Assorted Topics (1)
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Plan today

= Calibration
" Frequentist approach for estimating uncertainty

" Some classical probabilistic models for sequential data
» HMM and State-Space Models (SSM)
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Calibration
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Calibration

» Assume a classifier that outputs probabilities f(x;,,) = [@n1, Ana, -, Ay ] Such that

Predicted label

Yn = adrgmaxc—rq12 . c} Anc
Probability of the predicted

label (confidence of f for A
this prediction) An = MaXc=(1,2,.,c} Anc

= Notion of calibration: Predictions should not neither be over-confident, nor under-confident
» Desirable: Predictions with confidence u € (0,1) are correct (100 X u)% of the time

, A , , b—1 b
" Assume By, as set of samples for which a,, falls in bin I, = (T’E]
Average accuracy Average confidence
of bin b 1 of bin b 1
acc(Bp) = _z I(Vn = yn) conf(By) = —2 a
|Bp| NeEBp (Bv) |Bp| NeEBy "

" We want bins’ average accuracies to match bins’ average confidence
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Reliability Diagrams and A Calibration Metric

= Reliability diagrams are plots of accuracy vs confidence

1.0 Sl
Using B = 10 s
equal-width bins 1

3061

It's just one simple way; other ways :
also possible to construct the bins < 04

0.2 1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

" Several metrics exist to measure how well-calibrated the model'’s predictions are

» Expected Calibration Error (ECE) is one such popular metric

ECE is the average "gap”
area in the reliability diagram

Should ‘be small for a ( B B
well-calibrated model L]j]‘CE(f) — Z % lace(By) = COHf(Bb)lJ

b=1
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. . Parameters of the
Calibration Methods (contd) | e moselsreien
frozen in this process
The scaling parameters

* Method 1: Calibrate an already trained model in a post-hoc manner, €.g., w or T) are learned
by minimizing the loss

= Requires learning to scale the logits produced by the model, e.g., on sorme validation set.

SOftmaX(Z1; Zy, ---;ZC) |:> softmax (W1Z1 + bll Wy Zo9 + bz, o, WeZce + bC)

Uncal. - CIFAR-100 Temp. Scale - CIFAR-100
T 100 ResNet-110 (SD) ResNet-110 (SD)

Z1 4 Z
SOftmaX(Zl) Zz, ...,ZC) |:> SOftmaX (?1)?2; Ty C hl I..J L

* Method 2: Change the training procedure, €.g.,

F
7
71
4 ECE=12.67

U.U 02 04 06 08 10 00 02 04 06 08 10

= Add a regularizer which avoids overconfident predictions Maximize the entropy of
the predictive distribution to
Maximize the likelihood reduce overconfidence

L= z 110gp(yllxuvv)+ H[log p(y;|x;, w)]
1=

= Trained with smoothed labels instead of one-hot labels

[0,0,1,0] E===) [0.05,0.05,0.85,0.05]
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Frequentist Statistics
(vs Bayesian Statistics)
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Frequentist Statistics

* The Bayesian approach treats parameters/model unknowns as random variables
" |n the Bayesian approach, the posterior over these rv.'s help capture the uncertainty

" The Frequentist approach is a different way to capture uncertainty
, : This can be some point
= Don't treat parameters as r.v. but as fixed unknowns estimate, e.g,, MLE, MAP,

= Treat parameters as a function of the dataset, e.g., (D) = m(D)~ " oro romens e
" Variations in param estimates over different datasets represents their uncertainty

True unknown value

A random dataset
of the parameter

drawn from the true N
data distribution DI:S) _ {iﬂn ~ P $n|9* - — l . :\:} (s=12,..,5)

The estimated distribution of the o fimate using th
parameters given any randomly drawn aram estimate using the

5
dataset from the true data distribution p[ﬂ{ﬂ =3: |'JD 9“ E — T' ‘I’:}[ " s-th sampled dataset
_f‘..:

As § — oo, this is known as the

‘sampling distribution” of the estimator Note that sampling distribution is different from a But if the estimator is MLE and Bayesian method's prior is

posterior distribution we infer in Bayesian learning uniform, then both distributions are very similar (sampling

(there, we condition on a fixed training set) distribution is often called “poor man’s posterior” PML



Approximating the sampling distribution

= Since the true 8™ is not known, we can't compute the sampling distribution exactly

D) — {xn ~p :Izn\f?*

6")

p(x(D) = 6D ~

n=1:N} (s=12,..,5)

(D))

= Bootstrap is a popular method to approxmate the sampling distribution

" Two types of bootstrap methods: parametric and nonparametric bootstrap

Parametric Bootstrap

/Get a point est. of @ using training data

0 =n(D)
= Generate multiple datasets using 0 as
D) = {z, ~p(x,]0) :n=1:N} (s=1,2,..,5)

= Now compute the approximation as

S
N N 1

Nonparametric Bootstrap

ﬁUse sampling with replacement on origin%
training set to generate S datasets with N

' ' Each dataset will contain
datapomts in eaCh roughly 63% unique datapoints

from original training set

= Now compute the approximation as

<2 0= (D))
s=1

/

~NJ
— 6|D ~ 8%) 5(0 = (D))

s=1

(w(D)
\ a csmzzPML
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Probabilistic Models
for Sequential Data
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Latent Variable Models for Sequential Data

" Task: Given a sequence of observations, infer the latent state of each observation

Z1 Z2
i(l iz
Observation
mode| XplZn =~ PlXalZz,) (i.i.d. draws of x,, given z,)
otate transiton Zolzoed = plaslza-i) (first-order dependence b/w z,'s)

" |t z,,'s are discrete, we have a hidden Markov model (HMM)  p(zn|zn—1 = £) = multinoulli(7r)
" |f z,'s are real-valued, we have a state-space model (SSM) p(zalz,-1) = N(Az,_1, k)
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State-Space Models

" |n the most general form, the state-transition and observation models of an SSM

S1 52 St-1 S St+1

Using ‘s’ instead of ‘2’
to refer to states

Using ‘t’ to denote the

X1 X2
‘time-step’ HMM is similar to SSM except
n 5 the state-transition model is a
iigrf’eartocran © - discrete distribution
o S¢|St—1 = gi(Si—1) + € (must be a cont. dist. over s;)
functions .
X:|S: = he(st) + 0y (can be any dist. over x;)

» Assuming Gaussian noise in the state-transition and observation models

St|st_]_ S 4 N(St‘gt(St_]_), Qt) :;c‘ige’:p;gri;jg;,tliﬁcirfhen itis
called a stationary model
x¢|s: ~ N(x¢ h:(s:), Re)

This is a Gaussian SSM

9, he, Q¢, Ry may be known
or can be learned 72A: PML



State-Space Models: A Simple Example

" Consider the linear Gaussian SSM
St|St—1 = A¢Si—1 + €
Xt|s: = Bys; + 0y
= Suppose x; € R? denotes the (noisy) observed 2D location of an object
= Suppose s; € R® denotes the “state” vector

S = |[pos1, vell, accell, pos2, vel2, accel?]

" Here is an example SSM for this problem with pre-defined A and By matrices

At
(1 Ar (A2 0 0 0 Bt
0 1 At 0 0 s 1z 0 pescesssksaskesavtssssssy
_§|% e @D W _if1 000 0 0
Sc=lo 0 0 1 A L(Ar)? S T €t Xt_ S Y B St*(st
0 0 0 0 1 | S
0 0 0 0 0 &

A S e - CS772A: PML



Typical Inference Task for Gaussian SSM

" One of the key tasks: Given sequence X4, X5, ..., X7, infer latent sq, S5, ..., ST

S1 S2

= Usually two ways of inferring the latent states
Kalman Filtering is a popular

- , e ' 1
Infer p(s¢|xq, X5, ..., X¢): Called the “filtering” problem A Cotrein gorithm for a finear

lurns out to be p(se|x1,x2,...,x¢) < p(x¢|st) / p(st|st—1) p(st—1|x1,x2,...,Xx¢—1)dst—1 Gaussian SSM
N’ N’

another Gaussian
N(xt|Bst,R) N(StlASt-l,Q)

" Infer p(s¢]|xq, X3, -y X¢, -, X7): Called the "smoothing™ problem

= Some other tasks one can solve for using an SSM
= Predicting future states p(S¢4+n|X1, X2, ..., X¢) for h = 1, given observations thus far

= Predicting future observations p(xX¢4+5|%1, X2, ..., x¢) for h = 1 | given observations thus far
CS772A: PML



A Special Case

= What if we have i.i.d. latent states, i.e... p(z,|z,—1) = p(2,)?

Z Z 7 Z Z
1 2 = h & ¢ n-1 " Lo
( X1 l X2 I Xn-1 I Xn I Xn+1
" Discrete case (HMM) becomes a simple mixture model p(za|za-1 =€) = p(z,) = multinoulli(z)

= Real-valued case (SSM) becomes a PPCA model p(za|za-1) = p(z,) = N(0,Ik) or N(p, V)

* Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
= Only main difference is how the latent variables z,'s are inferred since they aren't i.i.d.
= £.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)
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