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Variational Inference (VI)

▪ Assume a latent variable model with data 𝓓 and latent variables 𝒁

▪ A simple setting might look something like this

▪ Assume the likelihood is 𝑝(𝓓|𝒁, Θ) and prior is 𝑝(𝒁|Θ). Want posterior over 𝒁

▪ Θ = (𝜃, 𝜙) denotes the other parameters that define the likelihood and the prior

▪ For now, assume Θ is known and only 𝒁 is unknown (the Θ unknown case later)

▪ Assume CP 𝑝(𝒁|𝓓, Θ) is intractable
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𝑁

This setting is just one example. VI 

is applicable in more general and 

more complex probabilistic models 

with and without latent variables
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Variational Inference (VI)

▪ Assuming 𝑝(𝒁|𝓓, Θ) is intractable, VI approximates it by a distr 𝑞(𝒁|𝜙) or 𝑞𝜙(𝒁)
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𝑞𝜙 defines a class of distributions parametrized 

by 𝜙 sometimes called “variational parameters”

Find the optimal 𝜙 which 

makes our approximation 

𝑞(𝒁|𝜙) as closed as 

possible to the true 

posterior 𝑝(𝒁|𝓓)

Kullback Leibler divergence 

KL[𝑞||𝑝] between 𝑞 and 𝑝

Also possible to use KL[𝑝||𝑞] 
or divergences other than KL

𝜙∗ =  argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝓓, Θ)]

Name “variational” comes from 

Physics and refers to problems 

where we are optimizing functions 

of distributions (here the function is 

the KL divergence)
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Variational Inference (VI)

▪ The optimization problem

▪ Since log 𝑝(𝓓|Θ) is independent of 𝜙, the optimization problem becomes

▪ Note that ℒ 𝜙, Θ ≤ log 𝑝(𝓓|Θ) and is called “Evidence Lower Bound” (ELBO)
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𝜙∗ =  argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝓓, Θ)]

=  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log
𝑝 𝓓 𝒁, Θ 𝑝(𝒁|Θ)

𝑝(𝓓|Θ)

=  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝 𝓓 𝒁, Θ  −  log 𝑝(𝒁|Θ) +  log 𝑝(𝓓|Θ)

𝜙∗ =  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝 𝓓 𝒁, Θ  −  log 𝑝(𝒁|Θ)

𝜙∗ =  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝(𝓓, 𝒁|Θ)

𝜙∗ =  argmax𝜙 𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 =  argmax ℒ(𝜙, Θ)
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The ELBO

▪ The ELBO is defined as

▪ Thus maximizing the ELBO w.r.t. 𝜙 gives us a 𝑞𝜙(𝒁) which

▪ Maximizes the expected joint probability of data and latent variables

▪ Has a high entropy

▪We can also write the ELBO as follows

▪ Thus maximizing the ELBO w.r.t. 𝜙 will give us a 𝑞𝜙(𝒁) which

▪ Explains the data 𝓓 well, i.e., gives it large expected probability 𝔼𝑞 log 𝑝(𝓓|𝒁, Θ)

▪ Is close to the prior 𝑝(𝒁), i.e. is simple/regularized (small KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ )
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ℒ 𝜙, Θ =  𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

ℒ 𝜙, Θ = 𝔼𝑞𝜙(𝒁)[log 𝑝(𝓓|𝒁, Θ)] − KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ ]

=  𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ + H[𝑞𝜙 𝒁 ]
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Maximizing the ELBO

▪We need to maximize the ELBO w.r.t. 𝜙 (for now, assuming Θ is known)

▪ The general approach to maximize ELBO is based on gradient-based methods

▪ Assume some suitable/convenient form for 𝑞𝜙 𝒁 , e.g., 𝒩(𝒁|𝜇, Σ) so 𝜙 = (𝜇, Σ)

▪ Maximize the ELBO w.r.t. 𝜙 using gradient ascent

▪Note: Expectations in ELBO and ELBO’s gradients w.r.t. 𝜙 may not be easy

▪ Will see methods to handle such issues later

▪ Assuming simple forms for 𝑞𝜙 𝒁  also helps (we can use random variable transformation 

methods to transform the simple form to more expressive ones – will see later)
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ℒ 𝜙, Θ = 𝔼𝑞𝜙(𝒁)[log 𝑝(𝓓|𝒁, Θ)] − KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ ]

Unknown Θ case later

𝜙𝑡+1 = 𝜙𝑡 + 𝜂𝑡 ∇𝜙𝑡
ℒ 𝜙, Θ



CS772A: PML

A Simple Illustration for VI

▪ Assume a simple likelihood model

▪ Suppose we want to estimate the posterior of the mean 𝑧 

▪ Assuming a Gaussian prior on 𝑧 and assuming Σ is known, the posterior can be 
computed analytically (because of conjugacy)

▪ Let’s still try VI to see how well it does

▪ Figure shows VI result for three Gaussian forms for 𝑞(𝑧)
▪ Low-rank: 𝑞 𝑧 =  𝒩 𝑧 𝜇𝑧, Σ𝑧  where Σ𝑧 = 𝐿𝐿⊤

▪ Full-rank: 𝑞 𝑧 =  𝒩 𝑧 𝜇𝑧, Σ𝑧  with no constraint on Σ𝑧 

▪ Mean-field: 𝑞 𝑧 = 𝑞 𝑧1 𝑞 𝑧2 =  𝒩 𝑧1 𝜇𝑧1
, 𝜎𝑧1

2  𝒩 𝑧2 𝜇𝑧2
, 𝜎𝑧2

2
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𝑝 𝓓 𝒛 =  ෑ
𝑛=1

𝑁

𝒩 𝒙𝑛 𝒛, 𝚺 ∝  𝒩(ഥ𝒙|𝒛,
1

𝑁
𝚺)

(Example courtesy: PML-2 (Murphy))
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Detour

▪ Consider a scalar transformation of a scalar random variable 𝑢 as 𝜃 = 𝑇(𝑢)

▪ Probability distributions of random variables 𝑢 and 𝜃 are related as

▪ Similarly, for multivariate random variables (of same size) related as 𝜽 = 𝑇(𝒖)

▪ We can use such transformations for VI by using a simple distribution for 𝑞(𝒁) and then 
transform it to a more expressive/appropriate distribution (more on this later)
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𝑝 𝜽 = 𝑝(𝒖) det
𝜕𝒖

𝜕𝜽

𝑝 𝜃 = 𝑝(𝑢)
𝑑𝑢

𝑑𝜃

Absolute value of the 

determinant of the Jacobian 

(note that 𝒖 = 𝑇−1(𝜽)

A one-to-one 

transformation function
Transformed 

random variable
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Mean-Field VI

▪ A special way to maximize the ELBO is via the mean-field approximation

▪Doesn’t require specifying the form of 𝑞 𝒁 𝜙  or computing ELBO’s gradients

▪ The idea: Assumes unknowns 𝒁 can be partitioned into 𝑀 groups 𝒁1, 𝒁2, . . . , 𝒁𝑀 , s.t.,

▪ Learning the optimal 𝑞 𝒁 𝜙 reduces to learning the optimal 𝑞1, 𝑞2, … , 𝑞𝑀

▪ Can select groupsbased on model’s structure, e.g., in Bayesian neural net for regression

▪ Mean-field has limitations. Factorized form ignores the correlations among unknowns
▪ Variants such as “structured mean-field” exist where some correlations can be modeled
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𝑞 𝒁 𝜙 =  ෑ
𝑖=1

𝑀

𝑞(𝒁𝑖|𝜙𝑖)
As a shorthand, often written as 

𝑞 =  ς𝑖=1
𝑀 𝑞𝑖 where 𝑞𝑖 = 𝑞 𝑍𝑖 𝜙𝑖

𝑝 𝒘 𝑿, 𝒚, 𝜆, 𝛽 ≈ 𝑞 𝒘 𝜙 =  ෑ
ℓ=1

𝐿

𝑞(𝑤(ℓ)|𝜙ℓ)

For models with local conjugacy, 

it becomes super easy!

Assuming a network with 𝐿 

layers, mean-field across layers
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Deriving Mean-Field VI Updates

▪ With 𝑞 =  ς𝑖=1
𝑀 𝑞𝑖 , what’s the optimal 𝑞𝑖 when we do argmax𝑞 ℒ 𝑞 ?

▪ Note that under this mean-field assumption, the ELBO simplifies to

▪ Suppose we wish to find the optimal 𝑞𝑗 given all other 𝑞𝑖’s (𝑖 ≠ 𝑗) as fixed, then

▪ Thus 𝑞𝑗
∗ = argmax𝑞𝑗

 ℒ 𝑞  = argmin𝑞𝑗
KL(𝑞𝑗|| Ƹ𝑝)  = Ƹ𝑝(𝓓, 𝑍𝑗|Θ)
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ℒ 𝑞 =  න 𝑞 𝒁 log
𝑝(𝓓, 𝒁|Θ)

𝑞(𝒁)
𝑑𝒁 =  න ෑ

𝑖
𝑞𝑖 log 𝑝 𝓓, 𝒁|Θ − ෍

𝑖
log 𝑞𝑖 𝑑𝒁

ℒ 𝑞 =  න 𝑞𝑗 න log 𝑝 𝓓, 𝒁|Θ ෑ

𝑖≠𝑗

𝑞𝑖 𝑑𝑍𝑖 𝑑𝑍𝑗  −  න 𝑞𝑗log 𝑞𝑗𝑑𝑍𝑗 + const w. r. t.  𝑞𝑗

=  න 𝑞𝑗 log Ƹ𝑝(𝓓, 𝑍𝑗|Θ) 𝑑𝑍𝑗  −  න 𝑞𝑗log 𝑞𝑗𝑍𝑗

= −KL(𝑞𝑗|| Ƹ𝑝) log Ƹ𝑝 𝓓, 𝑍𝑗|Θ = 𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ)  + const

𝑞𝑗
∗ =

exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) )

׬ exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) 𝑑𝒁𝑗

Writing this is the same as 

argmax𝜙 ℒ 𝜙, Θ . We are just 

writing optimization w.r.t. 𝑞 directly
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Deriving Mean-Field VI Updates

▪ So we saw that the optimal 𝑞𝑗 when doing mean-field VI is

▪ Note: Can often just compute the numerator and recognize denominator by inspection

▪ Important: For locally conj models, 𝑞𝑗
∗ 𝒁𝑗  will have the same form as prior 𝑝(𝑍𝑗|Θ)

▪ Only the distribution parameters will be different

▪ Important: For estimating 𝑞𝑗 the required expectation depends on other 𝑞𝑖 𝑖≠𝑗

▪ Thus we use an alternating update scheme for these

▪ Guaranteed to converge (to a local optima)
▪ We are basically solving a sequence of concave maximization problems

▪ Reason: ℒ 𝑞 = 𝑞𝑗׬ log Ƹ𝑝(𝓓, 𝑍𝑗|Θ) 𝑍𝑗  − ׬  𝑞𝑗log 𝑞𝑗𝑍𝑗 is concave in 𝑞𝑗
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𝑞𝑗
∗ 𝒁𝑗 =

exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) )

׬ exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|Θ) 𝑑𝒁𝑗
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The Mean-Field VI Algorithm
▪ Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm

▪ Input: Model in form of priors and likelihood, or joint 𝑝(𝓓, 𝒁|Θ), Data 𝓓

▪ Output: A variational distribution 𝑞(𝒁) =  ς𝑗=1
𝑀 𝑞𝑗(𝒁𝑗)

▪ Initialize: Variational distributions 𝑞𝑗(𝒁𝑗), 𝑗 = 1,2, … 𝑀

▪ While the ELBO has not converged
▪ For each 𝑗 = 1,2, … 𝑀, set

▪ Compute ELBO ℒ 𝑞 =  𝔼𝑞 log 𝑝(𝓓, 𝒁|Θ) − 𝔼𝑞 log 𝑞(𝒁)

▪NOTE: We can also use mean-field assumption for 𝑞(𝒁) and optimize the ELBO 
using gradient based methods if  we don’t have local conjugacy
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𝑞𝑗 𝒁𝑗 ∝  exp(𝔼𝑖≠𝑗 log 𝑝(𝓓, 𝒁|𝚯) )
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VI and Convergence

▪ VI is guaranteed to converge to a local optima (just like EM)

▪ Therefore proper initialization is important (just like EM)
▪ Can sometimes run multiple times with different initializations and choose the best run

▪ ELBO increases monotonically with iterations
▪  Can thus monitor the ELBO to assess convergence

13
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ELBO for Model Selection

▪ Recall that ELBO is a lower bound on log of model evidence log 𝑝(𝑿|𝑚)

▪ Can compute ELBO for each model 𝑚 and choose the one with largest ELBO

▪ Some criticism since we are using a lower-bound but often works well in practice
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Each value of 𝐾 

represents a 

different model
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VI might under-estimate posterior’s variance

▪ Recall that VI approximates a posterior 𝑝 by finding 𝑞 that minimizes KL(𝑞||𝑝)

▪ 𝑞(𝒁) will be small where 𝑝(𝒁|𝓓) is small otherwise KL will blow up

▪ Thus 𝑞(𝒁) avoids low-probability regions of the true posterior

▪ Some methods, e.g., Expectation Propagation (EP), can avoid this behavior
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𝑞 (red) avoids regions 

of 𝑝 (green) where the 

latter has low values

𝑞 (red) concentrated on one 

of the modes of 𝑝 (blue)

For 𝑞 to also capture the other 

mode, it will require crossing the 

low-probability region of 𝑝, 

thereby blowing up the KL

EP minimizes KL(𝑝||𝑞)

KL(𝑞| 𝑝 = − න 𝑞 𝒁 log
𝑝(𝒁|𝓓)

𝑞(𝒁)
𝑑𝒁
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Variational EM

▪ If  the parameters Θ are also unknown then we can use variational EM (VEM)

▪ VEM is the same as EM except the E step uses VI to approximate the CP of 𝒁

▪ VEM alternates between the following two steps
▪ Maximize the ELBO w.r.t. 𝜙 (gives the variational approximation 𝑞(𝒁) of CP of 𝒁)

▪ Maximize the ELBO w.r.t. Θ (gives us point estimate of Θ)

▪Note: If  we want posterior for Θ as well, treat it similar to 𝒁 and apply variational 
approximation (instead of using VEM) if  the posterior isn’t tractable
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𝜙(𝑡) =  argmax𝜙 𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ(𝑡−1) − log 𝑞𝜙 𝒁

Θ(𝑡) =  argmaxΘ 𝔼𝑞
𝜙(𝑡)(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙(𝑡) 𝒁

=  argmaxΘ 𝔼𝑞
𝜙(𝑡)(𝒁) log 𝑝 𝓓, 𝒁 Θ

This looks very similar to the 

expected CLL with the CP replaced 

by its variational approximation
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Extra Slides - Mean-Field VI: A Simple Example

▪ Consider data 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} from a one-dim Gaussian 𝒩(𝜇, 𝜏−1)

▪ Assume the following normal-gamma prior on 𝜇 and 𝜏

▪ Posterior is also normal-gamma due to the jointly conjugate prior

▪ Let’s anyway verify this by trying mean-field VI for this model

▪ With mean-field assumption on the variational posterior 𝑞 𝜇, 𝜏 = 𝑞𝜇 𝜇 𝑞𝜏(𝜏)

▪ In this example, the log-joint                                                              . Thus 

17
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Extra Slides - Mean-Field VI: A Simple Example

▪ Substituting 𝑝 𝐗 𝜇, 𝜏 =  ς𝑛=1
𝑁 𝑝(𝑥𝑛|𝜇, 𝜏) and 𝑝(𝜇|𝜏), we get

▪ (Verify) The above is log of a Gaussian. This 𝑞𝜇
∗ = 𝒩(𝜇|𝜇𝑁, 𝜆𝑁) with

▪ Proceeding in a similar way (verify), we can show that 𝑞𝜏
∗ = Gamma(𝜏|𝑎𝑁, 𝑏𝑁)

▪ Note: Updates of 𝑞𝜇
∗  and 𝑞𝜏

∗ depend on each other (hence alternating updates needed)
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This update depends on 𝑞𝜏 

This update depends on 𝑞𝜇 
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