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Hybrid Inference (posterior infer. + point est.)

▪ In many models, we infer posterior on some unknowns and do point est. for others

▪ We have already seen MLE-II for lin reg. which alternates between

▪ Inferring CP over the main parameter given the point estimates of hyperparams

▪ Maximizing the marginal lik. to do point estimation for hyperparams

▪ The Expectation-Maximization algorithm (will see today) also does something similar
▪ In E step, the CP of latent variables is inferred, given current point-est of params

▪ M step maximizes expected complete data log-lik. to get point estimates of params

▪ If  we can’t (due to computational or other reasons) infer posterior over all unknowns, 
how to decide which variables to infer posterior on, and for which to do point-est?

▪ Usual approach: Infer posterior over local vars and point estimates for global vars
▪ Reason: We typically have plenty of data to reliably estimate the global variables so it is okay even 

if  we just do point estimation for those
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መ𝜆, መ𝛽 =  argmax𝜆,𝛽 𝑝(𝒚|𝑿, 𝜆, 𝛽)

CP of 𝑤:  𝑝(𝒘|𝑿, 𝒚, መ𝜆, መ𝛽)
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Nomenclature/Notation Alert

▪ Why call some unknowns as parameters and others as latent variables?

▪ Well, no specific reason. Sort of a convention adopted by some algorithms

▪ EM: Unknowns estimated in E step referred to as latent vars; those in M step as params

▪ Usually: Latent vars – (Conditional) posterior computed; parameters – point estimation

▪ Some algos won’t make such distinction and will infer posterior over all unknowns

▪ Sometimes the “global” or “local” unknown distinction makes it clear
▪ Local variables = latent variables, global variables = parameters

▪ But remember that this nomenclature isn’t really cast in stone, no need to be confused 
so long as you are clear as to what the role of each unknown is, and how we want to 
estimate it (posterior or point estimate) and using what type of inference algorithm
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Inference/Parameter Estimation in 
Latent Variable Models using 

Expectation-Maximization (EM)
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Parameter Estimation in Latent Variable Models

▪ Assume each observation 𝒙𝑛 to be associated with a “local” latent variable 𝒛𝑛

▪ Although we can do fully Bayesian inference for all the unknowns, suppose we 
only want a point estimate of the “global” parameters Θ =  (𝜃, 𝜙) via MLE/MAP

▪ Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
▪ Would typically re quire gradient based methods with no closed form updates for Θ

▪ However, EM gives a clean way to obtain closed form updates for Θ
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𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛

𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛 
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Why MLE/MAP of Params is Hard for LVMs?

▪ Suppose we want to estimate Θ =  (𝜃, 𝜙) via MLE. If  we knew 𝒛𝑛, we could solve

▪ Easy. Usually closed form if  𝑝 𝒛𝑛 𝜙  and 𝑝 𝒙𝑛 𝒛𝑛, 𝜃  have simple forms

▪ However, since in LVMs, 𝒛𝑛 is hidden, the MLE problem for Θ will be the following

▪ log 𝑝(𝒙𝑛|Θ) will not have a simple expression since 𝑝(𝑥𝑛|Θ) requires sum/integral

▪ MLE now becomes difficult (basically MLE-II now), no closed form expression for Θ.

▪ Can we maximize some other quantity instead of log 𝑝(𝑥𝑛|Θ) for this MLE?
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In particular, if  they are 

exp-fam distributions

Easy to solve

Basically, the marginal 

likelihood after 

integrating out 𝑧𝑛
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An Important Identity

▪ Assume 𝑝𝑧  =  𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then

▪ In the above ℒ 𝑞, Θ =  σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)
 

▪  𝐾𝐿(𝑞| 𝑝𝑧 = − σ𝑍 𝑞 𝒁 log
𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ KL is always non-negative, so log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ

▪ Thus ℒ 𝑞, Θ  is a lower-bound on log 𝑝 𝑿 Θ

▪ Thus if  we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

▪  Also, as we’ll see, it’s easier to maximize ℒ 𝑞, Θ
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log 𝑝 𝑿 Θ =  ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
Assume 𝒁 discrete

Verify the identity
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8
Maximizing ℒ 𝑞, Θ  
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▪ ℒ 𝑞, Θ  depends on 𝑞 and Θ. We’ll use ALT-OPT to maximize it

▪ Let’s maximize ℒ 𝑞, Θ  w.r.t. 𝑞 with Θ fixed at some Θold

▪ Now let’s maximize ℒ 𝑞, Θ  w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 =  argmax𝑞ℒ 𝑞, Θold =  argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

Since log 𝑝 𝑿 Θ =  ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧) 
is constant when Θ is held fixed at Θold

Θnew =  argmaxΘℒ ො𝑞, Θ =  argmaxΘ ෍

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold) 

=  argmaxΘ ෍

𝑍

𝑝 𝒁 𝑿, Θold  log 𝑝(𝑿, 𝒁|Θ)

=  argmaxΘ 𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)]

Maximization of expected CLL where 

the expectation is w.r.t. the posterior 

distribution of 𝑍 given current 

parameters Θold

The posterior distribution of 𝑍 

given current parameters Θold

=  argmaxΘ 𝒬(Θ, Θold)

Complete-Data Log 

Likelihood (CLL)

log 𝑝 𝑿 Θ  is called Incomplete-

Data Log Likelihood (ILL)

Much easier than maximizing ILL since 

CLL will have simple expressions (since 

it is akin to knowing 𝑍)

Basically, log of marginal 

likelihood w.r.t. 𝚯 with 𝒁 

integrated out
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The Expectation-Maximization (EM) Algorithm
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▪ ALT-OPT of ℒ 𝑞, Θ  w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If  we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not full posterior) in Step 1 and maximize 

the CLL in Step 2 using that, i.e., do argmaxΘ σ𝑛=1
𝑁 log 𝑝 𝒙𝑛, Ƹ𝑧𝑛

(𝑡) Θ  this will be ALT-OPT

Conditional posterior of 

each latent variable 𝑧𝑛

Latent variables also 

assumed indep. a priori Assuming the (expected) CLL 

𝔼
𝑝 𝒁 𝑿, Θold [log 𝑝(𝑿, 𝒁|Θ)] 

factorizes over all observations

Primarily designed for doing point estimation of the 

parameters Θ but also gives (CP of) latent variables 𝑧𝑛

Usually computing CP + expected CLL 

is referred to as the E step, and max. 

of exp-CLL w.r.t. Θ as the M step
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The Expected CLL
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▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If  𝑝 𝒛𝑛 Θ  and 𝑝 𝒙𝑛 𝒛𝑛, Θ  are exp-family distributions, 𝒬(Θ, Θold) has a very simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ [𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ [𝒛𝑛𝒛𝑛
⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be 
approximated (will see some examples later)



CS772A: PML

What’s Going On?
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▪ As we saw, the maximization of lower bound ℒ 𝑞, Θ  had two steps 

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it as the posterior of 𝒁 given current Θ 

▪ Step 2 maximizes ℒ ො𝑞, Θ  w.r.t. Θ which gives a new Θ. 

Θ(0) Θ(1)Θ(2)Θ(3)

Green curve: ℒ ො𝑞, Θ  after 

setting 𝑞 to ො𝑞 
log 𝑝 𝑿 Θ

Local optima 

found for Θ𝑀𝐿𝐸

KL becomes zero and ℒ 𝑞, Θ  becomes 

equal to log 𝑝 𝑿 Θ ; thus their curves 

touch at current Θ 

Note that Θ only changes in Step 2 

so the objective log 𝑝 𝑿 Θ
 can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters; 

otherwise would converge 

to a poor local optima

Also kind of similar to Newton’s 

method (and has second order like 

convergence behavior in some cases)

Unlike Newton’s method, we don’t 

construct and optimize a quadratic 

approximation, but a lower bound

Even though original MLE problem 

argmaxΘlog 𝑝 𝑿 Θ  could be solved 

using gradient methods, EM often 

works faster and has cleaner updates

Alternating between 

them until convergence 

to some local optima
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EM vs Gradient-based Methods

▪ Can also estimate params using gradient-based optimization instead of EM

▪ We can usually explicitly sum over or integrate out the latent variables 𝒁, e.g.,

▪ Now we can optimize ℒ(Θ) using first/second order optimization to find the optimal Θ

▪ EM is usually preferred over this approach because

▪ The M step has often simple closed-form updates for the parameters Θ

▪ Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

▪ In some cases†, EM usually converges faster (and often like second-order methods)

▪ E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

▪ EM applies even when the explicit summing over/integrating out is expensive/intractable

▪ EM also provides the conditional posterior over the latent variables Z (from E step)
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†Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), 

Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)
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Some Applications of EM

▪ Mixture Models and Dimensionality Reduction/Representation Learning

▪ Mixture Models: Mixture of Gaussians, Mixture of Experts, etc

▪ Dim. Reduction/Representation Learning: Probabilistic PCA, Variational Autoencoders

▪ Problems with missing features or missing labels (which are treated as latent variables)

▪ ෡Θ =  argmaxΘ log 𝑝 𝒙𝑜𝑏𝑠 Θ = argmaxΘ log ∫ 𝑝 𝒙𝑜𝑏𝑠 , 𝒙𝑚𝑖𝑠𝑠 Θ 𝑑𝒙𝑚𝑖𝑠𝑠

▪ ෡Θ =  argmaxΘ  σ𝑛=1
𝑁 log 𝑝 𝑥𝑛, 𝑦𝑛 Θ + σ𝑛=𝑁+1

𝑁+𝑀 log σ𝑐=1
𝐾 𝑝 𝑥𝑛, 𝑦𝑛 = 𝑐 Θ  

▪ Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

▪ MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

▪ With EM, can treat 𝒘 as latent var, and 𝜆, 𝛽 as “parameters”

▪ E step will estimate the CP of 𝑤 given current estimates of 𝜆, 𝛽 

▪ M step will re-estimate 𝜆, 𝛽 by maximizing the expected CLL
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መ𝜆, መ𝛽 =  argmax𝜆,𝛽 𝑝 𝒚 𝑿, 𝜆, 𝛽 = argmax𝜆,𝛽 න 𝑝 𝒚 𝒘, 𝑿, 𝛽 𝑝 𝒘 𝜆 𝑑𝒘
For a Bayesian linear 

regression model

Expectations w.r.t. 

the CP of 𝒘
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