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Plan today

▪ Calibration

▪ Frequentist approach for estimating uncertainty

▪ Some classical probabilistic models for sequential data
▪ HMM and State-Space Models (SSM)
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Calibration
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Calibration

▪ Assume a classifier that outputs probabilities 𝑓 𝑥𝑛 = [𝑎𝑛1, 𝑎𝑛2, … , 𝑎𝑛𝐶] such that

▪ Notion of calibration: Predictions should not neither be over-confident, nor under-confident

▪ Desirable: Predictions with confidence 𝜇 ∈ (0,1) are correct (100 × 𝜇)% of the time

▪ Assume ℬ𝑏 as set of samples for which ො𝑎𝑛 falls in bin 𝐼𝑏 =  (
𝑏−1

𝐵
,

𝑏

𝐵
] 

▪ We want bins’ average accuracies to match bins’ average confidence
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ො𝑦𝑛 =  argmax𝑐={1,2,…,𝐶} 𝑎𝑛𝑐

ො𝑎𝑛 =  max𝑐={1,2,…,𝐶} 𝑎𝑛𝑐

Predicted label

Probability of the predicted 

label (confidence of 𝑓 for 

this prediction)

acc 𝐵𝑏 =
1

|𝐵𝑏|
෍

𝑛∈𝐵𝑏

𝕀( ො𝑦𝑛 = 𝑦𝑛) conf 𝐵𝑏 =
1

|𝐵𝑏|
෍

𝑛∈𝐵𝑏

ො𝑎𝑛

Average accuracy 

of bin 𝑏
Average confidence 

of bin 𝑏
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Reliability Diagrams and A Calibration Metric

▪ Reliability diagrams are plots of accuracy vs confidence

▪ Several metrics exist to measure how well-calibrated the model’s predictions are

▪ Expected Calibration Error (ECE) is one such popular metric
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Using 𝐵 = 10 

equal-width bins

It’s just one simple way; other ways 

also possible to construct the bins

Should be small for a 

well-calibrated model

ECE is the average “gap” 

area in the reliability diagram
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Calibration Methods (contd)

▪ Method 1: Calibrate an already trained model in a post-hoc manner, e.g., 
▪ Requires learning to scale the logits produced by the model, e.g., 

▪ Method 2: Change the training procedure, e.g., 
▪ Add a regularizer which avoids overconfident predictions

▪ Trained with smoothed labels instead of one-hot labels
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softmax(𝑧1, 𝑧2, … , 𝑧𝐶) softmax
𝑧1

𝑇
,
𝑧2

𝑇
, … ,

𝑧𝐶

𝑇

softmax(𝑧1, 𝑧2, … , 𝑧𝐶) softmax 𝑤1𝑧1 + 𝑏1, 𝑤2𝑧2 + 𝑏2, … , 𝑤𝐶𝑧𝐶 + 𝑏𝑐

The scaling parameters 

(𝑤 or 𝑇) are learned 

by minimizing the loss 

on some validation set. 

Parameters of the 

trained model are kept 

frozen in this process

ℒ =  ෍
𝑖=1

𝑁

log 𝑝 𝑦𝑖 𝑥𝑖 , 𝑤) +  ℍ[log 𝑝 𝑦𝑖 𝑥𝑖 , 𝑤)] 

Maximize the likelihood

Maximize the entropy of 

the predictive distribution to 

reduce overconfidence

[0, 0, 1, 0] [0.05, 0.05, 0.85, 0.05]

T=100 T=2 T=1
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Frequentist Statistics
   (vs Bayesian Statistics)
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Frequentist Statistics

▪ The Bayesian approach treats parameters/model unknowns as random variables

▪ In the Bayesian approach, the posterior over these r.v.’s help capture the uncertainty

▪ The Frequentist approach is a different way to capture uncertainty

▪ Don’t treat parameters as r.v. but as fixed unknowns

▪ Treat parameters as a function of the dataset, e.g., ෠𝜃 𝒟 = 𝜋(𝒟) 

▪ Variations in param estimates over different datasets represents their uncertainty

8

This can be some point 

estimate, e.g., MLE, MAP, 

method of moments, etc.

(𝑠 = 1, 2, … , 𝑆)

True unknown value 

of the parameter
A random dataset 

drawn from the true 

data distribution

The estimated distribution of the 

parameters given any randomly drawn 

dataset from the true data distribution

As 𝑆 → ∞, this is known as the 

“sampling distribution” of the estimator Note that sampling distribution is different from a 

posterior distribution we infer in Bayesian learning 

(there, we condition on a fixed training set)

But if  the estimator is MLE and Bayesian method’s prior is 

uniform, then both distributions are very similar (sampling 

distribution is often called “poor man’s posterior”

Param estimate using the 

𝑠-th sampled dataset
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Approximating the sampling distribution

▪ Since the true 𝜃∗ is not known, we can’t compute the sampling distribution exactly

▪ Bootstrap is a popular method to approximate the sampling distribution

▪ Two types of bootstrap methods: parametric and nonparametric bootstrap
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(𝑠 = 1, 2, … , 𝑆)

▪ Get a point est. of 𝜃 using training data

▪ Generate multiple datasets using ෠𝜃 as

▪ Now compute the approximation as

     

መ𝜃 = 𝜋(𝒟)

(𝑠 = 1, 2, … , 𝑆)

▪ Use sampling with replacement on original 

training set to generate 𝑆 datasets with 𝑁 

datapoints in each

▪ Now compute the approximation as

Each dataset will contain 

roughly 63% unique datapoints 

from original training set

Parametric Bootstrap Nonparametric Bootstrap
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Probabilistic Models 
for Sequential Data

10



CS772A: PML

Latent Variable Models for Sequential Data

▪ Task: Given a sequence of observations, infer the latent state of each observation

▪ If  𝑧𝑛’s are discrete, we have a hidden Markov model (HMM)

▪ If  𝑧𝑛’s are real-valued, we have a state-space model(SSM)
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State-transition 

model

Observation 

model
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State-Space Models

▪ In the most general form, the state-transition and observation models of an SSM

▪ Assuming Gaussian noise in the state-transition and observation models
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If  𝑔𝑡 , ℎ𝑡 , 𝑄𝑡 , 𝑅𝑡 are 

independent of 𝑡 then it is 

called a stationary model

HMM is similar to SSM except 

the state-transition model is a 

discrete distribution

This is a Gaussian SSM

𝑔𝑡 , ℎ𝑡 can be 

linear or 

nonlinear 

functions

𝑔𝑡 , ℎ𝑡 , 𝑄𝑡 , 𝑅𝑡 may be known 

or can be learned
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State-Space Models: A Simple Example

▪ Consider the linear Gaussian SSM

▪ Suppose 𝒙𝑡 ∈ ℝ2 denotes the (noisy) observed 2D location of an object

▪ Suppose 𝒔𝑡 ∈ ℝ6 denotes the “state” vector 

▪Here is an example SSM for this problem with pre-defined 𝐀t and 𝐁t matrices
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𝒔𝑡 = [pos1, vel1, accel1, pos2, vel2, accel2]
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Typical Inference Task for Gaussian SSM

▪One of the key tasks: Given sequence 𝑥1, 𝑥2, … , 𝑥𝑇, infer latent 𝑠1, 𝑠2, … , 𝑠𝑇

▪ Usually two ways of inferring the latent states
▪ Infer 𝑝(𝑠𝑡|𝑥1, 𝑥2, … , 𝑥𝑡): Called the “filtering” problem

▪ Infer 𝑝(𝑠𝑡|𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥𝑇): Called the “smoothing” problem

▪ Some other tasks one can solve for using an SSM
▪ Predicting future states 𝑝(𝑠𝑡+ℎ|𝑥1, 𝑥2, … , 𝑥𝑡) for ℎ ≥ 1 , given observations thus far

▪ Predicting future observations 𝑝(𝑥𝑡+ℎ|𝑥1, 𝑥2, … , 𝑥𝑡) for ℎ ≥ 1 , given observations thus far
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Kalman Filtering is a popular 

algorithm for a linear 

Gaussian SSM

A Gaussian

Turns out to be 

another Gaussian
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A Special Case

▪What if  we have i.i.d. latent states, i.e.,. 𝑝 𝑧𝑛 𝑧𝑛−1 = 𝑝 𝑧𝑛 ?

▪ Discrete case (HMM) becomes a simple mixture model

▪ Real-valued case (SSM) becomes a PPCA model

▪ Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
▪ Only main difference is how the latent variables 𝑧𝑛’s are inferred since they aren’t i.i.d.

▪ E.g., if  using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)
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