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Hamiltonian/Hybrid Monte Carlo (HMC)

▪ HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info

▪ Uses the idea of simulating a Hamiltonian Dynamics of a physical system

▪ Consider the target posterior 𝑝 𝜃 𝒟 ∝ exp(−𝑈 𝜃 )

▪ Think of 𝜃 as “position” then 𝑈 𝜃 = −log 𝑝 𝒟 𝜃 𝑝(𝜃) is like “potential energy”

▪ Let’s introduce an auxiliary variable - the momentum 𝒓 of the system

▪ Can now define a joint distribution over the position and momentum as

▪ The total energy (potential + kinetic) or the Hamiltonian of the system

▪ Given a sample (𝜃, 𝒓) from 𝑝(𝜃, 𝒓), ignoring 𝒓, 𝜃 will be a sample from 𝑝(𝜃|𝒟)
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Constant w.r.t. time

𝑝 𝜃, 𝒓 𝒟 ∝ exp −𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 ∝ 𝑝 𝜃 𝒟 𝑝(𝒓)

𝐻 𝜃, 𝒓 = 𝑈 𝜃 −
1

2
𝒓⊤𝑀−1𝒓 = 𝑈 𝜃 + 𝐾(𝒓)
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Generating Samples in HMC

▪ Given an initial (𝜃, 𝒓), Hamiltonian Dynamics defines how (𝜃, 𝒓) changes w.r.t. time 𝑡

▪ We can use these equations to update 𝜃, 𝒓 → (𝜃∗, 𝒓∗) by discretizing time

▪ For 𝑠 =  1: 𝑆, sample as follows
▪ Initialize                                                                             

▪ Do 𝐿 “leapfrog” steps with learning rates 𝜌ℓ = 𝜌 for ℓ < 𝐿 and 𝜌𝐿 = 𝜌/2
▪ For ℓ = 1: 𝐿

▪ Perform MH accept/reject test on 𝜃𝐿, 𝒓𝐿 . If  accepted 𝜃(𝑠) = 𝜃𝐿

▪ The momentum forces exploring different regions instead of getting driven to regions 
where the MAP solution is

 

3

 

A single sample generated 

by taking 𝐿 steps

Reason: Getting analytical 

solutions for the above 

requires integrals which is 

in general intractable

𝐿 usually set to 5 and learning rate tuned 

to make acceptance rate around 90%
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HMC in Practice

▪ HMC typically has very low rejection rate (that too, primarily due to discretization error)

▪ Performance can be sensitive to 𝐿 (no. of leapfrog steps) and step-sizes, tuning hard

▪ A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler – 
doesn’t require setting 𝐿)

▪ Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC

▪ Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)

▪ An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)
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Parallel/Distributed MCMC

▪ Suppose our goal is to compute the posterior of 𝜃 ∈ ℝ𝐷 (assuming 𝑁 is very large)

▪ Suppose we have 𝐽 machines with data partitioned as 𝐗 =  {𝐗 𝑗 }𝑗=1
𝐽

▪ Let’s assume that the posterior 𝑝(𝜃|𝐗) factorizes as

▪ Here                                                            is known as the “subset posterior” 

▪ Assume the 𝑗𝑡ℎ machine generates 𝑇 MCMC samples {𝜃𝑗,𝑡}𝑡=1
𝑇

▪  We need a way to combine these subset posteriors using a “consensus”
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Parallel/Distributed MCMC

▪ Many ways to compute the consensus samples. Let’s look at two of them

▪ Approach 1: Weighted Average: መ𝜃𝑡 = σ𝑗=1
𝐽

𝑊𝑗𝜃𝑗,𝑡 where 𝑊𝑗 can be learned as follows

▪ Assuming Gaussian likelihood and Gaussian prior on 𝜃 

▪ Approach 2: Fit 𝐽 Gaussians, one for each {𝜃𝑗,𝑡}𝑡=1
𝑇 and take their product 

▪ For detailed proofs and other approaches, may refer to the reference below
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Patterns of Scalable Bayesian Inference (Angelino et al, 2016)

These approaches can 

also be used to make VI 

parallel/distributed



CS772A: PML

Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿) 

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with 
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*
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𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆


𝑠=1

𝑆

𝑝 𝑥∗ 𝑍 𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples 

into something more compact

Closed form if  integral is 

tractable (otherwise Monte 

Carlo avg still needed for PPD)
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Inference Methods: Summary

▪ MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)

▪ Conjugate models with one “main” parameter: Straightforward posterior updates

▪ MLE-II/MAP-II: Often useful for estimating the hyperparameters

▪ EM: If  we want to do MLE/MAP for models with latent variables
▪ Very general algorithm, can also be made online

▪ Used when we want point estimates for some unknowns and posterior over others

▪ Can use it for hyperparameter estimation as well

▪ Often better than using direct gradient methods

▪ VI and sampling methods can be used to get full posterior for complex models
▪ Quite easy if  we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

▪ In other cases, we have general VI with Monte-Carlo gradients, MH sampling

▪ MCMC can also make use of gradient info (LD/SGLD)

▪ For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx
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Latent Variable Models for Generation Tasks

▪ Assume a 𝐾-dim latent variable 𝒛𝑛 is transformed to generate to 𝐷-dim observation 𝒙𝑛

▪ It is common to use a Gaussian prior for 𝒛𝑛 (though other priors can  be used) 

▪ If  we use a neural net or GP, such models can generate very high-quality data 
▪ Take the trained network, generate a random 𝒛 from prior, pass it through the model to generate 𝒙
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𝒛𝑛 𝒙𝑛

𝑝(𝒙|𝑓 𝒛; 𝐖 )𝑝(𝒛)

Some sample images generated by Vector Quantized Variational Auto-Encoder 
(VQ-VAE), a state-of-the-art latent variable model for generation

f can be some linear or nonlinear model 

which defines the parameters of the 

distribution of 𝑝(𝑥|𝑧) and 𝑊 denotes the 

parameters of this model

Also possible to use a 

GP to model 𝑓
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Factor Analysis and Probabilistic PCA

▪ FA and PPCA assume 𝑓 to be a linear model

▪ In FA/PPCA, latent variables 𝒛𝑛 ∈ ℝ𝐾 typically assumed to have a Gaussian prior

▪ If  we want sparse latent variabled, can use Laplace or spike-and-slab prior on 𝒛𝑛

▪ More complex extensions of FA/PPCA use a mixture of Gaussians prior on 𝒛𝑛

▪ Assumption: Observations 𝒙𝑛 ∈ ℝ𝐷 typically assumed to have a Gaussian likelihood

▪ Other likelihood models (e.g., exp-family) can also be used if  data not real-valued

▪ Relationship between 𝒛𝑛 and 𝒙𝑛 modeled by a noisy linear mapping

▪ Linear Gaussian Model. 𝑾, 𝒛𝑛’s, and Ψ can be learned (e.g, using EM, VI, MCMC)
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𝒙𝑛 = 𝑾𝒛𝑛 + 𝜖𝑛 = 
𝑘=1

𝐾

𝒘𝑘𝑧𝑛𝑘 + 𝜖𝑛
Zero-mean and diagonal or 

spherical Gaussian noise Diagonal for FA, 

spherical for PPCA

𝑝 𝐳𝑛 =  𝒩 𝐳𝑛 0, 𝐈

𝑝 𝐱𝑛|𝐳𝑛 =  𝒩 𝒙𝑛 𝐖𝐳𝑛, Ψ
Linear combination 

of the columns of 𝑾



CS772A: PML

Some Variants of FA/PPCA

▪ Gamma-Poisson latent factor model

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷-dim count-valued observations 𝐱n

▪ An example: Each 𝐱n is the word-count vector representing a document

▪ This can be thought of as a probabilistic non-negative matrix factorization model

▪Dirichlet-Multinomial/Multinoulli PCA

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷 categorical obs 𝐱n = {𝒙𝑛𝑑}𝑑=1
𝐷

▪ An example: Each 𝐱n is a document with 𝐷 words in it (each word is a categorical value)
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𝑝 𝐳n =  ς𝑘=1
𝐾 Gamma(znk|ak, bk)) 

𝑝 𝐱n|𝐳n =  ς𝑑=1
𝐷 Poisson(xnd|𝑓(𝐰d, 𝐳n)) 

This is the rate of the Poisson. It should 

be non-negative, exp(𝐰𝑑
⊤𝒛𝑛), or simply 

𝐰𝑑
⊤𝒛𝑛 if  𝒘𝑑 is also non-negative (e.g., 

using a gamma/Dirichlet prior on it)  

Popular for modeling count-

valued data (in text analysis, 

recommender systems, etc)

𝑝 𝐳n =  Dirichlet(𝐳n|𝜶) 

𝑝 𝐱n|𝐳n =  ς𝑑=1
𝐷 Multinoulli(xnd|𝑓(𝐰d, 𝐳n)) 

This should give the probability vector of 

the multinoulli over 𝑥𝑛𝑑 . It should be 

non-negative and should sums to 1

Also sums to 1

Non-negative priors often give a nice 
interpretability to such latent 
variable models (will see some more 
examples of such models shortly)
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A Deep Generative Model: Variational Auto-encoder (VAE)

▪ VAE* is a probabilistic extension of autoencoders (AE). An AE is shown below

▪ The basic difference is that VAE assumes a prior 𝑝(𝒛) on the latent code 𝒛
▪ This enables it to not just compress the data but also generate synthetic data

▪ How: Sample 𝒛 from a prior and pass it through the decoder

▪ Thus VAE can learn good latent representation + generate novel synthetic data

▪ The name has “Variational” in it since it is learned  using VI principles

12

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html*Autoencoding Variational Bayes (Kingma and Welling, 2013)
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Variational Autoencoder (VAE)

▪ VAE has three main components

▪ A prior 𝑝𝜃 𝒛  over latent codes

▪ A probabilistic decoder/generator 𝑝𝜃(𝒙|𝒛), modeled by a deep neural net

▪ A posterior or probabilistic encoder 𝑝𝜃 𝒛 𝒙  approx. by an “inference network” 𝑞𝜙 𝒛 𝒙

▪ VAE is learned by maximizing the ELBO

▪ The Reparametrization Trick is commonly used to optimize the ELBO

▪ Posterior is inferred only over 𝒛, and usually only point estimate on 𝜃 
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Using the idea of 

“Amortized Inference” 

(next slide)

ELBO for a 

single data 

point

−
𝑞𝜙 should be such that data 𝑥 is 

reconstructed well from 𝑧(high log-lik)

𝑞𝜙 should also be simple (close 

to the prior)

Maximized to 

find the optimal 

𝜃 and 𝜙

Here 𝜃 collectively denotes all the 

parameters of the prior and likelihood

Here 𝜙 collectively denotes all 

the parameters that define the 

inference network
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Amortized Inference

▪ Latent variable models need to infer the posterior 𝑝(𝒛𝑛|𝒙𝑛) for each observation 𝒙𝑛

▪ This can be slow if  we have lots of observations because

1. We need to iterate over each 𝑝(𝒛𝑛|𝒙𝑛) 
2. Learning the global parameters needs wait for step 1 to finish for all observations

▪ One way to address this is via Stochastic VI

▪ Amortized inference is another appealing alternative (used in VAE and other LVMs too)

▪ Thus no need to learn 𝜙𝑛’s (one per data point) but just a single NN with params 𝑾
▪ This will be our “encoder network” for learning 𝒛𝑛 

▪ Also very efficient to get 𝑝 𝒛∗ 𝒙∗  for a new data point 𝒙∗
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𝑝 𝒛𝑛 𝒙𝑛 ≈ 𝑞 𝒛𝑛 𝜙𝑛 = 𝑞 𝒛𝑛 NN(𝒙𝑛; 𝑾))
If 𝑞 is Gaussian then the NN will 

output a mean and a variance
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Variational Autoencoder: The Complete Pipeline

▪ Both probabilistic encoder and decoder learned jointly by maximizing the ELBO
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Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Reparametrization trick 

used for computing 

ELBO’s gradient w.r.t. 𝜙
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Generative Adversarial Network (GAN)

▪ GAN is an implicit generative latent variable model

▪ Can generate from it but can’t compute 𝑝(𝒙) - the model doesn’t define it explicitly

▪ GAN is trained using an adversarial way (Goodfellow et al, 2013)

 

16

Unlike VAE, no explicit parametric 

likelihood model 𝑝(𝑥|𝑧)

Thus can’t train 

using methods that 

require likelihood 

(MLE, VI, etc)

Discriminator network is trained to 

make 𝐷(𝑥) close to 1

Discriminator network is trained to make 𝐷 𝐺 𝑧  

close to 0 and generator network is trained to make it 

to be close to 1 to fool the discriminator into 

believing that 𝐺(𝑧) is a real sample

Min-max optimization

Assuming data 

is images

The discriminator can be a 

binary classifier or any method 

that can compare b/w two 

distributions (real and fake here)
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Generative Adversarial Network (GAN)

▪ The GAN training criterion was

▪ With 𝐺 fixed, the optimal 𝐷 (exercise)

▪ Given the optimal 𝐷, The optimal generator 𝐺 is found by minimizing
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Distribution of synthetic data𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Distribution of real data

𝑉 𝐷𝐺
∗ , 𝐺 =  𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎

log
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝒙∼𝑝𝑔

log
𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

=  KL 𝑝𝑑𝑎𝑡𝑎 𝑥  
𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
+ KL 𝑝𝑔 𝑥  

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
− log 4

Jensen-Shannon 

divergence between 

𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔. 

Minimized when 

𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

Thus GAN can learn the true data 

distribution if  the generator and 

discriminator have enough modeling power
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GAN Optimization

▪ The GAN training procedure can be summarized as
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𝜃𝑔 and 𝜃𝑑 denote the params of the deep neural nets 

defining the generator and discriminator, respectively

In practice, in this step, instead of minimizing 

log(1 − 𝐷(𝐺 𝑧 ), we maximize log 𝐷 𝐺 𝑧

In practice, for stable training, we run 𝐾 > 1 steps of 

optimizing w.r.t. 𝐷 and 1 step of optimizing w.r.t. 𝐺

Reason: Generator is bad initially so 

discriminator will always predict correctly 

initially and log(1 − 𝐷(𝐺 𝑧 ) will saturate 
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GANs that also learn latent representations

▪ The standard GAN can only generate data. Can’t learn the latent 𝒛 from 𝒙

▪ Bidirectional GAN* (BiGAN) is a GAN variant that allows this
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Consists of an 

encoder as well Real pair/fake pair?

Can be shown* 

to “invert” 𝐺

*Adversarial Feature Learning (Donahue et a Dumoulin l, 2017) #Adversarially Learned Inference (Dumoulin et al, 2017)
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Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔
[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦 ]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥  

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy) 

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 +  trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2) 

▪ These measures can also be used for evaluating other deep gen models like VAE
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𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how 

realistic the generated data is

High IS and low 

FID is desirable
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GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues 

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)

21

GAN 1: No mode collapse (all 10 
modes captured in generation)

GAN 2: Mode collapse (stuck on 
one of the modes)
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