
Logistic/Softmax Classification,
Laplace’s Approximation, and

Exponential Family

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Plan today
2

▪ Logistic and Softmax Classification, Generalized Linear Models

▪ Laplace’s approximation: A method to approximate posterior for non-conjugate cases

▪ Exponential family

CS772A: PML

Logistic Regression

▪ A discriminative model for binary classification (𝑦 ∈ {0,1})

▪ A linear model with parameters 𝒘 ∈ ℝ𝐷 computes a score 𝒘⊤𝒙 for input 𝒙

▪ A sigmoid function maps this real-valued score into probability of label being 1

▪ Thus conditional distribution of label 𝑦 ∈ {0,1} given 𝒙 is the following Bernoulli

▪NLL is the binary cross-entropy loss: −[𝑦𝑛log 𝜇𝑛 + 1 − 𝑦𝑛 log 1 − 𝜇𝑛]

▪NLL is convex in 𝒘. Can also use a prior 𝑝 𝒘 𝜆 = 𝒩 𝒘|𝟎, 𝜆−1𝑰 if interested
in MAP or full posterior on 𝒘

3

𝑝 𝑦 𝒙, 𝒘 = Bernoulli 𝑦 𝜇 = 𝜇𝑦 1 − 𝜇 1−𝑦 =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

real-valued score

𝑝 𝑦 = 1 𝒙, 𝒘 = 𝜇 = 𝜎 𝒘⊤𝒙 Large positive score 𝒘⊤𝒙 means

large prob of label being 1, and large

negative score means low prob

Likelihood

𝜎 𝑧 =
1

1 + exp(−𝑧)
=

exp(𝑧)

1 + exp(𝑧)

There are other ways too that can convert

the score into a probability, such as a CDF:

𝑝 𝑦 = 1 𝒙, 𝒘 = 𝜇 = Φ 𝒘⊤𝒙 where Φ is

the CDF of 𝒩(0,1). This model is known as

“Probit Regression”.

Also used as a

nonlinear “activation

function” in deep

neural networks

CS772A: PML

Multiclass Logistic (a.k.a. Softmax) Regression
4

▪ Also called multinoulli/multinomial regression: Basically, LR for 𝐾 > 2 classes

▪ In this case, 𝑦𝑛 ∈ 1,2, … , 𝐾 and label probabilities are defined as

▪ 𝐾 weight vecs 𝒘1, 𝒘2, … , 𝒘𝐾 (one per class), each 𝐷-dim, and 𝑾 = [𝒘1, 𝒘2, … , 𝒘𝐾]

▪ Each likelihood 𝑝 𝑦𝑛 𝒙𝑛, 𝑾 is a multinoulli distribution. Therefore total likelihood

𝑝 𝑦𝑛 = 𝑘 𝒙𝑛, 𝑾 =
exp(𝒘𝑘

⊤𝒙𝑛)

σℓ=1
𝐾 exp(𝒘ℓ

⊤𝒙𝑛)
= 𝜇𝑛𝑘 Also note that σℓ=1

𝐾 𝜇𝑛ℓ =1

for any input 𝒙𝑛

Softmax function

𝑝 𝒚|𝑿, 𝑾 = ෑ
𝑛=1

𝑁

ෑ
ℓ=1

𝐾

𝜇𝑛ℓ
𝑦𝑛ℓ Notation: 𝑦𝑛ℓ = 1 if true class of

𝒙𝑛 is ℓ and 𝑦𝑛ℓ′ = 0 ∀ ℓ′ ≠ ℓ

Real-valued scores 𝒘𝑘
⊤𝒙𝑛 are also known

as “logits” (thus 𝐾 logits for each input)

CS772A: PML

Generalized Linear Models
▪ (Probabilistic) Linear Regression: when response 𝑦 is real-valued

▪ Logistic Regression: when response 𝑦 is binary (0/1)

▪ Both are examples of a Generalized Linear Model (GLM)
▪ The model depends on the inputs 𝒙 via a linear model 𝒘⊤𝒙

▪ GLM is defined using an exponential family distribution

▪ ExpFam can be any suitable distribution depending on the nature of outputs, e.g.,
▪ Gaussian for reals, Bernoulli for binary, Poisson for Count, gamma for positive reals

▪ ExpFam distributions are more generally useful in other contexts as well

5

𝑝 𝑦 𝒙, 𝒘 = ExpFam[𝑦|𝑓 𝒘⊤𝒙]

𝑝 𝑦 𝒙, 𝒘 = 𝒩(𝑦|𝒘⊤𝒙, 𝛽−1)

𝑝 𝑦 𝒙, 𝒘 = Bernoulli 𝑦 𝜎(𝒘⊤𝒙) =
exp 𝒘⊤𝒙

1 + exp 𝒘⊤𝒙

𝑦
1

1 + exp 𝒘⊤𝒙

1−𝑦

MLE/MAP of 𝒘 is easy for GLMs (due

to convex objective, thanks to exp-

family). Posterior usually requires

approximations if likelihood and prior

are not conjugate pairs (Laplace

approximation or other methods used)

CS772A: PML

Logistic Regression: MAP and Posterior

▪ The posterior will be

▪MAP estimation is easy. −log 𝑝 𝒘 𝑿, 𝒚 is convex for LR. Unique minima
▪ Can use first or second order optimization with gradient and Hessian being

▪ Full posterior is intractable because of non-conjugacy
▪ A popular option is to use the Laplace’s approximation (other methods like MCMC and

variational inference can also be used; will see them later)

6

𝑝 𝒘 𝑿, 𝒚 =
𝑝 𝒘 𝑝(𝒚|𝑿, 𝒘)

𝑝(𝒚|𝑿)
=

𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛)

׬ 𝑝 𝒘 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝒘, 𝒙𝑛) 𝑑𝒘

BernoulliGaussian

𝜇𝑛 = 𝜎(𝒘⊤𝒙𝑛)

CS772A: PML

Laplace’s Approximation

▪ Consider a posterior distribution that is intractable to compute

▪ Laplace approximation approximates the above using a Gaussian distribution

▪ Laplace’s approx. is based on a second-order Taylor approx. of the posterior

7

Negative of the Hessian,

i.e., the second derivative

of the log joint, at 𝜃𝑀𝐴𝑃

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟|𝜃)𝑝 𝜃

𝑝(𝒟)

𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)

Tells us about the space

(curvature) of the true

posterior around 𝜃𝑀𝐴𝑃

𝚲 = − ∇𝜃
2 log 𝑝 𝜃 𝒟 ቚ

𝜃=𝜃𝑀𝐴𝑃

= −∇𝜃
2 log 𝑝(𝒟, 𝜃) ቚ

𝜃=𝜃𝑀𝐴𝑃

𝜃𝑀𝐴𝑃 = argmax𝜃 log 𝑝(𝜃|𝒟)

Related to the Fisher

Information Matrix

(FIM); will see shortly

CS772A: PML

Derivation of the Laplace’s Approximation

▪ Let’s write the Bayes rule as

▪ Consider second-order Taylor approximation of a function 𝑓 𝜃 around some 𝜃0

▪ Assuming 𝑓 𝜃 = log 𝑝(𝒟, 𝜃) and 𝜃0 = 𝜃𝑀𝐴𝑃

𝑝 𝜃 𝒟 =
𝑝(𝒟, 𝜃)

𝑝(𝒟)
=

𝑝(𝒟, 𝜃)

׬ 𝑝 𝒟, 𝜃 𝑑𝜃
=

exp[log 𝑝 𝒟, 𝜃]

׬ exp[log 𝑝 𝒟, 𝜃]𝑑𝜃

𝑓 𝜃 ≈ 𝑓 𝜃0 + 𝜃 − 𝜃0
⊤∇𝜃𝑓 𝜃0 +

1

2
𝜃 − 𝜃0

⊤∇𝜃
2 𝑓(𝜃0) 𝜃 − 𝜃0

log 𝑝(𝒟, 𝜃) ≈ log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) +
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤∇𝜃
2 log 𝑝(𝒟, 𝜃𝑀𝐴𝑃) 𝜃 − 𝜃𝑀𝐴𝑃

Constant w.r.t. 𝜃
Same as ∇2log 𝑝(𝜃𝑀𝐴𝑃|𝒟)

𝑝 𝒟 ≈ exp log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 × 2𝜋 𝐷/2 det 𝚲 1/2

We also get a Laplace

approximation of the marginal

likelihood (for free!)

Note: Sometimes marginal

likelihood is also called

model evidence

𝑝 𝜃 𝒟 ∝ exp −
1

2
𝜃 − 𝜃𝑀𝐴𝑃

⊤(−∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃) 𝜃 − 𝜃𝑀𝐴𝑃

= 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1) (where 𝚲 = −∇𝜃
2 log 𝑝 𝒟, 𝜃𝑀𝐴𝑃 = −𝐇)

CS772A: PML

Properties of Laplace’s Approximation

▪ Straightforward if posterior’s derivatives (first/second) can be computed easily

▪ Expensive if parameter 𝜃 is very high dimensional
▪ Reason: We need to compute and invert Hessian of size 𝐷 × 𝐷 (𝐷 is the # of params)

▪ Can do badly if the (true) posterior is multimodal

▪ Used only when 𝜃 is a real-valued vector (because of Gaussian approximation)

▪ Note: Even if we have a non-probabilistic model (loss function + regularization), we
can obtain an approx “posterior” for that model using the Laplace’s approximation
▪ Optima of the regularized loss function will be Gaussian’s mean

▪ Inverse of the second derivative of the regularized loss function will be covariance matrix

9

True posterior

Gaussian

approximation

E.g., a deep neural network, or even in

simpler models (e.g., logistic reg with a

very large number of features

For multimodal posteriors,

can use a mixture of

Laplace approximations*

If 𝐾 local modes, then define the approx.

posterior as a mixture of 𝐾 Gaussians

𝑝 𝜃 𝐷 ≈ ෍
𝑘=1

𝐾

𝜋(𝑘)𝒩(𝜃|𝜃𝑀𝐴𝑃
𝑘 , 𝐻 𝑘 −1

)

(see paper cited below for details)

*Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning (Eschenhagen et al, 2021)

Useful for deep

learning models

CS772A: PML

Detour: Hessian and Fisher Information Matrix

▪Hessian is related to the Fisher Information Matrix (FIM)

▪ Gradient of the log likelihood is also called score function: 𝑠 𝜃 = ∇𝜃 log 𝑝(𝑦|𝜃)
▪ Note: At some places (some generative models) ∇𝑦 log 𝑝(𝑦|𝜃) also called score function

▪ Expectation of score function is zero: 𝔼𝑝(𝑦|𝜃) 𝑠 𝜃 = 0 (exercise)

▪ Fisher Information Matrix (FIM) is covariance matrix of score function

▪ 𝐅 = − 𝔼𝑝(𝑦|𝜃) ∇𝜃
2 log 𝑝 𝑦 𝜃 , i.e., negative of expected Hessian (exercise)

▪ Each entry 𝐹𝑖𝑗 tells us how “sensitive” the model is w.r.t. the pair (𝜃𝑖 , 𝜃𝑗)

▪ Each diagonal entry 𝐹𝑖𝑖 = (∇𝜃𝑖
 log 𝑝 𝑦 𝜃)2 tells “important” 𝜃𝑖 is by itself

▪ Can compute empirical FIM using data: ෠𝐅 =
1

𝑁
σ𝑛=1

𝑁 ∇𝜃 log 𝑝(𝑦𝑛|𝜃)∇𝜃 log 𝑝(𝑦𝑛|𝜃)⊤

10

𝐅 = 𝔼𝑝(𝑦|𝜃) 𝑠 𝜃 − 0 𝑠 𝜃 − 0 ⊤ = 𝔼𝑝(𝑦|𝜃) ∇𝜃 log 𝑝(𝑦|𝜃)∇𝜃 log 𝑝(𝑦|𝜃)⊤

Note: If we have a prior 𝑝 𝜃 too, then also

add the second derivative of log 𝑝(𝜃)

CS772A: PML

Laplace Approx. for High-Dimensional Problems

▪ For high-dim 𝜃, Laplace’s approx 𝑝 𝜃 𝒟 ≈ 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1) can be expensive

▪Many methods to address this, e.g.,
▪ Use a diagonal of (empirical) Fisher as the precision

▪ Use a block-diagonal approximation* of 𝚲 (better than diagonal approx)

▪ For deep nets, use LA only for some weights + point estimates for others
▪ Option 1: Use LA only for last layer weights - “last layer Laplace’s approximation” (LLLA)

▪ Option 2: Use LA for weights from an identified “subnetwork”

▪ See the “Laplace Redux” paper for more options and discussion on scalability of LA

11

𝚲 ≈ diag(𝐅)

*KFAC paper: “A Scalable Laplace Approximation for Neural Networks” (Ritter et al, ICLR 2018)

Diagonal approximation assumes that

the weights are all independent

whereas block-diagonal assumes that

the weights within each block may

have correlations

*Laplace Redux -- Effortless Bayesian Deep Learning ” (Daxberger et al, NeurIPS 2021)

CS772A: PML

PPD when using Laplace’s Approximation

▪ The PPD when using the Laplace’s approximation of the posterior

▪ PPD may be intractable depending on the form of 𝑝 𝑦∗ 𝒙∗, 𝜃 = 𝑝(𝑦∗|𝑓 𝒙∗, 𝜃)

▪We can use further approximations if the integral is intractable. Two options:

▪ Generate 𝑀 samples 𝜃 𝑖
𝑖=1

𝑀
from 𝒩 𝜃 𝜃𝑀𝐴𝑃, 𝚲−1 and compute a Monte Carlo approx.

▪ Use the GGN approximation of LA. Equivalent to using a “linearlized” model for
𝑝 𝑦∗ 𝒙∗, 𝜃 , using which we can easily compute PPD using linear Gaussian model results

12

𝑝 𝑦∗ 𝒙∗, 𝒟 = ׬ 𝑝(𝑦∗|𝒙∗, 𝜃)𝑝 𝜃 𝒟 𝑑𝜃

≈ ׬ 𝑝(𝑦∗|𝒙∗, 𝜃)𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)𝑑𝜃
This PPD is an approximation

because we are using an

approximation of the posterior

׬ 𝑝 𝑦∗ 𝒙∗, 𝜃 𝒩 𝜃 𝜃𝑀𝐴𝑃, 𝚲−1 𝑑𝜃 ≈
1

𝑀
෍

𝑖=1

𝑀

𝑝 𝑦∗ 𝒙∗, 𝜃(𝑖)

Using MC approximation is

the general purpose

option when computing

intractable PPDGeneralized Gauss-Newton

method

CS772A: PML

Detour: Gradient and Hessian

▪ For LA (and for optimization general), we need ∇𝜃 log 𝑝(𝒟, 𝜃) and ∇𝜃
2 log 𝑝(𝒟, 𝜃)

• These depend on the likelihood function, 𝑝(𝒚|𝒙, 𝜃) = 𝑝(𝒚|𝑓 𝒙, 𝜃)

▪ The form of the function 𝑓 depends on the likelihood model. Some examples:

▪ Assume 𝒚 and 𝐟 = 𝑓 𝒙, 𝜃 both to be vectors of size 𝐶, 𝜃 ∈ ℝ𝑃 and define

13

𝑝(𝒚|𝒙, 𝜃) = 𝒩(𝒚|𝜃⊤𝒙, 𝜎2)

𝑝(𝒚|𝒙, 𝜃) = 𝒩(𝒚|NN(𝒙, 𝜃), 𝜎2)

𝑝(𝒚|𝒙, 𝜃) = multinoulli(𝒚|softmax(𝜃⊤𝒙))

𝑝(𝒚|𝒙, 𝜃) = multinoulli(𝒚|softmax(NN(𝒙, 𝜃)))

∇𝜃 log 𝑝 𝒚 𝑓 𝒙, 𝜃 = 𝒥𝜃 𝒙 ⊤ 𝒓(𝒚; 𝐟)

𝒥𝜃 𝒙 = ∇𝜃𝑓 ℋ𝜃 𝒙 = ∇𝜃
2 𝑓

Jacobian of size

𝐶 × 𝑃 with
𝒥𝜃 𝒙 𝑐𝑖 =

∇𝜃𝑖
𝑓𝑐(𝒙, 𝜃)

Hessian of size

𝐶 × 𝑃 × 𝑃 with

ℋ𝜃 𝒙 𝑐𝑖𝑗 =

∇𝜃𝑖
∇𝜃𝑗

𝑓𝑐(𝒙, 𝜃)

∇𝜃
2 log 𝑝 𝒚 𝑓 𝒙, 𝜃 = ℋ𝜃 𝒙 ⊤ 𝒓 𝒚; 𝐟 − 𝒥𝜃 𝒙 ⊤ 𝐋(𝒚; 𝐟)𝒥𝜃 𝒙

𝒓 𝒚; 𝐟 = 𝛁𝒇 log 𝑝 𝒚 𝐟

𝐋 𝒚; 𝐟 = −𝛁𝒇
2log 𝑝 𝒚 𝐟

CS772A: PML

Generalized Gauss-Newton (GGN) Approximation

▪ The Hessian of the log-likelihood turned out to be

▪ Ignoring the term involving ℋ𝜃 𝒙 = ∇𝜃
2 𝑓, we have an approximation

▪ This is called the Generalized Gauss-Newton (GGN) approximation* of the
precision matrix used in Laplace Approximation
▪ We can further apply diagonal or block-diagonal approximations for efficiency*

▪ GGN is also equivalent to approximating 𝐟 = 𝑓 𝒙, 𝜃 by a linear function of 𝜃

14

∇𝜃
2 log 𝑝 𝒚 𝑓 𝒙, 𝜃 = ℋ𝜃 𝒙 ⊤ 𝒓 𝒚; 𝐟 − 𝒥𝜃 𝒙 ⊤ 𝐋(𝒚; 𝐟)𝒥𝜃 𝒙

∇𝜃
2 log 𝑝 𝒚 𝑓 𝒙, 𝜃 ≈ −𝒥𝜃 𝒙 ⊤ 𝐋(𝒚; 𝐟)𝒥𝜃 𝒙

*Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021)

This approximation of the Hessian is

guaranteed to be positive semi-definite

unlike the original Hessian because

− log 𝑝(𝑦|𝑓(𝑥, 𝜃)) may not be convex in 𝜃

𝑓 𝒙∗, 𝜃 ≈ 𝑓 𝒙∗, 𝜃𝑀𝐴𝑃 + ∇𝜃𝑀𝐴𝑃
𝑓⊤ 𝜃 − 𝜃𝑀𝐴𝑃 = 𝑓lin(𝒙∗, 𝜃)

Gradient of 𝑓 at 𝜃 = 𝜃𝑀𝐴𝑃
A linear

function of 𝜃

Not the gradient of the (log)likelihood –

that gradient is zero at 𝜃𝑀𝐴𝑃

Reason: ℋ𝜃 𝒙 will be 0

for a linear function

Gradient vector acting as

“features” in this linear model
Makes PPD easy

to compute when

using Laplace

approximation
A nonlinear function, e.g., a

neural net, approximated

by a linear function

CS772A: PML

PPD with GGN/Linearized Laplace’s Approximation

▪ Assuming 𝑝(𝒚|𝒙, 𝜃) = 𝑝(𝒚|𝑓 𝒙, 𝜃), LA based PPD is

▪We can use GGN and Linearized Laplace idea in two ways for the above PPD

▪ Use 𝑓 𝒙∗, 𝜃 but use 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲GGN
−1) as approx post instead 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)

▪ May require Monte Carlo integration if PPD integral is intractable (e.g., if 𝑓 is a neural net or non-lin func)

▪ Less commonly used and is less accurate*

▪ Use 𝑓lin(𝒙∗, 𝜃) instead of 𝑓 𝒙∗, 𝜃 and also use 𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲GGN
−1) as approx. post.

▪ Assuming 𝑝 𝒚∗ 𝑓 𝒙∗, 𝜃 = 𝒩 𝑦∗ 𝑓lin(𝒙∗, 𝜃), 𝛽−1 for scalar-valued regression

15

• *‘In-Between’ Uncertainty in Bayesian Neural Networks (Foong et al, 2019),
• *Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021)

𝑝 𝒚∗ 𝒙∗, 𝒟 = ׬ 𝑝(𝒚∗|𝑓 𝒙∗, 𝜃)𝑝 𝜃 𝒟 𝑑𝜃 ≈ ׬ 𝑝(𝒚∗|𝑓 𝒙∗, 𝜃)𝒩(𝜃|𝜃𝑀𝐴𝑃, 𝚲−1)𝑑𝜃

𝑦∗ ≈ 𝑓lin(𝒙∗, 𝜃) + 𝜖
Linear transformation of 𝜃 with

𝑝 𝜃|𝒟 = 𝒩(𝜃|𝜃𝑀𝐴𝑃 , 𝚲GGN
−1) and

Gaussian noise 𝜖 ∼ 𝒩(0, 𝛽−1)

𝑝 𝑦∗ 𝒙∗, 𝒟 ≈ 𝒩 𝑦∗ 𝑓 𝒙∗, 𝜃𝑀𝐴𝑃 , ∇𝜃𝑀𝐴𝑃
𝑓⊤𝚲GGN

−1 ∇𝜃𝑀𝐴𝑃
𝑓 + 𝛽−1

Even though 𝑓 𝒙∗, 𝜃 is a complex

function like neural net, using linearlized

Laplace approx, we get PPD in closed form

CS772A: PML

Standard Laplace vs Linearlized Laplace

▪ Standard LA based PPD is usually computed using Monte Carlo sampling

▪ If the samples 𝜃 𝑖 don’t come from high-prob regions of the posterior, the above
PPD may have poor accuracy (often happens for high-dim posteriors)

▪ Linearlized Laplace based PPD is computed as

▪ Linearlized Laplace based PPD typically is reasonably accurate and sometimes
even more accurate than standard LA with PPD computed using MC sampling*

16

• ‘In-Between’ Uncertainty in Bayesian Neural Networks (Foong et al, 2019),
• Improving predictions of Bayesian neural nets via local linearization (Immer et al, 2021)

𝑝 𝑦∗ 𝒙∗, 𝒟 ≈ ׬ 𝑝 𝑦∗ 𝑓(𝒙∗, 𝜃) 𝒩 𝜃 𝜃𝑀𝐴𝑃, 𝚲−1 𝑑𝜃 ≈
1

𝑀
෍

𝑖=1

𝑀

𝑝 𝑦∗ 𝑓(𝒙∗, 𝜃 𝑖)

𝑝 𝑦∗ 𝒙∗, 𝒟 ≈ 𝒩 𝑦∗ 𝑓 𝒙∗, 𝜃𝑀𝐴𝑃 , ∇𝜃𝑀𝐴𝑃
𝑓⊤𝚲GGN

−1 ∇𝜃𝑀𝐴𝑃
𝑓 + 𝛽−1

CS772A: PML

Logistic Regression PPD using Monte Carlo

▪ The posterior predictive distribution can be computed as

▪Monte-Carlo approximation of this integral is one possible way
▪ Draw 𝑀 samples 𝒘1, 𝒘2, … , 𝒘𝑀, from the approx. of posterior

▪ Approximate the PPD as follows

▪ In contrast, when using MLE/MAP solution ෝ𝒘𝑜𝑝𝑡, the plug-in pred. distribution

17

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = ׬ 𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘

sigmoid Gaussian (if using Laplace approx.)
Integral not tractable and

must be approximated

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈
1

𝑀
෍

𝑚=1

𝑀

𝑝 𝑦∗ = 1 𝒘𝑚, 𝒙∗ =
1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 = ׬ 𝑝 𝑦∗ = 1 𝒘, 𝒙∗ 𝑝 𝒘 𝑿, 𝒚 𝑑𝒘

≈ 𝑝 𝑦∗ = 1 ෝ𝒘𝑜𝑝𝑡, 𝒙∗ = 𝜎(ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛)

CS772A: PML

LR: Plug-in Prediction vs Bayesian Averaging

▪ Plug-in prediction uses a single 𝒘 (point est) to make prediction

▪ PPD does an averaging using all possible 𝒘’s from the posterior

18

Posterior averaging is like

using an ensemble of

models. In this example,

each model is a linear

classifier but the ensemble-

like effect resulted in

nonlinear boundaries

𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈ 𝜎(ෝ𝒘𝑜𝑝𝑡
⊤𝒙𝑛) 𝑝 𝑦∗ = 1 𝒙∗, 𝑿, 𝒚 ≈

1

𝑀
෍

𝑚=1

𝑀

𝜎(𝒘𝑚
⊤ 𝒙𝑛)

Color transitions (red

to blue) in both plots

denote how the

probability of an

input changes from

belonging to red

class to belonging to

blue class. All inputs

on a line (or curve

on RHS plot)have

the same probability

of belonging to the

red/blue class

CS772A: PML

Exp. Family (Pitman, Darmois, Koopman, 1930s)

▪Defines a class of distributions. An Exponential Family distribution is of the form

▪ 𝒙 ∈ 𝒳𝑚 is the r.v. being modeled (𝒳 denotes some space, e.g., ℝ or {0,1})

▪ 𝜃 ∈ ℝ𝑑 : Natural parameters or canonical parameters defining the distribution

▪ 𝜙(𝒙) ∈ ℝ𝑑 : Sufficient statistics (another random variable)

▪ Knowing this quantity suffices to estimate parameter 𝜃 from 𝑥

▪𝑍 𝜃 = ׬ ℎ 𝒙 exp 𝜃⊤𝜙 𝒙 𝑑𝒙: Partition Function

▪𝐴 𝜃 = log 𝑍(𝜃): Log-partition function (also called cumulant function)

▪ℎ(𝒙): A constant (doesn’t depend on 𝜃)

19

CS772A: PML

Expressing a Distribution in Exp. Family Form

▪ Recall the form of exp-fam distribution 𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

▪ To write any exp-fam dist 𝑝() in the above form, write it as exp(log 𝑝())

▪Now compare the resulting expression with the exponential family form

 .. to identify the natural parameters, sufficient statistics, log-partition function, etc.

20

𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

CS772A: PML

(Univariate) Gaussian as Exponential Family

▪ Let’s try to write a univariate Gaussian in the exponential family form

▪ Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

21

CS772A: PML

Other Examples

▪Many other distribution belong to the exponential family
▪ Bernoulli

▪ Beta

▪ Gamma

▪ Multinoulli/Multinomial

▪ Dirichlet

▪ Multivariate Gaussian

▪ .. and many more (https://en.wikipedia.org/wiki/Exponential_family)

▪Note: Not all distributions belong to the exponential family, e.g.,
▪ Uniform distribution (x ∼ Unif(a, b))

▪ Student-t distribution

▪ Mixture distributions (e.g., mixture of Gaussians)

22

https://en.wikipedia.org/wiki/Exponential_family

CS772A: PML

Log-Partition Function

▪ The log-partition function is

▪ 𝐴(𝜃) is also called the cumulant function

▪ Derivatives of 𝐴(𝜃) can be used to generate the cumulants of the sufficient statistics

▪ Exercise: Assume 𝜃 to be a scalar (thus 𝜙(𝑥) is also scalar). Show that the first and
the second derivatives of 𝐴(𝜃) are

▪ Above result also holds when 𝜃 and 𝜙(𝑥) are vector-valued (the “var” will be “covar”)

▪ Important: 𝐴(𝜃) is a convex function of 𝜃. Why?

23

CS772A: PML

MLE for Exponential Family Distributions

▪ Assume data 𝒟 = {𝑥1, . . . , 𝑥𝑁} drawn i.i.d. from an exp. family distribution

▪ To do MLE, we need the overall likelihood -- a product of the individual likelihoods

▪ To estimate 𝜃 (as we’ll see shortly), we only need

▪ Size of 𝜙 𝒟 = σ𝑖=1
𝑁 𝜙 𝑥𝑖 does not grow with 𝑁 (same as the size of each 𝜙 𝑥𝑖)

▪ Only exponential family distributions have finite-sized sufficient statistics
▪ No need to store all the data; can simply update the sufficient statistics as data comes

▪ Useful in probabilistic inference with large-scale data sets and “online” parameter estimation

24

𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

CS772A: PML

Bayesian Inference for Expon. Family Distributions

▪ Already saw that the total likelihood given 𝑁 i.i.d. observations 𝒟 = {𝑥1, . . . , 𝑥𝑁}

▪ Let’s choose the following prior (note: looks similar in terms of 𝜃 within exp)

▪ Ignoring the prior’s log-partition function

▪ Comparing the prior’s form with the likelihood, note that
▪ 𝜈0 is like the number of “pseudo-observations” coming from the prior

▪ 𝜏0 is the total sufficient statistics of the pseudo-observations (𝜏0/ 𝜈0 per pseudo-obs)

25

CS772A: PML

The Posterior

▪ The likelihood and prior were

▪ The posterior therefore will be

▪ Every exp family likelihood has a conjugate prior having the form above

▪ Posterior’s hyperparams 𝜏0
′ , 𝜈0

′ obtained by adding “stuff” to prior’s hyperparams

26

Posterior is also

from the same

family as the prior
Happens when the

prior is conjugate

to the likelihood

Number of pseudo-observations plus

number of actual observations

Suff-stats of pseudo-obervations plus

suff-stats of actual observations

Its log partition function will be

𝐴𝑐(𝜈0 + 𝑁, 𝜏0 + 𝜙(𝒟))

Assume its log partition

function denoted as 𝐴𝑐(𝜈0, 𝜏0)

Convex comb of avg

suff-stats of pseudo

obs and actual obs

Another equivalent form

CS772A: PML

Posterior Predictive Distribution

▪ Assume some training data 𝒟 = {𝑥1, . . . , 𝑥𝑁} from some exp-fam distribution

▪ Assume some test data 𝒟′ = { ෤𝑥1, . . . , ෤𝑥𝑁′} from the same distribution

▪ The posterior pred. distr. of 𝒟′

▪ This gets further simplified into

27

Exp. Fam. likelihood

w.r.t. test data

Posterior (same form as the

prior due to conjugacy)

CS772A: PML

Posterior Predictive Distribution

▪ Since 𝐴𝑐 = log 𝑍𝑐 or 𝑍𝑐 = exp(𝐴𝑐), we can write the PPD as

▪ Therefore the posterior predictive is proportional to
▪ Ratio of two partition functions of two “posterior distributions” (one with 𝑁 + 𝑁′ examples and

the other with 𝑁 examples)

▪ Exponential of the difference of the corresponding log-partition functions

▪ Note that the form of 𝑍𝑐 (and 𝐴𝑐) will simply depend on the chosen conjugate prior

▪ Very useful result. Also holds for 𝑁 = 0
▪ In this case is simply the marginal likelihood of test data 𝒟′

28
Thus PPD as well as

marginal likelihood has

closed form expression

when working with exp-

family distributions

CS772A: PML

Summary

▪ Exp. family distributions are very useful for modeling diverse types of data/parameters

▪ Conjugate priors to exp. family distributions make parameter updates very simple

▪ Other quantities such as posterior predictive can be computed in closed form

▪ Useful in designing generative classification models. Choosing class-conditional from
exponential family with conjugate priors helps in parameter estimation

▪ Useful in designing generative models for unsupervised learning

▪ Used in designing Generalized Linear Models: Model 𝑝(𝑦|𝑥) using exp. fam distribution
▪ Linear regression (with Gaussian likelihood) and logistic regression are GLMs

▪ Will see several use cases when we discuss approx inference algorithms (e.g., Gibbs
sampling, and especially variational inference)

29

	Slide 1: Logistic/Softmax Classification, Laplace’s Approximation, and Exponential Family
	Slide 2: Plan today
	Slide 3: Logistic Regression
	Slide 4: Multiclass Logistic (a.k.a. Softmax) Regression
	Slide 5: Generalized Linear Models
	Slide 6: Logistic Regression: MAP and Posterior
	Slide 7: Laplace’s Approximation
	Slide 8: Derivation of the Laplace’s Approximation
	Slide 9: Properties of Laplace’s Approximation
	Slide 10: Detour: Hessian and Fisher Information Matrix
	Slide 11: Laplace Approx. for High-Dimensional Problems
	Slide 12: PPD when using Laplace’s Approximation
	Slide 13: Detour: Gradient and Hessian
	Slide 14: Generalized Gauss-Newton (GGN) Approximation
	Slide 15: PPD with GGN/Linearized Laplace’s Approximation
	Slide 16: Standard Laplace vs Linearlized Laplace
	Slide 17: Logistic Regression PPD using Monte Carlo
	Slide 18: LR: Plug-in Prediction vs Bayesian Averaging
	Slide 19: Exp. Family (Pitman, Darmois, Koopman, 1930s)
	Slide 20: Expressing a Distribution in Exp. Family Form
	Slide 21: (Univariate) Gaussian as Exponential Family
	Slide 22: Other Examples
	Slide 23: Log-Partition Function
	Slide 24: MLE for Exponential Family Distributions
	Slide 25: Bayesian Inference for Expon. Family Distributions
	Slide 26: The Posterior
	Slide 27: Posterior Predictive Distribution
	Slide 28: Posterior Predictive Distribution
	Slide 29: Summary

