Estimating Parameters and Predictive
Distributions: Some Simple Cases
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Plan today

" Parameter estimation (point est. and posterior) and predictive distribution for

= Bernoulli observation model (binary-valued observations)
= Multinoulli observation model (discrete-valued observations)

" Focus today on cases with conjugate prior on parameters (easy to compute posterior)

" Gaussian distribution and some of its important properties
» Parameter estimation and predictive distribution for Gaussian observation models

CS772A: PML



Bernoulli Observation Model
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Estimating a Coin’s Bias

= Consider a sequence of N coin toss outcomes (observations) Probability
of a head

" Fach observation vy, is a binary random variable. Head: y,, = 1, Tail: y,, = 0

* Fach y, is assumed generated by a Bernoulli distribution with param 8 € (0,1)

Likelihood or _ 1—
observation model P(yn|9) = Bernomh()’nl@) = grn (1-26) In

" Here 8 the unknown param (probability of head). Let's do MLE

assuming i.i.d. data

" Log-likelihood: Yp=1 108 p(¥10) = IN_; [yulog8 + (1 —yy)log (1 — 6)]

* Maximizing log-lik, or minimizing neg. log-lik (NLL) w.rt. 8 gives

| g ) ) o and N Thus MLE Indeed, with a small number of
tOS,SG a comn 5 times — gave 1?? cad an —1 yn solution is simply | | training observations, MLE may
4 tails. Does it means 6 = OZ 2 The 6 — n= the fraction of overfit and may not be reliable. An
MLE approach Says so.lV\/hat s I'see O MLE N heads! © Makes | | alternative is MAP estimation
& head and 5 tails. Does it mean 8 = Q7 ntuitive sensel which can incorporate a prior
| distribution over 8
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Estimating a Coin’s Bias
" | et's do MAP estimation for the bias of the coin
" Fach likelihood term is Bernoulli
p(y,|0) = Bernoulli(y,|0) = ¥ (1 — §)1 In
" Also need a prior since we want to do MAP estimation

" Since 8 € (0,1), a reasonable choice of prior for 8 would be Beta distribution

- Tla+p)
POIEE) = Har)

The gamma function «a and B (both non-negative reals)
are the two hyperparameters of this

Beta prior

6&—1(1 _ H)ﬁ—l

Usinga = 1 and f = 1 will make
the Beta prior a uniform prior

Can set these based on intuition,
cross-validation, or even learn them




Estimating a Coin’s Bias
" The log posterior for the coin-toss model is log-lik + log-prior

N
LP(0) =z log p(y,10) +logp(Bla,p)

n=1
" Plugging in the expressions for Bernoulli and Beta and ignoring any terms that
don't depend on 8, the log posterior simplifies to
N
LP(0) = z |y, log0 4+ (1 —y,)log(1—6)]+ (a—1)logh + (f — 1)log(1 —0)

n=1

= Maximizing the above log post. (or min. of its negative) w.rt. 8 gives

Prior's hyperparameters have an

Usinga = 1and f = 1 gives us N +a—1 interesting interpretation. Can think of
the same solution as MLE H _ n=1 Yn a — 1 and B — 1 as the number of

MAP — N + a + ﬁ — 9 heads and tails, respectively, before
Recall that @ = 1 and 8 = 1 for Beta starting the coin-toss experiment
distribution is in fact equivalent toa Such interpretations of prior's hyperparameters as (akin to “pSGUdO_ObservaﬂonS")
uniform pr]or (hence making MAP being “pseudo-observations” exist for various other

val MLE prior distributions as well (in particular, distributions
equivalent to ) belonging to “exponential family” of distributions CS772A: PML



The Posterior Distribution

" | et's do fully Bayesian inference and compute the posterior distribution
= Bernoulli likelihood: p(y,,|6) = Bernoulli(y,|0) = 6Yr (1 — 0)* ™ ¥»

= Beta prior: p(6) = Beta(@|a, ) = Fig;;g% 9“‘1(% — Hf)hﬁd_iw Number of tails (Np)

" The pg)ypsefgarigarﬁcan be computed as §Zn=1Yn (1 — §)N~-Zn=1¥n
not shown for brevity

p(8ly) = LLPUNE) _ p(O) My pOmIO) oo oo Moy o0 oy
p(y) p(y) f%@a—l(l_g)ﬁ—1 Hg:l Yyn (1-0)1-Ynde

" Here, even without computing the denominator (marg lik), we can identify the posterior
" |t is Beta distribution since p(@|y) oc @%TN1=1(1 — 0)F+No~1 [ crecise: Show that the &\

L ]
normalization constant equals vy | /

= ThUS P(9|y) — Beta(9|a _I_ Nl,,B + NO) Hint: Use the fact that the [(a+ B +N) e’»
1Yn)

posterior must integrate to 1
[ p(6ly)do = 1 [(a+ Y= y)T(B+N =3

" Here, finding the posterior boiled down to simply "multiply, add stuff, and identify”

" Here, posterior has the same form as prior (both Beta): property of conjugate prigrs. su.



Conjugacy and Conjugate Priors

* Many pairs of distributions are conjugate to each other
= Bernoulli (likelihood) + Beta (prior) = Beta posterior
= Binomial (likelihood) + Beta (prior) = Beta posterior
= Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior | Not true in general, but in some
: : : . , cases (e.g., the variance of the
= Poisson (likelihood) + Gamma (prior) = Gamma posterior Gaussian likelihood is fixed)
" Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

" and many other such pairs ..

= Tip: If two distr are conjugate to each other, their functional forms are similar

» Example: Bernoulli and Beta have the forms This is why, when we multiply them while
computing the posterior, the exponents get added
. _ ny _ o\1-y and we get the same form for the posterior as the
Bernoulh(yl@) =0 (1 0) prior but with just updated hyperparameter. Also,
F(Ol + ﬁ) we can identify the posterior and its
Beta(@|a,f) = ———= 0% 1(1 - H)ﬁ_l hyperparameters simply by inspection
F(a)r'(B)

= More on conjugate priors when we ook at exponential family distributionscs772A_ .



Predictive Distribution

" Suppose we want to compute the prob that the next outcome yy 41 Will be head (=1)

" The posterior predictive distribution (averaging over all 8's weighted by their respective
posterior probabilities)

1
p(yn+1 = 1ly) = j
0

1

pmwpnﬁwme=ijﬂ=ummwww
0

1
=fQXwanw
0

Expectation of 8 w.r.t. the Beta posterior

— [Ep(g ly) [6] distribution p(8|y) = Beta(8|a + N1, B + Ny)
a+ Ny For models where likelihood and A
— prior are conjugate to each other, "j p /
m [herefore the PPD will be a+p+N the PPD can be computed easily »
in closed form (more on this e

when we talk about exponential

p(yN+1 |y) — Bernoulli(yN+1 | Ep(@ |ly) [6]) family distributions)
= The plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

P =1Uy) = p(yne1 =1[8) =0 == p(Yn+1ly) = Bernoulli(yy;1]0)
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Multinoulli Observation Model
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MLE/MAP left as

The Posterior Distribution sameers

= Assume N discrete obs y = {y{, V5, ..., Yy} with each y,, € {1,2, ..., K}, eq,

=y, represents the outcome of a dice roll with K faces

= y. represents the class label of the nt" example in a classification problem (total K classes)

=y, represents the identity of the nt word in a sequence of words These sum to 1

= Assume likelihood to be multinoulli with unknown params T = [y, 5, ..., Tk |
K

. . I[yn=kK] Generalization of Bernoulli to
) = multinoulli(y,|) = ‘ ‘ m,” "
p(ynlm) (Ynlm) w1 K K > 2 discrete outcomes
' ey “ aF " Large values of a will

" 7T is a vector of probabilities (“probability vector”), e.g., — g = Dicret peakes

» Biases of the K sides of the dice concentratiofn h aroune = mean tﬁfft

. Qo . : e : — — parameter of the
= Prior class probabilities in multi-class classification (p(y, = k) = m) |20 (assumed
= Probabilities of observing each word of the K words in a vocabulary known for now) Fach ay =0

= Assume a conjugate prior (Dirichlet) on 1 with hyperparams & = a4, @5, ..., ak]

p(7m|a) = Dirichlet(w|a, ..., ak)

vectors

K K
r(zle lek) ap—1 1 ay—1 Generalization of Beta to
— =K r H Uy — m H Ty K-dimensional probability
[Ther M) ) k=1

CS772A: PML



Brief Detour: Dirichlet Distribution

Basically, probability vectors

* An important distribution. Models non-neg. vectors 1 that also sum to one

* A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

The probability simplex of a
2-dim simplex (representing
a 3-dim Dirichlet) and the

coordinates of various
points on the simplex

(1/2,1/2,0)

(1,0,0)

p(m|a) = Dirichlet(w|aa, . . ., ak) = E_(Ikzk -1 %) H Xl — ) Hﬂ'ak .
1
¥ ¥
(1/2,1/4,1/4) Hean = [ K o U FK ]
(1/2,0,1/2) | -
(3/8,3/8,1/4) (3/8,1/4,3/8) _ o
Mode = { o1 - 1 ;ﬁ‘ : ] (ap > 1)
g O — K Yoo — K

(1/4,1/4,1/2)

(0,1,0)

(0,0,1)
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Brief Detour: Dirichlet Distribution .

= A visualization of Dirichlet distribution for different values of concentration param

Like a uniform ) ) o L
distribution if Draws from a 3-dimensional Dirichlet with different o

Visualizations of PDFs of some 3-dim | alagsaret fo=(1.1.1)
Dirichlet distributions (each generated
usmg a different conc. Param vector «)

o= (10, 10, 10)

Al a's large results in
peak around the
center of the simplex

a controls the shape

of the Dirichlet (just
like Beta distribution’s
hyperparameters)

;;;;;;;;;
L O T
T

B A T e 15 O
T4

" Interesting fact: Can generate a K-dim Dirichlet random variable by independently
generating K gamma random variables and normalizing them to sum to 1 CST72A: PML



The Posterior Distribution

Likelihood Prior

= Posterior p(1T|y) is easy to compute due to conjugacy b/w multinoulli and Dir.

Don't need to compute for this

) p (Tt' yl a) . p (Tl'l a)p (Y|7T; a) . p (Tl'l a)p (}’|7T) case because of conjugacy

, @) = = =
p(mly p(y|a) p(y|a) p(yla) — Maglk=[ p@lapyimdn
= Assuming y,,'s are i.i.d. given i, p(y|m) = N_1 p(y,|T), and therefore
N k] —
p(ly, @) o [T}y m " X [I=y ey m 7™ = [IEL mk o= =l =
= Even without computing marg-lik, p(y|a&), we can see that the posterior is Dirichlet
= Denoting N = YN _. [y, = k], number of observations with with value k

o Similar to number
p(m|y, @) = Dirichlet(m|a,; + Ny, @y + Ny, ..., @ + Ni) ot heads and taie
o L ' . . for the coin bias
» Note: Nq,, N, ..., Ng are the sufficient statistics for this estimation problem | estimation problem
* We only need the suff-stats to estimate the parameters and values of individual observations aren’t
needed (another property from exponential family of distributions — more on this later)

CS772A: PML



The Predictive Distribution

" Finally, let's also look at the posterior predictive distribution for this model

» PPD is the prob distr of a new y, € {1,2, ..., K}, given training data y = {y4, V5, ..., Yn}

Will be a multinoulli. Just need

to estimate the probabilities of p (y* |y’ a) — f p (y* |Tl')p (T[ | y, a) dT[

each of the K outcomes
* p(y,|m) = multinoulli(y,|m), p(m|y, @) = Dirichlet(m|a; + N, a, + Ny, ..., ax + Ng)
= Can compute the posterior predictive probability for each of the K possible outcomes

p(y. = kly, @) = [ p(y. = klm)p(wly, a)dm
= [ m,, x Dirichlet(m|a; + Ny, ay + Ny, ..., ax + Ni)dm

__ % + Nie (Expectation of m, wir.t the Dirichlet posterior)
Ilgzl ay + N A similar effect was
Note how these probabilities achieved in the Beta-
: : C o ai+Np have been “smoothened” due Bernoulli model, too
" Thus PPD is multinoulli with probability vector {ZK ” +N} to the use of the prior + the
k=1 Yk

k=1 averaging over the posterior

= Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 1T

CS772A: PML
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Gaussian Observation Model
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Gaussian Distribution (Univariate)

= Distribution over real-valued scalar random variables Y € R, e.g., height of
students in a class

= Defined by a scalar mean u and a scalar variance ¢

1 (v — m)?
N Y — ) 0'2 — eX — 0.4 -
" Mean: E[Y] = u |
, 2 Gaussian PDF in
= \/ariance:; Var[Y] =0 terms of precision
. . - 1
" [nverse of variance is called precision: f = —~ N =ylu ) =j§exp [—g(y—u)zl

CS772A: PML



Gaussian Distribution (Multivariate)

= Distribution over real-valued vector random variables ¥ € RP
= Defined by a mean vector u € RPand a covariance matrix X

A two-dimensional Gaussian

1
N =y|lpx) = exp[-(y—-w)'E "y -pw]
J(m)P|x| :

e
o

= Note: The cov. matrix & must be symmetric and PSD
= All eigenvalues are positive
= z'¥z > 0 for any real vector z

" The covariance matrix also controls the shape of the Gaussian

= Sometimes we work with precision matrix (inverse of covariance matrix) A = £71
CS772A: PML



Covariance Matrix for Multivariate Gaussian

Spherical Covariance Diagonal Covariance Full Covariance

Spherical: Equal q

spreads (variances)

. . B
along all dimensions ! .

Diagonal: Unequal
spreads (variances)
along all directions
but still axis-parallel

Full: Unequal spreads
(variances) along all
directions and also
spreads along oblique
directions
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Multivariate Gaussian: Marginals and Conditionals

o Given x having multivariate Gaussian distribution A/ (x|, X) with A = ¥, Suppose

— Xa — I“La
=(a) w=()
2(1 a Ea b A(zu Aub
) = S . T —
(Zba be) (Aba Abb)
o The marginal distribution is simply

p(xa) = N(xa|p,, Xaa)

o The conditional distribution is given by
p(Xa|xp) = N(Xlﬂuu)-A_l)

aa

Hap = Hq— Aa_alA(lb(xb =1 l’l’b)

Thus marginals and conditionals

of Gaussians are Gaussians
CS772A: PML



Transformation of Random Variables

" Suppose Y = f(X) = AX + b be alinear function of a vector-valued rv. X (A is a
matrix and b is a vector, both constants)

= Suppose E[X] = u and cov[X] = Z, then for the vector-valued rv. Y

E[Y] = E[AX + b] = Au + b
cov[Y] = cov[AX + b] = AZAT

= Likewise, if Y = f(X) =a'X + b be a linear function of a vector-valued rv. X (a is a
vector and b is a scalar, both constants)

= Suppose E|X] = u and cov[X] = X, then for the scalar-valued rv. Y
E[Y]=E[a'™X + b]=a'u+0b
var[Y] =var[a'X + b] =a'Xa

CS772A: PML



Linear Gaussian Model (LGM)

» L GM defines a noisy lin. transform of a Gaussian rv. @ with p(8) = ¥ (0|u, A™)

Both @ and y are vectors (can
be of different sizes)

—_— A 9 b Noise vector - independently
Also assume 4, b, A, L to be y - + + E and drawn from N (€|0,L™1)

known; only @ is unknown

" Fasy to see that, conditioned on 8, y too has a Gaussian distribution

Conditional p(yle) — N(ylAH _|_ b’ L—l)

distribution

= Assume p(@) as prior and p(y|@) as the likelihood, and defining £ = (A + ATLA)™?!

Posterior of @ p (yl 9)p (0)
p(By) =
p(y)
Marginal

ssioen -~ p(y) = | p(y|0)p(8)d6 = N (y|Ap+ b, AN'AT + L)
= Many probabilistic ML models are LGMs

= N(O|Z(A"L(y — b) + Ap), %)

" These results are very widely used (PRML Chap. 2 contains a proof) CS772A: PML



lts MLE/MAP

Posterior Distribution for Gaussian’s Mean ] estmaton ieftas

an exercise

" Given: N i.i.d. scalar observations y = {yq,y,, ..., yn} assumed drawn from N (y|u, %)

Likelihood

(yn — .u)z
202

N(ylu, o)

Assume a2 to
be known

= Note: Easy to see that each y,, drawn from N (y|u, 02) is equivalent to the following

p(ynl.u; 0-2) — N()’nl.u; 0-2) X exp T [

Overall N

Likelihood
pOlno?) = |

_POnlmo®)

JLn_

Thus yy, is like a noisy

version of p with zero yn — H -I_ En Where En ~ N(O’ 0'2)

mean Gaussian noise
added to it

" | et's estimate mean u given y using fully Bayesian inference (not point estimation)
CS772A: PML



A prior distribution for the mean

" o computer posterior, need a prior over U

2
" | et's choose a Gaussian prior p(ulto, 0g)
p(ulpg, 08) = N (u|po, o)
(M — Mo)z]
X exp |— 5
20

®* The prior basically says that a priori we believe u is close to uq

= The prior's variance a& denotes how certain we are about our belief

= \We will assume that the prior's hyperparameters (pg, o0& )are known

= Since a2 in the likelihood IV (y|u, a2) is known, Gaussian prior V' (1|, o¢) on
K is also conjugate to the likelihood (thus posterior of u will also be Gaussian)). e



The posterior distribution for the mean

" The posterior distribution for the unknown mean parameter ,u
On conditioning side, 2
(Vn — (,Ll Ho)
208

skig;;ing all fixed pfarams p(my) _ p(yllu)p(:u) o 1_[N expl
yperp p(y) n=1 20

the notation
" Fasy to see that the above will be prop. to exp of a quadratic function of u. Simplitying:

(‘u —_ ‘uN)Z Gaussian posterior (not a
p (,U, |y) oC eXp — 5 surprise since the chosen prior
20- was conjugate to the likelihood)
Gaussian posterior's precision is the sum of 1 1 N
the prior's precision and sum of the noise _— = — S Contribution Also ‘the MLE
precisions of all the observations 0-1\2, O-g 0'2 fContr;tgqun from the data solution for p
rom the prior
Gaussian posterior's mean is a 0'2 NO‘ _ Zg=1 Vn
convex combination of prior’s Uy = .uo y (Where Yy = —)
mean and the MLE solution No'g + o2 NO_O + o2 N

» What happens to the posterior as N (number of observations) grows very large?
: : . Meaning, we b very-v
» Data (likelihood part) overwhelms the prior e Ofrz
= Posterior's variance o will approximately be 62 /N (and goes to 0 as N — )

* The posterior's mean uy approaches y (which is also the MLE solution) CSTT7IA: PML



The Predictive Distribution

" |[f given a point estimate f, the plug-in predictive distribution for a test y,would be

The best point estimate
i . A 2 A 2
This is an approximation ( ‘ ) — ( ‘ )
of the true PPD p(y.|y) p y* l’l" o N y* l’ll o

» On the other hand, the posterior predictive distribution of x, would be o\

2 A useful fact: When we " e /
—_— h i - th
p.ly) = [ pGl, o®)p(uly)du ¥
2 2 distribution also has a
— losed form (will see thi
= [ Nl o2)N (u|uy, of)dp - osionin=s:
If conditional is Gaussian talking about exponential

Y " , 2. . . T
This "extra” variance oy in PPD is due to the — ]V‘ (y* |‘uN, 0.2 + 0.1\2,) then marginal is also family distributions)

averaging over the posterior's uncertainty G .
aussian .
PRML [Bis 06],

2.115, and also

= For an alternative way to get the above result, note that, for test data | ;.= =0=
Ve = U + € u ~ N(HN: 0-1\2,) € ~ N(O, 0_2) stats refresher slides

Using the posterior of u since we

are at test stage now ) . .
= Since both p and € are Gaussian r.v., and are independent,

= P (y* |y) =N (y* |[.1N, 0'2 + 0'1\2]) y, also has a Gaussian posterior predictive, and the

respective means and variances of pand € getadded up 55 4. ppL



Gaussian Observation Model: Some Other Facts

= MLE/MAP for i, a? (or both) is straightforward in Gaussian observation models.

" Posterior also straightforward in most situations for such models
= (As we saw) computing posterior of u is easy (using Gaussian prior) if variance o2 is known
= Likewise, computing posterior of g2 is easy (using gamma prior on ¢#) if mean u is known
= |f u, 0 both are unknown, posterior computation requires computing p(u, o |y)
= Computing joint posterior p(u, o2 |y) exactly requires a jointly conjuage prior p (i, 02)

= "Gaussian-gamma” ("Normal-gamma") is such a conjugate prior — a product of normal and gamma
= Note: Computing joint posteriors exactly is possible only in rare cases such this one

= |f each observation y,, € RP, can assume a likelihood/observation model NV (y|u, )
= Need to estimate a vector-valued mean u € RP. Can use a multivariate Gaussian prior
" Need to estimate a D X D positive definite covariance matrix . Can use a Wishart prior

" [ u, X both are unknown, can use Normal-Wishart as a conjugate prior
CS772A: PML
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