔

log
𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

= KL 𝑝𝑑𝑎𝑡𝑎 𝑥
𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
+ KL 𝑝𝑔 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
− log 4

Jensen-Shannon

divergence between

𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔.

Minimized when

𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

Thus GAN can learn the true data

distribution if the generator and

discriminator have enough modeling power

CS772A: PML

GAN Optimization

▪ The GAN training procedure can be summarized as

18

𝜃𝑔 and 𝜃𝑑 denote the params of the deep neural nets

defining the generator and discriminator, respectively

In practice, in this step, instead of minimizing

log(1 − 𝐷(𝐺 𝑧), we maximize log 𝐷 𝐺 𝑧

In practice, for stable training, we run 𝐾 > 1 steps of

optimizing w.r.t. 𝐷 and 1 step of optimizing w.r.t. 𝐺

Reason: Generator is bad initially so

discriminator will always predict correctly

initially and log(1 − 𝐷(𝐺 𝑧) will saturate

CS772A: PML

GANs that also learn latent representations

▪ The standard GAN can only generate data. Can’t learn the latent 𝒛 from 𝒙

▪ Bidirectional GAN* (BiGAN) is a GAN variant that allows this

19

Consists of an

encoder as well Real pair/fake pair?

Can be shown*

to “invert” 𝐺

*Adversarial Feature Learning (Donahue et a Dumoulin l, 2017) #Adversarially Learned Inference (Dumoulin et al, 2017)

CS772A: PML

Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔
[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy)

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 + trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2)

▪ These measures can also be used for evaluating other deep gen models like VAE

20

𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how

realistic the generated data is

High IS and low

FID is desirable

CS772A: PML

GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)

21

GAN 1: No mode collapse (all 10
modes captured in generation)

GAN 2: Mode collapse (stuck on
one of the modes)

	Slide 1: MCMC Sampling (wrap-up), Deep Generative Models
	Slide 2: Hamiltonian/Hybrid Monte Carlo (HMC)
	Slide 3: Generating Samples in HMC
	Slide 4: HMC in Practice
	Slide 5: Parallel/Distributed MCMC
	Slide 6: Parallel/Distributed MCMC
	Slide 7: Approximate Inference: VI vs Sampling
	Slide 8: Inference Methods: Summary
	Slide 9: Latent Variable Models for Generation Tasks
	Slide 10: Factor Analysis and Probabilistic PCA
	Slide 11: Some Variants of FA/PPCA
	Slide 12: A Deep Generative Model: Variational Auto-encoder (VAE)
	Slide 13: Variational Autoencoder (VAE)
	Slide 14: Amortized Inference
	Slide 15: Variational Autoencoder: The Complete Pipeline
	Slide 16: Generative Adversarial Network (GAN)
	Slide 17: Generative Adversarial Network (GAN)
	Slide 18: GAN Optimization
	Slide 19: GANs that also learn latent representations
	Slide 20: Evaluating GANs
	Slide 21: GAN: Some Issues/Comments

