Logistic/Softmax Classification,
Laplace’s Approximation, and
Exponential Family

CS772A: Probabilistic Machine Learning
Piyush Rai

Plan today

" | ogistic and Softmax Classification, Generalized Linear Models
" | aplace’s approximation: A method to approximate posterior for non-conjugate cases

" Exponential family

CS772A: PML

There are other ways too that can convert

L . t . R ° the score into a probability, S_IL_JCh as a CDF:
= , == == h i

O g I S I C e g re S S I O n fh(eyCDFlloJ; ;\Vf)(o,ll;. Thciz(rtwvod?l ivsvkenrsvvq; |aSs
"Probit Regression”.

= A discriminative model for binary classification (y € {0,1})
= A linear model with parameters w € R computes a score w' x for input x

= A sigmoid function maps this real-valued score into probability of label being 1

Also used as a

1 exp(z)
: TR o(z) = =
nonlinear “activation 1+exp(—2z) 1+ exp(2)
function” in deep

neural networks p(y = 1|x’ W) = U= O-(WTx)

Large positive score w'x means
large prob of label being 1, and large
z .

real-valued score negative score means low prob

* Thus conditional distribution of label y € {0,1} given x is the following Bernoulli
Likelihood

exp(wTx) 17

1 1y
1+exp(w'x)| |1+ exp(wa)]

p(ylx,w) = Bernoulli[y|u] = u¥(1 —)77 = [

= NLL is the binary cross-entropy loss: —[y,log u,, + (1 — y,)log (1 — u,,)]

= NLL is convex in w. Can also use a prior p(w|1) = N (w]|0, A7) if interested

in MAP or full posterior on w CS772A: PML

Multiclass Logistic (a.k.a. Softmax) Regression

" Also called multinoulli/multinomial regression: Basically, LR for K > 2 classes
= |n this case, y,, € {1,2, ..., K} and label probabilities are defined as

Real-valued scores wj, x,, are also known
as “logits” (thus K logits for each input)

<3

g

= K weight vecs wy, W,, ..., Wi (one per class), each D-dim, and W = [w{,W», ..., W]
= Each likelihood p(y,,|x,, W) is a multinoulli distribution. Therefore total likelihood

N K Yy Notation: y,,p = 1 if true class of
I,II — nté cYnd —
p(YIX. W) = ‘ ‘ 1‘ ‘{) 1“n£ Xpis€and y,, =0V L # £
n= =

Softmax function

Also note that Yp_q e =1
for any input x,

p()’n = klxn» W)

CS772A: PML

Generalized Linear Models

» (Probabilistic) Linear Regression: when response y is real-valued

p(ylx,w) = N(y|lw'x, f7)
" | ogistic Regression: when response y is binary (O/1)

exp(wTx) | 1 1=y
1+ exp(wa)] [1 + exp(wa)]

p(y|x,w) = Bernoulli[y|lo(w'x)] = [

* Both are examples of a Generalized Linear Model (GLM) | MLE/MAP of w is easy for GLMs (due

to convex objective, thanks to exp-

= The model depends on the inputs x via a linear model w'x family). Posterior usually requires
, , , , , , , , approximations if likelihood and prior
* GLM is defined using an exponential family distribution are not conjugate pairs (Laplace

approximation or other methods used)

p(ylx,w) = ExpFam[y|f (w'x)]

" ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
= (Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

" ExpFam distributions are more generally useful in other contexts as well
CS772A: PML

Logistic Regression: MAP and Posterior

" [he posterior will be Gaussian Bernoull
wix,y) = PWPOIX W) pW) [Tnzy pOmlW,)
' p(y1X) W) ITR=1 pOmlw, x,,) dw

= MAP estimation is easy. —log p(w|X, y) is convex for LR. Unique minima
= Can use first or second order optimization with gradient and Hessian being

N

g = —Z(yn—;1.,,)x,,+/\lw:XT(p,—y)+/\w (a D x 1 vector)
n=1
N
i = Z“"(l —)X X A =X "SX = (a D x D matrix)
=1

Un = O-(WTxn)

= Full posterior is intractable because of non-conjugacy

= A popular option is to use the Laplace's approximation (other methods like MCMC and
variational inference can also be used; will see them later) CS772A: PML

Laplace’s Approximation

» Consider a posterior distribution that is intractable to compute

p(D,0) _ p(D|0)p(6)
p(D) p(D)

® | aplace approximation approximates the above using a Gaussian distribution

p(0|D) =

Tells us about the space Related to the Fisher
(curvature) of the true Information Matrix

Laplace Approx. posterior around Oy 4p (FIM); will see shortly

1 Gaussian /

~ -1
p (0 |D) N(H | HMAP’ A) Negative of the Hessian,

l.e., the second derivative
Omap = argmaxg log p(6|D) of the log joint, at Oy 4p

A = —V; logp(6]D) ‘ = —Vz log p(D, 8)

0=0pmap 0=0pmap

" | aplace’s approx. is based on a second-order Taylor approx. of the posterior
CS772A: PML

Derivation of the Laplace’s Approximation
p(D) = exp(log p(D, Oyap)) x (2)P/? det(A)/?

We also get a Laplace

" | et's write the Bayes rule as
approximation of the marginal

p(D.0) __p(D,0) ~exp[logp(D,0)] |ikeinood (for free
p(D) [p(@,0)d8 [expllogp(D,0)]do 5T
model evidence

» Consider second-order Taylor approximation of a function f(6) around some 6,
1
f(8) = f(8p) + (6 —65)"Vof(8y) + 5(9 —00) "V £ (60)(6 — 6)

= Assuming f(0) = logp(D,0) and 8y = Opap

Constant wirt. 8

logp(D,0) = logp(D, Opap) + = (9 HMAP)Tvleg (D, Oprap) (0 — Oprap)

p(0|D) =

Same as V2log p(0y4p|D)

p(0|D) o« exp [_— (0 = Opmap) ' (— Vzlog p(D, 0pap))(O — HMAP)]

— N(QlHMAp,A_l) (WhereA _ —Vzlog p(D HMAP) — _H)

CS77PA: PML

Properties of Laplace’s Approximation

" Straightforward it posterior's derivatives (first/second) can be computed easily

E.g., a deep neural network, or even in
simpler models (e.g., logistic reg with a

= Expensive if parameter 6 is very high dimensional = Je., e number of features
" Reason. We need to compute and invert Hessian of size D X D (D is the # of params)

If K local modes, then define the approx.
posterior as a mixture of K Gaussians

K
p(6|D) ~ Zk_ln(kw(ewn(fjp, HOO™

= Can do badly if the (true) posterior is multimodal

[- timodal boster| Useful for deep
or muitimoadal posteriors, learning models (see paper cited below for details)

True posterior /’\ can use a mixture of .
‘ //_\ . \ Laplace approximations* 7 ﬂ%ﬂ .
Gaussian 4 W
roximation \ '
app !o/ atio § \

" Used only when 8 is a real-valued vector (because of Gaussian approximation)

* Note: Even if we have a non-probabilistic model (loss function + regularization), we
can obtain an approx “posterior” for that model using the Laplace’s approximation
* Optima of the regularized loss function will be Gaussian’'s mean
" Inverse of the second derivative of the regularized loss function will be covariance matrix

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)

CS772A: PML

Detour: Hessian and Fisher Information Matrix

" Hessian is related to the Fisher Information Matrix (FIM)

» Gradient of the log likelihood is also called score function: s(8) = Vg log p(y|0)
= Note: At some places (some generative models) V,, log p(y|6) also called score function

= Expectation of score function is zero: [y 9y[s(8)] = 0 (exercise)

= Fisher Information Matrix (FIM) is covariance matrix of score function
F=Epy0)[(s(8) —0)(s(8) —0)'] =E, 0y [Vg log p(¥|0)Vg log p(¥]6) "]

Note: If we have a prior p(8) too, then also
add the second derivative of log p(8)

"F =—E,qy 0 [Vélog p(yl6)]| i.e., negative of expected Hessian (exercise)

= Fach entry F;; tells us how “sensitive” the model is w.rt. the pair (6;, 0;)

= Each diagonal entry Fj; = (Vg, log p(y|6))? tells “important” 6; is by itself
» Can compute empirical FIM using data; F = %Z,’;’zl[vg log p(v,|0)Vg log p(v,|0) "]

CS772A: PML

Laplace Approx. for High-Dimensional Problems

= For high-dim 8, Laplace's approx p(0|D) ~ N (6|0,,4p, A~ 1) can be expensive

Diagonal approximation assumes that

. Many methOdS tO addreSS thlS’ e'g" the weights are all independent
= Use a diagonal of (empirical) Fisher as the precision whereas block-diagonal assumes that
the weights within each block may

A ~ d]ag(F) have correlations

= Use a block-diagonal approximation® of A (better than diagonal approx)

» For deep nets, use LA only for some weights + point estimates for others
= Option 1: Use LA only for last layer weights - “last layer Laplace's approximation™ (LLLA)
= Option 2: Use LA for weights from an identified “subnetwork”

Go0 oo o

(a) All (b) Subnetwork (c) Last-Layer
" See the “Laplace Redux” paper for more options and discussion on scalability of LA

*KFAC paper: “A Scalable Laplace Approximation for Neural Networks” (Ritter et al, ICLR 2018) *Laplace Redux -- Effortless Bayesian Deep Learning ” (Daxberger et al, NeurIPS 2021) CS772A: PML

PPD when using Laplace’s Approximation

" The PPD when using the Laplace's approximation of the posterior

p(y.lx.,D) = [p(y.|x.,0)p(8|D)d6

This PPD is an approximation
because we are using an ~ f p(y* |x*, H)]\f(@ |9MAPr A_l)dH

approximation of the posterior

= PPD may be intractable depending on the form of p(y.|x.,8) = p(y.|f (x.,6))
= \We can use further approximations if the integral is intractable. Two options:

" Generate M samples {H(i)}?ilfrom N(B0p4p, A1) and compute a Monte Carlo approx.

Using MC approximation is
(l)) the general purpose
X 0 option when computing
intractable PPD

1 M
[POl 0N (016wap, A0 ~ 37> (.
l=

Generalized Gauss-Newton
method

= Use the GGN approximation of LA. Equivalent to using a “linearlized” model for

p(y.|x., 8), using which we can easily compute PPD using linear Gaussian model results
CS772A: PML

Detour: Gradient and Hessian

» For LA (and for optimization general), we need Vg log p(D, 8) and Vg log p(D, 8)

* These depend on the likelihood function, p(y|x, 8) = p(y|f (x, 0))

* The form of the function f depends on the likelihood model. Some examples:
p(y|x,0) = N(y|0"x,02) p(y|x,) = multinoulli(y|softmax(8 " x))

p(y|x,0) = N (y|NN(x, 0),5?) p(y|x,0) = multinoulli(y|softmax(NN(x, 6)))

» Assume y and f = f(x, 9) both to be vectors of size C, 8 € RF and define

Jacobian of size Hessian of size

2 r(y;) = Vylog p(y|f)
¢ X Pwith Jo(x) =V [Ce(xna-,-—h Ho(x) =Vpf
Ty ° of XD L(y;f) = —Vilog p(y!f)

Vo logp(y|f(x,0)) = Jg(x)T r(y; 1)
V5 log p(yIf (x,0)) = Ho(X)T r(y; £) — Jo ()T L(y;) Jg (%)

CS772A: PML

Generalized Gauss-Newton (GGN) Approximation

" [he Hessian of the log-likelihood turned out to be

V5 logp(YIf (x,0)) = Hg(x)T r(y;) — Jo ()T L(y; £)Jp (x)

= [gnoring the term involving Hy (x) = V£, we have an

approximation

This approximation of the Hessian is

V3 log p(¥If (x,0)) = —Jo ()T L(y; £)Jg ()

guaranteed to be positive semi-definite
unlike the original Hessian because

" This is called the Generalized Gauss-Newton (GGN) ap
precision matrix used in Laplace Approximation

= We can further apply diagonal or block-diagonal approximations for efficiency*

—log p(y|f (x,0)) may not be convex in

oroximation™ of the

Reason: Hg(x) will be O
for a linear function

» GGN is also equivalent to approximating f = f(x, 8) by a linear function of 8

Gradient vector acting as Not the gradient of the (log)likelihood — | [A linear Makes PPD easy

Gradient of f at @ = Op4p

A nonlinear function, e.g., a | x..0) = x.. 6 V T 6 —0

neural net, approximated || f(*)) f(*) MAP) + QMAPf (MAP)
by a linear function

*Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021)

function of 0 to compute when
— £ using Laplace
o fhn (x*’ 6) approximation

CS772A: PML

PPD with GGN/Linearized Laplace’s Approximation

» Assuming p(y|x,0) = p(y|f(x,8)), LA based PPD is
p(y.1x.,D) = [p(.If (x.,0)pOID)A0 = [p(y.|f (x., 0DIN (0]0y4p, A~)dO

" We can use GGN and Linearized Laplace idea in two ways for the above PPD

» Use f(x,,0) but use N (6|0yap, Acen) S approx post instead N (8|0yap, A1)
= May require Monte Carlo integration if PPD integral is intractable (e.g., if f is a neural net or non-lin func)
" [ess commonly used and is less accurate*

" Use fiin(x.,0) instead of f(x,,0) and also use N (8|0 4p, Acen) AS APProx. post.
= Assuming p(y.1f (x.,8)) = N V.l fiin (X5, 0), B~1) for scalar-valued regression

Linear transformation of @ with Even though f(x,, 8) is a complex

p(8|D) = N (6|6pap, Acen) and y* =~ fill’l (x*, 9) ~+ € | function like neural net, using linearlized
Gaussian noise € ~ N (0, 3—1) Laplace approx, we get PPD in closed form

p(y.|x., D) = N(y* f(x., Omap), VQMAPfTAE%}NVQMAPf + :8_1)

* *In-Between’ Uncertainty in Bayesian Neural Networks (Foong et al, 2019), CS772A: PML
* *Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021))

Standard Laplace vs Linearlized Laplace

= Standard LA based PPD is usually computed using Monte Carlo sampling

1 M .
pO.1%.D) = [PO.IF (X0 OIN (O164ap, A0 ~ 22>~ p(y.|f(x.,6©))
1=1

= |f the samples 8% don’t come from high-prob regions of the posterior, the above
PPD may have poor accuracy (often happens for high-dim posteriors) o

® Linearlized Laplace based PPD is computed as
p(y.|x., D) = N(y* f(x., Oprap), VQMAPfTA(_}%}NVHMAPf T 18_1)

" | inearlized Laplace based PPD typically is reasonably accurate and sometimes
even more accurate than standard LA with PPD computed using MC sampling*

* ‘In-Between’ Uncertainty in Bayesian Neural Networks (Foong et al, 2019),
* Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021) CS772A: PML

Logistic Regression PPD using Monte Carlo

" [he posterior predictive distribution can be computed as

p(y, = 1lx, X, ¥) = [p(y. = 1w, x)p(W|X, y)dw

Integral not tractable and
must be approximated

* Monte-Carlo approximation of this integral is one possible way
" Draw M samples wq, W, ..., Wy, from the approx. of posterior
= Approximate the PPD as follows

1M 1M
PO =1, XN~ pO =W x) = 22> (Wi
M m=1 M m=1

= In contrast, when using MLE/MAP solution W ., the plug-in pred. distribution

sigmoid Gaussian (if using Laplace approx.)

p(y. = 1x., X, y) = [p(y. = 1w, x.)p(w|X, y)dw

AN\ AN\ T
~ p(y* — 1|Wopt» x*) — U(Wopt xn)
CS772A: PML

LR: Plug-in Prediction vs Bayesian Averaging

" Plug-in prediction uses a single w (point est) to make prediction
= PPD does an averaging using all possible w's from the posterior

Input Dimension 2

p()’* — 1|x*,X, y) ~ J(Wopthn)

Logistic Regression decision boundary
when using a point estimate of w

\
\

-8 -6

4

—é 0 2
Input Dimension 1

4

6

8

Color transitions (red
to blue) in both plots
denote how the
probability of an
input changes from
belonging to red
class to belonging to
blue class. All inputs
on a line (or curve
on RHS plot)have
the same probability
of belonging to the
red/blue class

Input Dimension 2

p(y.

Logistic Regression decision boundary
when using posterior averaging

°
Ll
at
[
ol
[
f
il {

-~
L]

y

A"

Posterior averaging is like
using an ensemble of
models. In this example,
each model is a linear

" classifier but the ensemble-
= 1 like effect resulted in

8 : nonlinear boundaries

-8 -6 -4 -2 0 2 - 6 8
Input Dimension 1

1 M -
=1|x,X,y) = Mz 1a(wmxn)
m=

CS772A: PML

Exp. Family (Pi

tman, Darmois, Koopman, 1930s)

" Defines a class of distributions. An Exponential Family distribution is of the form

1

p(x10) = gy h0x) R0 o(x)] = h(x) expldT6(x) ~ A)

mx € X™is therv. bei

ng modeled (X denotes some space, e.g., R or {0,1})

=9 € R%: Natural parameters or canonical parameters defining the distribution

= p(x) € R?: Sufficient statistics (another random variable)
= Knowing this quantity suffices to estimate parameter 8 from x

=7(0) = [h(x)exp
"A(8) = log Z(0):

07 (x)]dx: Partition Function

| og-partition function (also called cumulant function)

" h(x): A constant (d

oesn't depend on 8) CS772A: PML

Expressing a Distribution in Exp. Family Form

= Recall the form of exp-fam distribution p(x|0) = h(x)exp[0Tp(x) — A(6)]
= To write any exp-fam dist p() in the above form, write it as exp(log p())

exp (log Binomial(x| N, n)) = exp ('Og (N) At ”)NX)

X

X

— (2’) exp (xlog - ﬁu — Nlog(1 —M))

= Now compare the resulting expression with the exponential family form

p(x|6) = h(x)exp[0 ' p(x) — A(0)]

. o identity the natural parameters, sufficient statistics, log-partition function, etc.

— exp (Iog (N) + xlog i+ (N — x) log(1 — ,u))

CS772A: PML

(Univariate) Gaussian as Exponential Family

" | et's try to write a univariate Gaussian in the exponential family form
p(x|0) = h(x)exp[0" ¢(x) — A(0)]

» Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

1 (x — p)? 1 7 1 p
N(x|p, -:72) = s exp [— 5 = Nz exp | —=x — —x*— —— —logo

(5] wo-[a] o[-

h(x) = = A(f) = £, +logo = 72+ — Liog(~26,) — L log(2n)

o

ﬁ

CS772A: PML

Other Examples

= Many other distribution belong to the exponential family
= Bernoulli
" Beta
" Gamma
= Multinoulli/Multinomial
= Dirichlet
= Multivariate Gaussian
" . and many more (https://en.wikipedia.org/wiki/Exponential family)

= Note: Not all distributions belong to the exponential family, e.q.,
= Uniform distribution (x ~ Unif(a, b))
= Student-t distribution
= Mixture distributions (e.g., mixture of Gaussians)

CS772A: PML

https://en.wikipedia.org/wiki/Exponential_family

Log-Partition Function

* The log-partition function is A(#) = log Z(0) = log | h(x) exp[f ' ¢(x)]dx
" A(O) is also called the cumulant function
= Derivatives of A(8) can be used to generate the cumulants of the sufficient statistics

" Exercise: Assume 0 to be a scalar (thus ¢(x) is also scalar). Show that the first and
the second derivatives of A(0) are

dA

@ — Ep(x|6') [Qb(x)]

d2A ’ 2

F Ep(x|9) [Qb (X)] o [EP(-"W)[QS(X)” — var[gb(x)]

= Above result also holds when 6 and ¢ (x) are vector-valued (the “var” will be “covar”)

» Important: A(0) is a convex function of 8. Why?

CS772A: PML

VILE for Exponential Family Distributions

" Assume data D = {xq,...,xy} drawn i.i.d. from an exp. family distribution

p(x]6) = h(x)exp[8' ¢ (x) — A(0)]

* To do MLE, we need the overall likelihood -- a product of the individual likelihoods

N

N N N -
p(D]6) = | | p(xi|6) = [H h(x,-)} exp leTZ B(x;) — NA(Q)] = [H h(x,-)] exp [9 ¢(D) — NA(Q)}

i=1

= To estimate 8 (as we'll see shortly), we only need ¢(D) = Z,/'V:1 ¢(x;) and N
= Size of ¢(D) = ¥, p(x;) does not grow with N (same as the size of each ¢(x;))

* Only exponential family distributions have finite-sized sufficient statistics
* No need to store all the data; can simply update the sufficient statistics as data comes
= Useful in probabilistic inference with large-scale data sets and “online” parameter estimation
CS772A: PML

Bayesian Inference for Expon. Family Distributions

» Already saw that the total likelihood given N i.i.d. observations D = {x4,..., Xy}
N

p(D|0) o exp |07 (D) — NA(6)

where ¢(D) = Z o (xi)

" | et's choose the following prior (note: looks similar in terms of 8 within exp)

p(0]vo, T0) = h(6) exp [9% — A(8) — Ac(o, To)]

= |gnoring the prior's log-partition function Ac(vo, T0) = log [, h(8) exp [0 ' 70 — 16 A(6)] db

p(B|vo, T0) o h(B) exp [9% _ yoA(G)}

» Comparing the prior's form with the likelihood, note that

" 1V, is like the number of "pseudo-observations” coming from the prior

- is the total sufficient statistics of the pseudo-observations (

/v er pseudo-obs
0
CS772A: PML

The Posterior

" The likelihood and prior were)
p(D|6) o exp [0%(19) - NA(@)] where ¢(D) = > 6(x)

Assume its log partition Blun. 70) o h(8) ex lQTTo — A8] _—
function denoted as A, (vy, 7o) p(6]vo, To) (6) exp (6) Posterior is also

. . from the same Happens when the
» The posterior p(8|D) o p(0)p(D|0) therefore will be family as the prior .. prior is conjugate
to the likelihood

Its log partition function will be T _
i log artion urction wilbe | p(9]D) ox h(6) exp |0 (70 + 6(D)) — (vo + N)A(6)

= Fvery exp family likelihood has a conjugate prior having the form above
= Posterior's hyperparams Ty, v obtained by adding “stuff” to prior's hyperparams

Number of pseudo-observations plus , Another equivalent form To = 70/
number of actual observations o — VTt N T 7o + ¢(D)
. , p(8]D) o h(B) exp |67 (1o + N) — (0 + N)A(®)
Suff-stats of pseudo-obervations plus 749" ¢— T + @(D) vo+ N
suff-stats of actual observations o I 5= %
Convex comb of avg . voTo + N
suff-stats of pseudo T *—
vo + N CS772A: PML

obs and actual obs

Posterior Predictive Distribution

» Assume some training data D = {x4,...,xy} from some exp-fam distribution
" Assume some test data D' = {¥y,..., Xy} from the same distribution

" The posterior pred. distr. of D’

Exp. Fam. likelihood
wirt. test data

p(D'D) = [o(D'16)p(6ID)d8

Posterior (same form as the
prior due to conjugacy)

[3
S
+
<
3
<)
+
)
Q.
D

N/
= / [H h(i;)] exp [OTd)(D’) - N’A(e)] h(6) exp {(f(m + ¢(D)) — (vo + N)A(0) —

‘#

constant w.r.t. 6

" This gets further simplified into

~~~~~

p(D'|D) = [l} h(i;)} ““““““ exp [A(U6 + N, 76 + ¢(D))]

=~

exp [Ac(vo + N, 7o + ¢(D))] CS772A: PML

1



Posterior Predictive Distribution L

marginal likelihood has
closed form expression

= Since AC — log ZC or ZC — exp(AC)’ we can write the PPD as when working with exp-

p(D'|D) = [H h(x;)

i=1

Z(vo+ N+ N, 79 + o(D) + ¢(D"))
Z(vo + N, 70 + ¢(D))

] family distributions

— [H h(x; :I exp [Ac(vo + N+ N', 79 + ¢(D) + ¢(D’)) — Ac(vo + N, To + ¢(D))]

» Therefore the posterior predictive is proportional to

= Ratio of two partition functions of two “posterior distributions” (one with N 4+ N’ examples and
the other with N examples)

= Exponential of the difference of the corresponding log-partition functions

* Note that the form of Z,. (and A.) will simply depend on the chosen conjugate prior

= Very useful result. Also holds for N = 0
= In this case p(D’) = [ p(D'|0)p(6)db is simply the marginal likelihood of test data D’

CS772A: PML



summary

" Exp. family distributions are very useful for modeling diverse types of data/parameters
= Conjugate priors to exp. family distributions make parameter updates very simple
» Other guantities such as posterior predictive can be computed in closed form

= Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

= Useful in designing generative models for unsupervised learning

» Used in designing Generalized Linear Models: Model p(y|x) using exp. fam distribution
* Linear regression (with Gaussian likelihood) and logistic regression are GLMs

= Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs

sampling, and especially variational inference)
CS772A: PML



	Slide 1: Logistic/Softmax Classification, Laplace’s Approximation, and Exponential Family
	Slide 2: Plan today
	Slide 3: Logistic Regression
	Slide 4: Multiclass Logistic (a.k.a. Softmax) Regression
	Slide 5: Generalized Linear Models
	Slide 6: Logistic Regression: MAP and Posterior
	Slide 7: Laplace’s Approximation
	Slide 8: Derivation of the Laplace’s Approximation
	Slide 9: Properties of Laplace’s Approximation
	Slide 10: Detour: Hessian and Fisher Information Matrix
	Slide 11: Laplace Approx. for High-Dimensional Problems
	Slide 12: PPD when using Laplace’s Approximation
	Slide 13: Detour: Gradient and Hessian
	Slide 14: Generalized Gauss-Newton (GGN) Approximation
	Slide 15: PPD with GGN/Linearized Laplace’s Approximation
	Slide 16: Standard Laplace vs Linearlized Laplace
	Slide 17: Logistic Regression PPD using Monte Carlo
	Slide 18: LR: Plug-in Prediction vs Bayesian Averaging
	Slide 19: Exp. Family (Pitman, Darmois, Koopman, 1930s)
	Slide 20: Expressing a Distribution in Exp. Family Form
	Slide 21: (Univariate) Gaussian as Exponential Family
	Slide 22: Other Examples
	Slide 23: Log-Partition Function
	Slide 24: MLE for Exponential Family Distributions
	Slide 25: Bayesian Inference for Expon. Family Distributions
	Slide 26: The Posterior
	Slide 27: Posterior Predictive Distribution
	Slide 28: Posterior Predictive Distribution
	Slide 29: Summary

