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Variational Inference (VI)

= Assume a latent variable model with data D and latent variables Z

= A simple setting might look something like this
This setting is just one example. VI
is applicable in more general and
more complex probabilistic models
@ @
N

with and without latent variables
= Assume the likelihood is p(D|Z, ®) and prior is p(Z|®). Want posterior over Z
" 0 = (0, @) denotes the other parameters that define the likelihood and the prior

" For now, assume 0 is known and only Z is unknown (the © unknown case later)
= Assume CP p(Z|D, 0) is intractable
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Variational Inference (VI)

= Assuming p(Z|D, ©) is intractable, VI approximates it by a distr q(Z|¢) or q4(Z)

Find the optimal ¢ which
makes our approximation
q(Z|®) as closed as
possible to the true
posterior p(Z|D)

Kullback Leibler divergence | | Also possible to use KL[p||q]
KL[q||p] between q and p or divergences other than KL

¢" = argming KL[q4(Z2)|[p(Z]D, 0)]

q¢ defines a class of distributions parametrized
by ¢ sometimes called “variational parameters”

N

Approximation class

KL[a(2)llp(z]

True posterior

e

X: data
Z. unknowns

Name “variational” comes from
Physics and refers to problems
where we are optimizing functions
of distributions (here the function is
the KL divergence)
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Variational Inference (VI)

" The optimization problem

¢* = argming KL[q4(Z)||p(Z|D, 0)]

= argming IE%(Z)

p(D|Z,0)p(Z|0)
p(D|O)

log g4 (Z) — log

= argminy Iqub(Z)

log q4(Z) — log p(D|Z,0) — logp(Z|0)| + log p(D|6)

= Since log p(D|O) is independent of ¢, the optimization problem becomes

¢* = argming Eq,2)

¢* = argming Eg 2 :log qp(Z) — log p(D,Z|®):

log q4(Z) — log p(D|Z,0) — logp(Z|0)]

¢* = argmaxg Iqub(Z) [log p(D,Z|0) —log qd,(Z): = argmax L(¢, 0)

= Note that L(¢p, 0) < log p(D|0O) and is called “Evidence Lower Bound” (ELBO)
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The ELBO

* The ELBO is defined as _
L(¢,0) = Eq,z)|logp(D,Z10) —log q4(2).

= Eq, 2 [logp(D,Z]|0)] + H[q4(Z).
= Thus maximizing the ELBO wirt. ¢ gives us a q4(Z) which

= Maximizes the expected joint probability of data and latent variables

" Has a high entropy
= \\e can also write the ELLBO as follows

L(¢,0) = Eq, (z)[logp(D|Z,0)] — KL[q4(Z)||p(Z]|06)]

= Thus maximizing the ELBO wirt. ¢ will give us a qg(Z) which
= Explains the data D well, i.e., gives it large expected probability E,[log p(D|Z, ©)]

" |s close to the prior p(Z), i.e. is simple/reqularized (small KL[qy(Z)||p(Z]0©)) Mool




Maximizing the ELBO

" We need to maximize the ELBO wirt. ¢ (for now, assuming 0 is known)

£(¢,0) = E,,n[log p(DIZ,0)] — KL[q4(2)||p(Z|0)]

" The general approach to maximize ELBO is based on gradient-based methods
= Assume some suitable/convenient form for g4 (Z), e.g., N'(Z|u, X) so ¢ = (1, X)
= Maximize the ELBO wirt. ¢ using gradient ascent

brr1 = ¢Pr + 1 Vg L(P, 0)

» Note: Expectations in ELBO and ELBO's gradients w.rt. ¢ may not be easy

= Will see methods to handle such issues later
= Assuming simple forms for g4 (Z) also helps (we can use random variable transformation
methods to transform the simple form to more expressive ones — will see later)

Unknown O case later
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A Simple lllustration for VI

» Assume a simple likelihood model
N

p(D|z) = N(x,|z,X) x N(ﬂz,%!l)

n=1

" Suppose we want to estimate the posterior of the mean z

" Assuming a Gaussian prior on z and assuming X is known, the posterior can be

computed analytically (because of conjugacy) 25 -
" | et's still try VI to see how well it does 204

= Figure shows VI result for three Gaussian forms for q(z) 7,
= | ow-rank: q(z) = N (z|u, X,) where £, = LLT 107

= Full-rank: g(z) = N (z|uy,, Z,) with no constraint on X,

» Mean-field: q(2) = q(z1)q(z,) = N(Z1|Iiz1»0z21) N(ZZ|“22'0222)

(Example courtesy: PML-2 (Murphy))

[ analytic
Y07 mean_field
-1 low_rank

L= full_rank
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D e t O u r Transformed A one-to-one

random variable transformation function

= Consider a scalar transformation of a scalar random variable u as 8 = T (u)
» Probability distributions of random variables u and 6 are related as

p(0) = p(u)

= Similarly, for multivariate random variables (of same size) related as @ = T(u)

du
do

Absolute value of the
determinant of the Jacobian
(note that u = T~1(0)

9) — 1 ou
p(6) = p(u) [det 20

= We can use such transformations for VI by using a simple distribution for q(Z) and then
transform it to a more expressive/appropriate distribution (more on this later)
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Mean-Field VI

= A special way to maximize the ELBO is via the mean-field approximation

» Doesn't require specifying the form of q(Z|¢) or computing ELBO'’s gradients
" The idea: Assumes unknowns Z can be partitioned into M groups Z4,Z,,...,Zy;, S.t.,

As a shorthand, often written as M
q = [1i, q; where q; = q(Zil$;) (Z|p) = VALY For models with local conjugacy,
1 (15 i=1Q( l |¢l) it becomes super easy!

" | earning the optimal q(Z|¢)reduces to learning the optimal g4, g5, ..., qu

= Can select groupsbased on model's structure, €.g., in Bayesian neural net for regression
L

Assuming a network with L
p(WlX, y, /1, ﬁ) ~ q (Wl ¢) — n{_lq (W (f) |¢£) layers, mgean—fiéld acrost:; layers
= Mean-field has limitations. Factorized form ignores the correlations among unknowns

= \/ariants such as “structured mean-field” exist where some correlations can be modeled
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Writing this is the same as

Deriving Mean-Field VI Updates |argmax, £@,0). vieare st

writing optimization w.rt. g directly

= With g = Il-vil qi. what's the optimal q; when we do argmax, L(q)?

» Note that under this mean-field assumption, the ELBO simplifies to

L(q) = f q(Z)log [p(?é)lé)) dZ = f 1_Lqi [log p(D,Z|06) —zilog Qi] dZ

= Suppose we wish to find the optimal q; given all other g;'s (i # j) as fixed, then

L(q) = jqj Jlogp(D,Z|®)1_[qi dz;|dZ; — jqjlog q;jdZ; + const w.r.t. q;

1]
I ) - . eXp(]Ei:/_-j [108 p(D)Zlg)])
= f q;ilog p(D,Z;|0) dZ; — f qjlogq;z; |9 = [ exp(E;x;[log p(D,Z|0)] dZ;
= —KL(q,||p) | 108 #(D.Z) = Ei;llog p(D, Z|6)] + const f

" Thus g} = argmaxg; L(q) = argming KL(q;||p) =p(D,Z;|0)
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Deriving Mean-Field VI Updates

" S50 we saw that the optimal g; when doing mean-field VI is

(Z;) = exp(E;x;[log p(D, Z]0)])
TA\%) = T exp(Eyy, [log p(D, Z]0)] dZ;

* Note: Can often just compute the numerator and recognize denominator by inspection

= [mportant: For locally conj models, q;f(Zj) will have the same form as prior p(Z;|0)
= Only the distribution parameters will be different

= Important: For estimating q; the required expectation depends on other {q;};x
" Thus we use an alternating update scheme for these

* Guaranteed to converge (to a local optima)
= We are basically solving a sequence of concave maximization problems

= Reason: L(q) = [q;log p(D,Z;|0) Z; — [ q;log q;Z; is concave in q;
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The Mean-Field VI Algorithm

" Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm
" [nput: Model in form of priors and likelihood, or joint p(D, Z|®), Data D
= Qutput: A variational distribution g(£) = %1 q;(Z;)

" Initialize: Variational distributions q;(Z;), j = 1,2, ..M

= While the ELBO has not converged
" Foreach j = 1,2, ... M, set

q;(Z;) < exp(E;x;[logp(D,Z|0)])

= Compute ELBO L(q) = Eg4[log p(D, Z|0)] — E,[log q(Z)]

=» NOTE: We can also use mean-field assumption for q(Z£) and optimize the ELBO

using gradient based methods it we don't have local conjugacy
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VI and Convergence

» V] is guaranteed to converge to a local optima (just like EM)

» Therefore proper initialization is important (just like EM)

= Can sometimes run multiple times with different initializations and choose the best run

~1.6-10°

—1.8-10° — —

ELBO

~2-10° f
A

—2.2-10°

/
~2.4-10° {

0 10 20 30 40
Seconds

Different initializations may lead to different optima

» £[ BO increases monotonically with iterations
= (Can thus monitor the ELBO to assess convergence

50
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ELBO for Model Selection

» Recall that ELBO is a lower bound on log of model evidence log p(X|m)

= Can compute ELBO for each model m and choose the one with largest ELBO

Plot of the variational lower bound - - - - - T EFach value of K
£ versus the number K of com- X ]

ponents in the Gaussian mixture represents a
medel, for the Old Faithful data, ‘

showing a distinct peak at K — different model
2 components. For each value
of K, the model is trained from -
100 different random starts, and -
the results shown as ‘+’ symbols DIK) i
plotied with small random hori- ¥
zontal perturbations so that they
can be distinguished. Note that
some solutions find suboptimal
local maxima, but that this hap-

pens infrequently.

+
+ N

+ 30
i

= Some criticism since we are using a lower-bound but often works well in practice
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VI might under-estimate posterior’s variance

= Recall that VI approximates a posterior p by finding g that minimizes KL(q||p)

Z\|D
KL(qllp) = — j q(2)log {pfl('z))}dz

" q(Z) will be small where p(Z|D) is small otherwise KL will blow up

* Thus q(Z) avoids low-probability regions of the true posterior

I

q (red) avoids regions // q (red) concentrated on one \
of p (green) where the 22 /// ,/ of the modes of p (blue)
atter has low values 05l Vi ,':."/ For q to also capture the other /( @ /( .
V' iy g o 5 @
// / thereby blowing up the KL '\k/
0() 05 : : N

" EP minimizes KL(p||q)

* Some methods, e.g., Expectation Propagation (EP), can avoid this behavior
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Variational EM

" |f the parameters O are also unknown then we can use variational EM (VEM)
" VEM is the same as EM except the E step uses VI to approximate the CP of Z

= \VEM alternates between the following two steps
= Maximize the ELBO wirt. ¢ (gives the variational approximation q(Z) of CP of Z)

PO = argmaxg Eg () [log p(D, Z|@ V) — log dg (2)]

= Maximize the ELBO wirt. © (gives us point estimate of 0)

0®) = argmaxg [qub(t)(z) _log p(D,Z|O) — log q (Z)]

- This looks very similar to the
= dIrgmaXeg [Eq¢(t) (2) log p (D; Z G)] expected CLL with the CP replaced

by its variational approximation

= Note: It we want posterior for © as well, treat it similar to Z and apply variational

approximation (instead of using VEM) if the posterior isn't tractable
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Extra Slides - Mean-Field VI: A Simple Example

» Consider data X = {x4, x5, ..., Xy} from a one-dim Gaussian N(,u,r‘l)
= Assume the following normal-gamma prior on y and ©
p(ulr) = N(ulpo, (Ao7)™")  p(7) = Gamma(r]ao, bo)
" Posterior is also hormal-gamma due to the jointly conjugate prior
" | et's anyway verify this by trying mean-field VI for this model
= With mean-field assumption on the variational posterior q(u, T) = q, (1) q.(T)

logqg,.() = Eqg, [logp(X,p, )]+ const
logq: (1) = Eg,[logp(X,u,7)] + const
" [n this example, the log-joint log p(X, i, 7) = log p(X|w, 7) + log p(u|7) + log p(7). Thus
logq,.(1) = Eq, [logp(X|yx, )+ log p(u|T)] + const (only keeping terms that involve p)
log g-(7) = Eq,.[log p(X|p,T) + log p(u|7) + log p(7)] + const
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Extra Slides - Mean-Field VI: A Simple Example

= Substituting p(X|u, T) = [IN=1p(xn|u, ) and p(u|7), we get

log g, (1) = Eq, [log p(X|u, ) + log p(p|7)] + const
= —qu[T] {ZN:(xn — )% + o(p — uo)z} + const
= (Verify) The above is log of a Gausggln. This q,, = N (u|uy, Ay) with
i = /\O;LOO_:—/CI)? and Ay = (o + N)Eq_[7] This update depends on g,

* Proceeding in a similar way (verify), we can show that g; = Gamma(t|ay, by)
1

N

N+1 .

an = ao + 5 and by = by + _Eq;¢ [E :(Xn o M)2 4+ )\O(ﬂ o “0)2] This update depends on q,
n=1

2

= Note: Updates of q, and g7 depend on each other (hence alternating updates needed)
CS772A: PML



	Slide 1: Variational Inference
	Slide 2: Variational Inference (VI)
	Slide 3: Variational Inference (VI)
	Slide 4: Variational Inference (VI)
	Slide 5: The ELBO
	Slide 6: Maximizing the ELBO
	Slide 7: A Simple Illustration for VI
	Slide 8: Detour
	Slide 9: Mean-Field VI
	Slide 10: Deriving Mean-Field VI Updates
	Slide 11: Deriving Mean-Field VI Updates
	Slide 12: The Mean-Field VI Algorithm
	Slide 13: VI and Convergence
	Slide 14: ELBO for Model Selection
	Slide 15: VI might under-estimate posterior’s variance
	Slide 16: Variational EM
	Slide 17: Extra Slides - Mean-Field VI: A Simple Example
	Slide 18: Extra Slides - Mean-Field VI: A Simple Example

