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Plan today
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▪ Parameter estimation (point est. and posterior) and predictive distribution for
▪ Bernoulli observation model (binary-valued observations)

▪ Multinoulli observation model (discrete-valued observations)

▪ Focus today on cases with conjugate prior on parameters (easy to compute posterior)

▪ Gaussian distribution and some of its important properties

▪ Parameter estimation and predictive distribution for Gaussian observation models
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Bernoulli Observation Model

3



CS772A: PML

Estimating a Coin’s Bias
4

▪ Consider a sequence of 𝑁 coin toss outcomes (observations)

▪ Each observation 𝑦𝑛 is a binary random variable. Head: 𝑦𝑛 = 1, Tail: 𝑦𝑛 = 0

▪ Each 𝑦𝑛 is assumed generated by a Bernoulli distribution with param 𝜃 ∈  (0,1)

▪ Here 𝜃 the unknown param (probability of head). Let’s do MLE

▪ Log-likelihood: σ𝑛=1
𝑁 log 𝑝 𝑦𝑛 𝜃  = σ𝑛=1

𝑁  [𝑦𝑛log θ +  (1 − 𝑦𝑛)log (1 − 𝜃)]

▪ Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. 𝜃 gives 

           

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

Probability 

of a head

𝜃𝑀𝐿𝐸 =
σ𝑛=1

𝑁 𝑦𝑛

𝑁

Thus MLE 

solution is simply 

the fraction of 

heads! ☺ Makes 

intuitive sense!

I tossed a coin 5 times – gave 1 head and 

4 tails. Does it means 𝜃  = 0.2?? The 

MLE approach says so. What is I see 0 

head and 5 tails. Does it mean 𝜃  = 0? 

Indeed, with a small number of 

training observations, MLE may 

overfit and may not be reliable. An 

alternative is MAP estimation 

which can incorporate a prior 

distribution over 𝜃

assuming i.i.d. data

Likelihood or 

observation model
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Estimating a Coin’s Bias
5

▪ Let’s do MAP estimation for the bias of the coin

▪ Each likelihood term is Bernoulli 

  

▪ Also need a prior since we want to do MAP estimation

▪ Since 𝜃 ∈  (0,1), a reasonable choice of prior for 𝜃 would be Beta distribution

𝑝 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

The gamma function 𝛼 and 𝛽 (both non-negative reals) 

are the two hyperparameters of this 

Beta prior
Using 𝛼 = 1 and 𝛽 = 1 will make 

the Beta prior a uniform prior

Can set these based on intuition, 

cross-validation, or even learn them

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛  (1 − 𝜃)1−𝑦𝑛
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Estimating a Coin’s Bias
6

▪ The log posterior for the coin-toss model is log-lik + log-prior

▪ Plugging in the expressions for Bernoulli and Beta and ignoring any terms that 
don’t depend on 𝜃, the log posterior simplifies to

▪  Maximizing the above log post. (or min. of its negative) w.r.t. 𝜃 gives

𝐿𝑃 𝜃 = ෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝜃  + log 𝑝 𝜃 𝛼, 𝛽

𝐿𝑃 𝜃 = ෍
𝑛=1

𝑁

𝑦𝑛log θ +  (1 − 𝑦𝑛 log 1 − 𝜃 ] + 𝛼 − 1 log 𝜃 + 𝛽 − 1 log(1 − 𝜃)

𝜃𝑀𝐴𝑃 =
σ𝑛=1

𝑁 𝑦𝑛 + 𝛼 − 1

𝑁 + 𝛼 + 𝛽 − 2

Using 𝛼 = 1 and 𝛽 = 1 gives us 

the same solution as MLE

Recall that 𝛼 = 1 and 𝛽 = 1 for Beta 

distribution is in fact equivalent to a 

uniform prior (hence making MAP 

equivalent to MLE)

Prior’s hyperparameters have an 

interesting interpretation. Can think of 

𝛼 − 1 and 𝛽 − 1 as the number of 

heads and tails, respectively, before 

starting the coin-toss experiment 

(akin to “pseudo-observations”)
Such interpretations of prior’s hyperparameters as 

being “pseudo-observations” exist for various other 

prior distributions as well (in particular, distributions 

belonging to “exponential family” of distributions
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The Posterior Distribution

▪ Let’s do fully Bayesian inference and compute the posterior distribution

▪ Bernoulli likelihood: 𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛  (1 − 𝜃)1−𝑦𝑛

▪ Beta prior: 𝑝 𝜃 = Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

▪ The posterior can be computed as 

▪ Here, even without computing the denominator (marg lik), we can identify the posterior
▪ It is Beta distribution since 

▪ Thus 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

▪ Here, finding the posterior boiled down to simply “multiply, add stuff, and identify”

▪ Here, posterior has the same form as prior (both Beta): property of conjugate priors.

7

𝑝 𝜃 𝒚 =
𝑝 𝜃 𝑝(𝒚|𝜃)

𝑝(𝒚)
=

𝑝 𝜃 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝜃)

𝑝(𝒚)
=

Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛

∫
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛𝑑𝜃

𝜃σ𝑛=1
𝑁 𝑦𝑛  (1 − 𝜃)𝑁−σ𝑛=1

𝑁 𝑦𝑛

Number of heads (𝑁1)

Number of tails (𝑁0)

𝑝 𝜃 𝒚   ∝ 𝜃𝛼+𝑁1−1 1 − 𝜃 𝛽+𝑁0−1 
Exercise: Show that the 

normalization constant equals
Γ(𝛼 + 𝛽 + 𝑁)

Γ 𝛼 + σ𝑛=1
𝑁 𝑦𝑛 Γ 𝛽 + 𝑁 − σ𝑛=1

𝑁 𝑦𝑛

  

Hint: Use the fact that the 

posterior must integrate to 1

∫ 𝑝 𝜃 𝒚 𝑑𝜃 = 1
  

Hyperparams 𝛼, 𝛽 

not shown for brevity
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Conjugacy and Conjugate Priors
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▪Many pairs of distributions are conjugate to each other
▪ Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Binomial (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior 

▪ Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior 

▪ Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior 

▪ and many other such pairs ..

▪ Tip: If  two distr are conjugate to each other, their functional forms are similar
▪ Example: Bernoulli and Beta have the forms

▪More on conjugate priors when we look at exponential family distributions

Not true in general, but in some 

cases (e.g., the variance of the 

Gaussian likelihood is fixed)

Bernoulli 𝑦 𝜃 =  𝜃𝑦 (1 − 𝜃)1−𝑦

Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

This is why, when we multiply them while 

computing the posterior, the exponents get added 

and we get the same form for the posterior as the 

prior but with just updated hyperparameter. Also, 

we can identify the posterior and its 

hyperparameters simply by inspection
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Predictive Distribution

▪ Suppose we want to compute the prob that the next outcome 𝑦𝑁+1 will be head (=1)

▪ The posterior predictive distribution (averaging over all 𝜃’s weighted by their respective 
posterior probabilities)

▪ Therefore the PPD will be

▪ The plug-in predictive distribution using a point estimate መ𝜃 (e.g., using MLE/MAP)

 

9

Expectation of 𝜃 w.r.t. the Beta posterior 

distribution 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

For models where likelihood and 

prior  are conjugate to each other, 

the PPD can be computed easily 

in closed form (more on this 

when we talk about exponential 

family distributions)

  

𝑝 𝑦𝑁+1 = 1 𝒚 = න
0

1

𝑝(𝑦𝑁+1 = 1, 𝜃|𝒚) 𝑑𝜃 = න
0

1

𝑝 𝑦𝑁+1 = 1 𝜃 𝑝(𝜃|𝒚) 𝑑𝜃

= න
0

1

𝜃 × 𝑝(𝜃|𝒚) 𝑑𝜃

=  𝔼𝑝(𝜃|𝒚)[𝜃] 

=
𝛼 + 𝑁1

𝛼 + 𝛽 + 𝑁

𝑝(𝑦𝑁+1|𝒚) = Bernoulli(𝑦𝑁+1|𝔼𝑝(𝜃|𝒚)[𝜃]) 

𝑝 𝑦𝑁+1 = 1 𝒚 ≈ 𝑝 𝑦𝑁+1 = 1 ෠𝜃 𝑝(𝑦𝑁+1|𝒚) = Bernoulli(𝑦𝑁+1| ෠𝜃) = ෠𝜃
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Multinoulli Observation Model
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The Posterior Distribution

▪ Assume 𝑁 discrete obs 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁} with each 𝑦𝑛 ∈ {1,2, … , 𝐾}, e.g.,

▪ 𝑦𝑛 represents the outcome of a dice roll with 𝐾 faces

▪ 𝑦𝑛 represents the class label of the 𝑛𝑡ℎ example in a classification problem (total 𝐾 classes)

▪ 𝑦𝑛 represents the identity of the 𝑛𝑡ℎ word in a sequence of words

▪ Assume likelihood to be multinoulli with unknown params 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾]

▪ 𝝅 is a vector of probabilities (“probability vector”), e.g.,
▪ Biases of the 𝐾 sides of the dice

▪ Prior class probabilities in multi-class classification (𝑝 𝑦𝑛 = 𝑘 = 𝜋𝑘)

▪ Probabilities of observing each word of the 𝐾 words in a vocabulary

▪ Assume a conjugate prior (Dirichlet) on 𝝅 with hyperparams 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝐾]

11

𝑝 𝑦𝑛 𝜋 =  multinoulli 𝑦𝑛 𝜋 = ෑ
𝑘=1

𝐾

𝜋𝑘
𝕀[𝑦𝑛=𝑘]

These sum to 1

Each 𝛼𝑘 ≥ 0

Generalization of Bernoulli to 

𝐾 > 2 discrete outcomes

Generalization of Beta to 

𝐾-dimensional probability 

vectors

Called the 

concentration 

parameter of the 

Dirichlet (assumed 

known for now)

Large values of 𝛼 will 

give a Dirichlet peaked 

around its mean (next 

slides illustrates this)

MLE/MAP left as 

an exercise
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Brief Detour: Dirichlet Distribution

▪ An important distribution. Models non-neg. vectors 𝜋 that also sum to one

▪ A random draw from 𝐾-dim Dirich. will be a point under (𝐾-1)-dim probability simplex

12

Basically, probability vectors

(1,0,0)

(0,1,0) (0,0,1)

(1/2,0,1/2)(1/2,1/2,0)

(0,1/2,1/2)

(1/2,1/4,1/4)

(1/4,1/4,1/2)(1/4,1/2,1/4)

(3/8,1/4,3/8)(3/8,3/8,1/4)

(1/4,3/8,3/8)

The probability simplex of a 

2-dim simplex (representing 

a 3-dim Dirichlet) and the 

coordinates of various 

points on the simplex
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Brief Detour: Dirichlet Distribution

▪ A visualization of Dirichlet distribution for different values of concentration param

▪ Interesting fact: Can generate a 𝐾-dim Dirichlet random variable by independently 
generating 𝐾 gamma random variables and normalizing them to sum to 1 

13

Visualizations of PDFs of some 3-dim 

Dirichlet distributions (each generated 

using a different conc. Param vector 𝜶)

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3 𝜋3
𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a uniform 

distribution if  

all 𝛼𝑘’s are 1
All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 
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The Posterior Distribution

▪ Posterior 𝑝(𝝅|𝒚) is easy to compute due to conjugacy b/w multinoulli and Dir.

▪ Assuming 𝑦𝑛’s are i.i.d. given 𝝅, 𝑝 𝒚 𝝅 =  ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝝅), and therefore

▪ Even without computing marg-lik, 𝑝(𝒚|𝜶), we can see that the posterior is Dirichlet 

▪ Denoting 𝑁𝑘 =  σ𝑛=1
𝑁 𝕀[𝑦𝑛 = 𝑘], number of observations with with value 𝑘

▪ Note: 𝑁1, , 𝑁2 . . . , 𝑁𝐾 are the sufficient statistics for this estimation problem
▪ We only need the suff-stats to estimate the parameters and values of individual observations aren’t 

needed (another property from exponential family of distributions – more on this later)

14

𝑝 𝝅 𝒚, 𝜶 =
𝑝(𝝅, 𝒚|𝜶)

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅, 𝜶

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅

𝑝(𝒚|𝜶)

Likelihood Prior

Marg-lik = ∫ 𝑝(𝝅|𝜶)𝑝 𝒚 𝝅 d𝝅

Don’t need to compute for this 

case because of conjugacy

𝑝 𝝅 𝒚, 𝜶 ∝ ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘−1
× ς𝑛=1

𝑁 ς𝑘=1
𝐾 𝜋𝑘

𝕀[𝑦𝑛=𝑘]
  

𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)  
Similar to number 

of heads and tails 

for the coin bias 

estimation problem

= ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘+σ𝑛=1
𝑁 𝕀[𝑦𝑛=𝑘] −1
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The Predictive Distribution
▪ Finally, let’s also look at the posterior predictive distribution for this model

▪ PPD is the prob distr of a new 𝑦∗ ∈ 1,2, … , 𝐾 , given training data 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁}

▪ 𝑝 𝑦∗ 𝝅 =  multinoulli 𝑦∗ 𝝅 ,  𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)

▪ Can compute the posterior predictive probability for each of the 𝐾 possible outcomes

▪ Thus PPD is multinoulli with probability vector 
𝛼𝑘+𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘+𝑁

𝑘=1

𝐾

 

▪ Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 𝝅 

15

𝑝 𝑦∗ 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

𝑝 𝑦∗ = 𝑘 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ = 𝑘 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

= ∫ 𝜋𝑘 × Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)𝑑𝜋

=
𝛼𝑘 + 𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘 + 𝑁

(Expectation of 𝜋𝑘 w.r.t the Dirichlet posterior)

Note how these probabilities 

have been “smoothened” due 

to the use of the prior + the 

averaging over the posterior

A similar effect was 

achieved in the Beta-

Bernoulli model, too

Will be a multinoulli. Just need 

to estimate the probabilities of 

each of the 𝐾 outcomes
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Gaussian Observation Model
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Gaussian Distribution (Univariate)
17

▪Distribution over real-valued scalar random variables 𝑌 ∈ ℝ, e.g., height of 
students in a class

▪ Defined by a scalar mean 𝜇 and a scalar variance 𝜎2

▪ Mean: 𝔼 𝑌 = 𝜇

▪ Variance: var[𝑌] = 𝜎2

▪ Inverse of variance is called precision: 𝛽 =
1

𝜎2
. 

𝒩 𝑌 = 𝑦 𝜇, 𝜎2 =
1

2𝜋𝜎2
exp −

𝑦 − 𝜇 2

2𝜎2
 

𝒩 𝑌 = 𝑦 𝜇, 𝛽 =
𝛽

2𝜋
exp −

𝛽

2
𝑦 − 𝜇 2  

Gaussian PDF in 

terms of precision



CS772A: PML

Gaussian Distribution (Multivariate)
18

▪Distribution over real-valued vector random variables 𝒀 ∈ ℝ𝐷

▪ Defined by a mean vector 𝜇 ∈ ℝ𝐷and a covariance matrix 𝚺

▪ Note: The cov. matrix 𝚺 must be symmetric and PSD
▪ All eigenvalues are positive

▪ 𝒛⊤𝚺𝒛 ≥ 0 for any real vector 𝒛

▪ The covariance matrix also controls the shape of the Gaussian

▪ Sometimes we work with precision matrix (inverse of covariance matrix) 𝚲 = 𝚺−1

𝒩 𝒀 = 𝒚 𝝁, 𝚺 =
1

2𝜋 𝐷 𝚺
exp − 𝒚 − 𝝁 ⊤𝚺−1(𝒚 − 𝝁)  

A two-dimensional Gaussian
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Covariance Matrix for Multivariate Gaussian
19

Spherical Covariance Diagonal Covariance Full Covariance
5

5-5 -5 -5

-5 -5 -5

5

5 5 5

5 5

Spherical: Equal 

spreads (variances) 

along all dimensions

Diagonal: Unequal 

spreads (variances) 

along all directions 

but still axis-parallel

Full: Unequal spreads 

(variances) along all 

directions and also 

spreads along oblique 

directions

5 5

5 5
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Multivariate Gaussian: Marginals and Conditionals
20
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Transformation of Random Variables
21

▪ Suppose 𝑌 =  𝑓(𝑋)  =  𝐴𝑋 +  𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝐴 is a 
matrix and 𝑏 is a vector, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇  and cov 𝑋 = Σ, then for the vector-valued r.v. 𝑌

▪ Likewise, if  𝑌 =  𝑓 𝑋 = 𝑎⊤𝑋 +  𝑏 be a linear function of a vector-valued r.v. 𝑋 (𝑎 is a 
vector and 𝑏 is a scalar, both constants)

▪ Suppose 𝔼 𝑋 = 𝜇  and cov 𝑋 = Σ, then for the scalar-valued r.v. 𝑌

𝔼 𝑌 = 𝔼 𝐴𝑋 + 𝑏 = 𝐴𝜇 + 𝑏

cov 𝑌 = cov 𝐴𝑋 + 𝑏 = 𝐴Σ𝐴⊤

𝔼 𝑌 = 𝔼 𝑎⊤𝑋 +  𝑏 = 𝑎⊤𝜇 + 𝑏

var 𝑌 = var 𝑎⊤𝑋 +  𝑏 = 𝑎⊤Σ𝑎
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Linear Gaussian Model (LGM)

▪ LGM defines a noisy lin. transform of a Gaussian r.v. 𝜽 with 𝑝 𝜽 = 𝒩(𝜽|𝝁, 𝚲−1)

▪ Easy to see that, conditioned on 𝜽, 𝒚 too has a Gaussian distribution

▪ Assume 𝑝 𝜽  as prior and 𝑝 𝒚|𝜽  as the likelihood, and defining 𝚺 = 𝚲 + 𝑨⊤𝑳𝑨 −1

▪ Many probabilistic ML models are LGMs

▪ These results are very widely used (PRML Chap. 2 contains a proof)

22

Noise vector - independently 

and drawn from  𝒩(𝝐|𝟎, 𝑳−1)𝒚 = 𝑨𝜽 + 𝒃 + 𝝐

𝑝 𝒚|𝜽 = 𝒩 𝒚 𝑨𝜽 + 𝒃, 𝑳−1

𝑝 𝜽|𝒚 =
𝑝 𝒚 𝜽 𝑝(𝜽)

𝑝(𝒚)
=  𝒩 𝜽 𝚺(𝑨⊤𝑳 𝒚 − 𝒃 + 𝚲𝝁), 𝚺

𝑝 𝒚 = ∫ 𝑝 𝒚 𝜽 𝑝 𝜽 𝑑𝜽 =  𝒩(𝒚|𝑨𝝁 + 𝒃, 𝑨𝚲−1𝑨⊤ + 𝑳−1)

Posterior of 𝜽 

Marginal 

distribution

Both 𝜽 and 𝒚 are vectors (can 

be of different sizes)

Also assume 𝑨, 𝒃, 𝚲, 𝑳 to be 

known; only 𝜽 is unknown

Conditional 

distribution
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Posterior Distribution for Gaussian’s Mean

▪ Given: 𝑁 i.i.d. scalar observations 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁} assumed drawn from 𝒩(𝑦|𝜇, 𝜎2)

▪ Note: Easy to see that each 𝑦𝑛 drawn from 𝒩(𝑦|𝜇, 𝜎2) is equivalent to the following 

▪ Let’s estimate mean 𝜇 given 𝒚 using fully Bayesian inference (not point estimation) 

23

𝜇

𝒩(𝑦|𝜇, 𝜎2)
Assume 𝜎2 to 

be known

𝑦𝑛 = 𝜇 + 𝜖𝑛 where 𝜖𝑛 ∼ 𝒩(0, 𝜎2)
Thus 𝑦𝑛 is like a noisy 

version of 𝜇 with zero 

mean Gaussian noise 

added to it

Likelihood

Its MLE/MAP 

estimation left as 

an exercise

𝑝 𝑦𝑛 𝜇, 𝜎2 =  𝒩 𝑦𝑛 𝜇, 𝜎2 ∝ exp −
𝑦𝑛 − 𝜇 2

2𝜎2

𝑝 𝒚 𝜇, 𝜎2 =  ෑ
𝑛=1

𝑁

𝑝(𝑦𝑛|𝜇, 𝜎2)

Overall 

Likelihood
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A prior distribution for the mean

▪ To computer posterior, need a prior over 𝜇 

▪ Let’s choose a Gaussian prior

▪ The prior basically says that  a priori  we believe 𝜇 is close to 𝜇0 

▪ The prior’s variance 𝜎0
2 denotes how certain we are about our belief

▪We will assume that the prior’s hyperparameters (𝜇0, 𝜎0
2 )are known

▪ Since 𝜎2 in the likelihood 𝒩 𝑦 𝜇, 𝜎2  is known, Gaussian prior 𝒩 𝜇 𝜇0, 𝜎0
2  on 

𝜇 is also conjugate to the likelihood (thus posterior of 𝜇 will also be Gaussian) 

24

𝑝 𝜇|𝜇0, 𝜎0
2 =  𝒩 𝜇 𝜇0, 𝜎0

2

𝜇0

𝑝 𝜇|𝜇0, 𝜎0
2

∝ exp −
𝜇 − 𝜇0

2

2𝜎0
2
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The posterior distribution for the mean

▪ The posterior distribution for the unknown mean parameter 𝜇

▪ Easy to see that the above will be prop. to exp of a quadratic function of 𝜇. Simplifying:

▪ What happens to the posterior as 𝑁 (number of observations) grows very large?
▪ Data (likelihood part) overwhelms the prior 

▪ Posterior’s variance 𝜎𝑁
2 will approximately be 𝜎2/𝑁 (and goes to 0 as 𝑁 → ∞)

▪ The posterior’s mean 𝜇𝑁 approaches ത𝑦(which is also the MLE solution)

25

On conditioning side, 

skipping all fixed params 

and hyperparams from 

the notation

Also the MLE 

solution for 𝜇

Gaussian posterior’s mean is a 

convex combination of prior’s 

mean and the MLE solution

Gaussian posterior’s precision is the sum of 

the prior’s precision and sum of the noise 

precisions of all the observations

Gaussian posterior (not a 

surprise since the chosen prior 

was conjugate to the likelihood)

Contribution 

from the prior

Contribution 

from the data

Meaning, we become very-very 

certain about the estimate of 𝜇

𝑝 𝜇 𝒚 =
𝑝 𝒚 𝜇 𝑝(𝜇)

𝑝(𝒚)
∝  ෑ

𝑛=1

𝑁

exp −
𝑦𝑛 − 𝜇 2

2𝜎2
exp −

𝜇 − 𝜇0
2

2𝜎0
2

𝑝 𝜇 𝒚 ∝ exp −
𝜇 − 𝜇𝑁

2

2𝜎𝑁
2

1

𝜎𝑁
2 =

1

𝜎0
2 +

𝑁

𝜎2

𝜇𝑁 =
𝜎2

𝑁𝜎0
2 + 𝜎2

𝜇0 +
𝑁𝜎0

2

𝑁𝜎0
2 + 𝜎2

ത𝑦 (where ത𝑦 =
σ𝑛=1

𝑁 𝑦𝑛

𝑁
)  
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The Predictive Distribution

▪ If  given a point estimate Ƹ𝜇, the plug-in predictive distribution for a test 𝑦∗would be

▪ On the other hand, the posterior predictive distribution of 𝑥∗ would be

▪ For an alternative way to get the above result, note that, for test data

26

𝑝 𝑦∗ Ƹ𝜇, 𝜎2) = 𝒩(𝑦∗| Ƹ𝜇, 𝜎2)

𝑝 𝑦∗ 𝒚 = ∫ 𝑝 𝑦∗ 𝜇, 𝜎2)𝑝(µ 𝒚 𝑑𝜇

= ∫ 𝒩(𝑦∗|𝜇, 𝜎2)𝒩 𝜇 𝜇𝑁 , 𝜎𝑁
2 𝑑𝜇

= 𝒩(𝑦∗|𝜇𝑁 , 𝜎2 + 𝜎𝑁
2)

The best point estimate

If conditional is Gaussian 

then marginal is also 

Gaussian
PRML [Bis 06], 

2.115, and also 

mentioned in prob-

stats refresher slides

𝑦∗ = 𝜇 + 𝜖 𝜇 ∼ 𝒩 𝜇𝑁, 𝜎𝑁
2 𝜖 ∼ 𝒩 0, 𝜎2

⇒  𝑝(𝑦∗|𝒚) = 𝒩(𝑦∗|𝜇𝑁, 𝜎2 + 𝜎𝑁
2)

Since both 𝜇 and 𝜖 are Gaussian r.v., and are independent, 

𝑦∗ also has a Gaussian posterior predictive, and the 

respective means and variances of 𝜇 and 𝜖 get added up

This “extra” variance 𝜎𝑁
2  in PPD is due to the 

averaging over the posterior’s uncertainty

A useful fact: When we 

have conjugacy, the 

posterior predictive 

distribution also has a 

closed form (will see this  

result more formally when 

talking about exponential 

family distributions)

This is an approximation 

of the true PPD 𝑝 𝑦∗ 𝒚  

Using the posterior of 𝜇 since we 

are at test stage now
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Gaussian Observation Model: Some Other Facts 

▪ MLE/MAP for 𝜇, 𝜎2 (or both) is straightforward in Gaussian observation models.

▪ Posterior also straightforward in most situations for such  models

▪ (As we saw) computing posterior of 𝜇 is easy (using Gaussian prior) if  variance 𝜎2 is known

▪ Likewise, computing posterior of 𝜎2 is easy (using gamma prior on 𝜎2) if  mean 𝜇 is known

▪ If  𝜇, 𝜎2 both are unknown, posterior computation requires computing 𝑝 𝜇, 𝜎2 𝒚

▪ Computing joint posterior 𝑝 𝜇, 𝜎2 𝒚  exactly requires a jointly conjuage prior 𝑝(𝜇, 𝜎2)

▪ “Gaussian-gamma” (“Normal-gamma”) is such a conjugate prior – a product of normal and gamma

▪ Note: Computing joint posteriors exactly is possible only in rare cases such this one

▪ If  each observation 𝒚𝑛 ∈ ℝ𝐷, can assume a likelihood/observation model 𝒩 𝒚 𝝁, 𝚺

▪ Need to estimate a vector-valued mean 𝝁 ∈ ℝ𝐷. Can use a multivariate Gaussian prior

▪ Need to estimate a 𝐷 × 𝐷 positive definite covariance matrix 𝚺. Can use a Wishart prior

▪ If  𝝁, 𝚺 both are unknown, can use Normal-Wishart as a conjugate prior

27
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