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2
Expectation Maximization

2

▪ EM is a method to optimize log 𝑝(𝓓|Θ) = log σ𝒁 𝑝 𝓓, 𝒁 Θ  for point estimation of Θ

▪ EM optimizes ℒ 𝑞, Θ = σ𝑍 𝑞 𝒁 log
𝑝(𝓓,𝒁|Θ)

𝑞(𝒁)
, which is a lower bound on log 𝑝 𝑿 Θ

▪ CP 𝑞 𝑡  in step 2 and expectation in step 3 may not be tractable. May need approximations 

1. Initialize Θ as Θ(0) somehow (e.g., randomly), set 𝑡 = 1

2. Set 𝑞 𝑡 = 𝑝 𝒁 𝓓, Θ 𝑡−1 ∝ 𝑝 𝒟 𝒁, Θ 𝑡−1 𝑝(𝒁|Θ(𝑡−1)) 

3. Set Θ(𝑡) = argmaxΘ 𝔼𝑞 𝑡 log 𝑝 𝓓, 𝒁 Θ = argmaxΘ 𝒬(Θ, Θ(𝑡−1))

4. If  not converged, set 𝑡 = 𝑡 + 1 and go to step 2

Computing the 

CP of latent 

variables

Maximizing the 

expected CLL

Latent variablesData
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Gaussian Mixture Model (GMM)
3

▪ 𝑁 observations 𝒙𝑛 𝑛=1
𝑁  each from one of the 𝐾 Gaussians 𝒩(𝜇𝑖 , Σ𝑖) 𝑖=1

𝐾  

▪We don’t know which Gaussian each observation 𝒙𝑛 comes from

▪ Assume 𝒛𝑛 ∈ {1,2, … , 𝐾} denotes which Gaussian generated 𝒙𝑛

▪ Suppose we want to do point estimation for the parameters 𝜇𝑖 , Σ𝑖 𝑖=1
𝐾

𝒙𝑛𝒛𝑛

𝜇𝑖

𝜋
𝑁

Σ𝑖
𝐾

𝑝(𝒛𝑛|𝝅) = multinoulli(𝒛𝑛|𝝅)

𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, 𝜇𝑖, Σ𝑖 𝑖=1
𝐾 =  𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘

𝑝 𝒙𝑛 𝜋𝑖 , 𝜇𝑖 , Σ𝑖 𝑖=1
𝐾

= 
𝑖=1

𝐾

𝜋𝑖𝒩(𝒙𝑛|𝜇𝑖 , Σ𝑖)

log 𝑝(𝒙𝑛|Θ) = log 
𝑖=1

𝐾

𝜋𝑖𝒩(𝑥𝑛|𝜇𝑖 , Σ𝑖)

Can use gradient based optimization 

for MLE of Θ but the update 

equations are a bit complicated

EM would give simpler updates
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Detour: MLE for GMM when 𝒁 is known
4

▪ Derivation of the MLE solution for Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾  when 𝒁 is known

Θ =  argmaxΘ 𝑝(𝑿, 𝒁|Θ) =  argmaxΘ  ς𝑛=1
𝑁 𝑝(𝒙𝑛, 𝒛𝑛|Θ) 

=  argmaxΘ  ς𝑛=1
𝑁 𝑝(𝒛𝑛|Θ) 𝑝(𝑥𝑛|𝒛𝑛, Θ) 

=  argmaxΘ  ς𝑛=1
𝑁 ς𝑘=1

𝐾 𝜋𝑘
𝑧𝑛𝑘  ς𝑘=1

𝐾 𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)𝑧𝑛𝑘

=  argmaxΘ  ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

=  argmaxΘ log ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

=  argmaxΘ  
𝑛=1

𝑁


𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 +  log 𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

multinoulli Gaussian

Can see that, when estimating the 

parameters of the 𝑘𝑡ℎ Gaussian 

(𝜋𝑘, 𝜇𝑘, Σ𝑘), we only will only need 

training examples from the 𝑘𝑡ℎ class, 

i.e., examples for which 𝑧𝑛𝑘 = 1

Also, due to the form of the likelihood 

(Gaussian) and prior (multinoulli), the 

MLE problem had a nice separable 

structure after taking the log

In general, in models with probability distributions 

from the exponential family, the MLE problem will 

usually have a simple analytic form

GMM then is just like 

generative classification with 

Gaussian class conditionals



CS772A: PML

EM for Gaussian Mixture Model (GMM)
5

1. Initialize Θ =  {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾  as Θ(0). Set 𝑡 = 1

2. Set CP 𝑞(𝑡) = 𝑝(𝒁|𝑿, Θ(𝑡−1)). Assuming i.i.d. data, this means computing ∀𝑛, 𝑘

3. Set Θ(𝑡) = argmaxΘ 𝔼𝑞 𝑡 log 𝑝 𝑿, 𝒁 Θ = argmaxΘ 𝒬(Θ, Θ(𝑡−1))

4. Go to step 2 if  not converged

Θ(𝑡) = argmaxΘ 
𝑛=1

𝑁

𝔼𝑝(𝒛𝑛|𝒙𝑛,Θ(𝑡−1)) log 𝑝 𝒙𝑛, 𝒛𝑛 Θ

𝑝 𝒛𝑛𝑘 = 1 𝒙𝑛, Θ(𝑡−1) ∝ 𝑝 𝒛𝑛𝑘 = 1 Θ(𝑡−1)  𝑝 𝒙𝑛 𝒛𝑛𝑘 = 1, Θ(𝑡−1)

= argmaxΘ 𝔼 
𝑛=1

𝑁


𝑘=1

𝐾

 𝑧𝑛𝑘 log 𝜋𝑘
(𝑡−1)

+  log 𝒩 𝒙𝑛|𝜇𝑘
(𝑡−1)

, Σ𝑘
(𝑡−1)

= argmaxΘ 
𝑛=1

𝑁


𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘
(𝑡−1)

+  log 𝒩 𝒙𝑛|𝜇𝑘
(𝑡−1)

, Σ𝑘
(𝑡−1)

]

𝜋𝑘
(𝑡)

=
1

𝑁


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]

𝜇𝑘
(𝑡)

=
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]𝒙𝑛

Σ𝑘
(𝑡)

=
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘](𝒙𝑛− 𝜇𝑘
(𝑡)

)(𝒙𝑛− 𝜇𝑘
(𝑡)

)⊤

= 𝜋𝑘
(𝑡−1)

𝒩 𝒙𝑛|𝜇𝑘
(𝑡−1)

, Σ𝑘
(𝑡−1)

This only required expectation for EM 

for GMM is 𝔼[𝑧𝑛𝑘] which can be 

computed easily using the CP of 𝑧𝑛

Same as writing 𝑧𝑛 = 𝑘

𝑁𝑘 = σ𝑛=1
𝑁 𝔼[𝑧𝑛𝑘] 

denotes the effective 

number of points 

from 𝑘-th Gaussian

Probability of data point 𝑛 

belonging to the 𝑘-th Gaussian

“Soft-clustering”

EM for GMM does two 

things: soft-clustering 

and estimating the 

density 𝑝(𝑋|Θ)
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EM for GMM: The Full Algorithm
6

▪ The EM algo for GMM required 𝔼[𝑧𝑛𝑘]. Note 𝑧𝑛𝑘 ∈ {0,1} 

𝔼 𝑧𝑛𝑘 = 𝛾𝑛𝑘 =  0 × 𝑝(𝑧𝑛𝑘 = 0|𝑥𝑛, Θ) + 1 × 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛 , Θ) ∝ ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘 , Σ𝑘=  𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ)

Need to normalize: 𝔼 𝑧𝑛𝑘 =
ෝ𝜋𝑘𝒩 𝑥𝑛|ෝ𝜇𝑘,Σ𝑘

σℓ=1
𝐾 ෝ𝜋ℓ𝒩 𝑥𝑛|ෝ𝜇ℓ,Σℓ

   

Reason: σ𝑘=1
𝐾 𝛾𝑛𝑘 = 1

M-step:

Soft 𝐾-means, which is more of a heuristic to 

get soft-clustering,  also gave us probabilities 

but doesn’t account for cluster shapes or 

fraction of points in each cluster

Accounts for cluster shapes (since 

each cluster is a Gaussian

Accounts for fraction of 

points in each cluster

Effective number of points 

in the 𝑘𝑡ℎ cluster
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Bayesian Linear Regression (Revisited)
7

▪ 𝑁 observations 𝑿, 𝒚 = 𝒙𝑛, 𝑦𝑛 𝑛=1
𝑁  from a lin-reg model with weights 𝒘

▪ Suppose the hyperparameters are also unknown, so need to estimate 𝒘, 𝛽, 𝜆

𝑦𝑛

𝒘

𝑁

𝒙𝑛 𝛽

𝜆𝑝 𝑦𝑛 𝒙𝑛, 𝒘, 𝛽 =  𝒩(𝑦𝑛|𝒘⊤𝒙𝑛, 𝛽−1) 𝑝(𝒘|𝜆) =  𝒩(𝒘|𝟎, 𝜆−1𝐈)

𝝁 = 𝛽𝑨−1𝑿⊤𝒚𝚺 = 𝛽𝑿⊤𝑿 + 𝜆𝑰 −𝟏

𝑁 × 𝐷 input matrix

𝑝 𝒘|𝑿, 𝒚, 𝛽, 𝜆 =  𝒩(𝒘|𝝁, 𝚺)

መ𝛽, መ𝜆 = argmax𝛽,𝜆 𝔼𝑝 𝒘|𝑿,𝒚,𝛽 𝑡−1 ,𝜆(𝑡−1) log 𝑝 𝒚, 𝒘 𝑿, 𝛽, 𝜆

Expected CLL
𝒘 treated as latent 

variable here

= argmax𝛽,𝜆 𝔼𝑝 𝒘|𝑿,𝒚,𝛽 𝑡−1 ,𝜆(𝑡−1) log 𝑝 𝒚 𝒘, 𝑿, 𝛽 + log 𝑝(𝒘|𝜆)

CP of 𝒘:

𝑁 × 1 responses

( 𝛽, መ𝜆) = argmax𝛽,𝜆 log 𝑝 𝒚 𝑿, 𝛽, 𝜆MLE-II

EM

Many ways to 

optimize the marginal 

likelihood in MLE-II, 

e.g., gradient descent

DataEM solves the MLE-II 

problem by optimizing 

a lower bound on the 

log marginal 

likelihood, and gives 

simple update 

equations for 𝛽, 𝜆 

In this latent variable 

model, there are no 

local variables. 𝑤, 𝛽, 𝜆 

are all “global”
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EM for Bayesian Linear Regression
8

1. Initialize 𝛽 as 𝛽(0) and 𝜆 as 𝜆(0). Set 𝑡 = 1

2. Update the CP of 𝒘 as

3. Update 𝛽 and 𝜆 as 

4. If not converged, set 𝑡 = 𝑡 + 1 and go to step 2

𝝁(𝑡) = 𝛽(𝑡−1)𝚺(𝑡)𝑿⊤𝒚𝚺(𝑡) = 𝛽 𝑡−1 𝑿⊤𝑿 + 𝜆 𝑡−1 𝑰
−1

𝑝 𝒘|𝑿, 𝒚, 𝛽 𝑡−1 , 𝜆(𝑡−1) =  𝒩(𝝁(𝑡), 𝚺(𝑡))

𝜆(𝑡) =
𝐷

𝔼 𝒘⊤𝒘
=

𝐷

𝝁 𝑡 ⊤
𝝁(𝒕) +  trace(𝚺(𝒕))

𝛽(𝑡) =
𝑁

𝒚 − 𝑿𝝁 𝑡 2
+  trace(𝑿⊤𝚺(𝒕)𝑿)

𝛽 𝑡 , 𝜆 𝑡 = argmax𝛽,𝜆 𝔼 log 𝑝 𝒚, 𝒘 𝑿, 𝛽 𝑡−1 , 𝜆(𝑡−1)

Note the dependence: CP of 

𝒘 depends on current values 

of 𝛽, 𝜆 and their update 

depends on the CP on 𝑤 

Less common but another alternative: 

Compute CP of 𝛽 and 𝜆 in step 2, and 

compute MLE on 𝒘 in step 3. That 

would amount to doing MLE-II for 𝒘
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MLE-II for Bayesian Lin. Reg.
9

▪ The MLE-II problem for Bayesian linear regression

▪ This objective doesn’t have a closed form solution

▪ Solved using iterative/alternating optimization

▪ Gradient descent for 𝜆, 𝛽 

▪ Alternating optimization (𝜆, 𝛽 and the mean/covariance of the CP depend on each other) - 

similar to EM but with some differences – next slide

▪ EM is also a way to do MLE-II but EM doesn’t optimize the marginal likelihood 
but a lower bound on the marginal likelihood

( 𝛽, መ𝜆) = argmax𝛽,𝜆 log 𝑝 𝒚 𝑿, 𝛽, 𝜆

= argmax𝛽,𝜆 2𝜋 −
𝑁
2 𝛽−1𝐈 + 𝜆−1𝑿⊤𝑿 −

1
2 exp −

1

2
𝒚⊤ 𝛽−1𝐈 + 𝜆−1𝑿⊤𝑿 −1𝒚
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An algorithm for MLE-II for Bayesian Lin. Reg.
10

1. Initialize 𝛽 as 𝛽(0) and 𝜆 as 𝜆(0). Set 𝑡 = 1

2. Update the CP of 𝒘 as

3. Update 𝛽, 𝜆 as

4. If  not converged, set 𝑡 = 𝑡 + 1 and go to step 2

𝝁(𝒕) = 𝛽(𝑡−1)𝑨(𝒕)−1
𝑿⊤𝒚𝑨(𝒕) = 𝛽(𝑡−1)𝑿⊤𝑿 + 𝜆(𝑡−1)𝑰

𝑝 𝒘(𝑡)|𝑿, 𝒚, 𝛽 𝑡−1 , 𝜆(𝑡−1) =  𝒩(𝝁(𝒕), 𝑨(𝒕)−1
)

𝜆(𝑡) =
𝛾(𝑡)

𝝁(𝒕)⊤
𝝁(𝒕)

𝛽(𝑡) =
𝑁 − 𝛾(𝑡)

𝒚 − 𝑿𝝁 𝑡
2 𝛾(𝑡) =  

𝑑=1

𝐷 𝜂𝑑
(𝑡)

𝜆(𝑡−1) + 𝜂𝑑
(𝑡)

where

𝜂𝑑
(𝑡)

𝑑=1

𝐷
 = eigvals(𝛽(𝑡−1)𝑿⊤𝑿)

RHS depends on 𝛽 and 𝜆. 

Thus it is an implicit solution 

(though still in closed form)

In each iteration, we 

need to compute the 

eigenvalues

In practice, we can compute them in the 

beginning for 𝑿⊤𝑿 and multiply by 

𝛽(𝑡−1) in this iteration to get 𝜂𝑑
(𝑡)

𝑑=1

𝐷
  RHS depends on 𝛽 and 𝜆. 

Thus it is an implicit solution 

(though still in closed form)

( 𝛽, መ𝜆) = argmax𝛽,𝜆 log 𝑝 𝒚 𝑿, 𝛽, 𝜆

Note that this MLE-II 

procedure for Bayesian linear 

regression looks very similar to 

the EM algo for BLR
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EM: Some other examples

▪ Problems with missing features (which are treated as latent variables)

▪ Suppose each input 𝒙𝑛 has two parts - observed and missing: 𝒙𝑛 = [𝒙𝑛
𝑜𝑏𝑠 , 𝒙𝑛

𝑚𝑖𝑠𝑠]

▪ For such problems, MLE for a model 𝑝(𝑿|Θ), assuming i.i.d. data, would have the form 

▪ Here 𝒙𝑛
𝑚𝑖𝑠𝑠 can be treated as a latent variable

▪ The CP will be 𝑝(𝒙𝑛
𝑚𝑖𝑠𝑠| 𝒙𝑛

𝑜𝑏𝑠, Θ)

▪ Using the CP, compute expected CLL and maximize it w.r.t. Θ

▪ Problems with missing labels (which are treated as latent variables)

11

Θ =  argmaxΘ  
𝑛=1

𝑁

log 𝑝 𝒙𝑛
𝑜𝑏𝑠 Θ

= argmaxΘ  
𝑛=1

𝑁

log ∫ 𝑝 𝒙𝑛
𝑜𝑏𝑠 , 𝒙𝑛

𝑚𝑖𝑠𝑠 Θ 𝑑𝒙𝑛
𝑚𝑖𝑠𝑠

Θ =  argmaxΘ  
𝑛=1

𝑁

log 𝑝 𝑥𝑛, 𝑦𝑛 Θ + 
𝑛=𝑁+1

𝑁+𝑀

log 
𝑐=1

𝐾

𝑝 𝑥𝑛, 𝑦𝑛 = 𝑐 Θ  

Suppose we are estimating the 

mean/covariance of a multivariate 

Gaussian given 𝑁 input, with some inputs 

observations may have missing features

An example of 

semi-supervised 

learning

This part is like GMM, 

thus EM can be used
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EM when CP and/or expectation is intractable
12

▪ EM solves the following step for estimating Θ

▪ The above problem may be difficult to solve if  one/both of the following is true

1. CP 𝑝 𝒁 Θ 𝑡−1 , 𝓓  can’t be computed exactly (Solution: Need to approximate the CP)

2. Integral for the expectation is intractable (Solution: Use Monte Carlo approximation) 

▪ Draw 𝑀 i.i.d. samples of 𝒁 from the current (exact/approximate) CP 𝑝 𝒁 Θ 𝑡−1 , 𝓓

▪ Use these samples to get a Monte-Carlo approximation of expected CLL and maximize

▪Monte-Carlo approximation is commonly used in such problems

Θ(𝑡) = argmaxΘ 𝔼𝑞 𝑡 log 𝑝 𝓓, 𝒁 Θ = argmaxΘ ∫ log 𝑝 𝓓, 𝒁 Θ  𝑝 𝒁 Θ 𝑡−1 , 𝓓 𝑑𝒁 

𝒁 𝑖
𝑖=1

𝑀
∼ 𝑝 𝒁 Θ 𝑡−1 , 𝓓

Θ(𝑡) = argmaxΘ

1

𝑀


𝑖=1

𝑀

log 𝑝 𝓓, 𝒁(𝑖) Θ
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EM: Some Final Comments

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ The conditional posterior of latent variables 𝑝(𝑍|𝑋, Θ) may not be easy to compute

▪ Will need to approximate 𝑝(𝑍|𝑋, Θ) using methods such as MCMC or variational inference

▪ Even if  𝑝(𝑍|𝑋, Θ) is easy, the expected CLL may not be easy to compute

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if  the M step is only solved approximately (Generalized EM)

▪ If  M step has multiple parameters whose updates depend on each other, they are 
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

▪ Other advanced probabilistic inference algos are based on ideas similar to EM

▪ E.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)

13

Can often be approximated 

by Monte-Carlo using 

sample from the CP of 𝑍

Results in 

Monte-Carlo EM
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Variational Inference (VI)

▪ Assume a latent variable model with data 𝓓 and latent variables 𝒁

▪ A simple setting might look something like this

▪ Assume the likelihood is 𝑝(𝓓|𝒁, Θ) and prior is 𝑝(𝒁|Θ). Want posterior over 𝒁

▪ Θ = (𝜃, 𝜙) denotes the other parameters that define the likelihood and the prior

▪ For now, assume Θ is known and only 𝒁 is unknown (the Θ unknown case later)

▪ Assume CP 𝑝(𝒁|𝓓, Θ) is intractable

14

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

This setting is just one example. VI 

is applicable in more general and 

more complex probabilistic models 

with and without latent variables
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Variational Inference (VI)

▪ Assuming 𝑝(𝒁|𝓓, Θ) is intractable, VI approximates it by a distr 𝑞(𝒁|𝜙) or 𝑞𝜙(𝒁)

15

𝑞𝜙 defines a class of distributions parametrized 

by 𝜙 sometimes called “variational parameters”

Find the optimal 𝜙 which 

makes our approximation 

𝑞(𝒁|𝜙) as closed as 

possible to the true 

posterior 𝑝(𝒁|𝓓)

Kullback Leibler divergence 

KL[𝑞||𝑝] between 𝑞 and 𝑝

Also possible to use KL[𝑝||𝑞] 
or divergences other than KL

𝜙∗ =  argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝓓, Θ)]

Name “variational” comes from 

Physics and refers to problems 

where we are optimizing functions 

of distributions (here the function is 

the KL divergence)
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Variational Inference (VI)

▪ The optimization problem

▪ Since log 𝑝(𝓓|Θ) is independent of 𝜙, the optimization problem becomes

▪ Note that ℒ 𝜙, Θ ≤ log 𝑝(𝓓|Θ) and is called “Evidence Lower Bound” (ELBO)

16

𝜙∗ =  argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝓓, Θ)]

=  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log
𝑝 𝓓 𝒁, Θ 𝑝(𝒁|Θ)

𝑝(𝓓|Θ)

=  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝 𝓓 𝒁, Θ  −  log 𝑝(𝒁|Θ) +  log 𝑝(𝓓|Θ)

𝜙∗ =  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝 𝓓 𝒁, Θ  −  log 𝑝(𝒁|Θ)

𝜙∗ =  argmin𝜙 𝔼𝑞𝜙(𝒁) log 𝑞𝜙 𝒁 −  log 𝑝(𝓓, 𝒁|Θ)

𝜙∗ =  argmax𝜙 𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 =  argmax ℒ(𝜙, Θ)
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The ELBO

▪ The ELBO is defined as

▪ Thus maximizing the ELBO w.r.t. 𝜙 gives us a 𝑞𝜙(𝒁) which

▪ Maximizes the expected joint probability of data and latent variables

▪ Has a high entropy

▪We can also write the ELBO as follows

▪ Thus maximizing the ELBO w.r.t. 𝜙 will give us a 𝑞𝜙(𝒁) which

▪ Explains the data 𝓓 well, i.e., gives it large expected probability 𝔼𝑞 log 𝑝(𝓓|𝒁, Θ)

▪ Is close to the prior 𝑝(𝒁), i.e. is simple/regularized (small KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ )

17

ℒ 𝜙, Θ =  𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

ℒ 𝜙, Θ = 𝔼𝑞𝜙(𝒁)[log 𝑝(𝓓|𝒁, Θ)] − KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ ]

=  𝔼𝑞𝜙(𝒁) log 𝑝 𝓓, 𝒁 Θ + H[𝑞𝜙 𝒁 ]
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Maximizing the ELBO

▪We need to maximize the ELBO w.r.t. 𝜙 (for now, assuming Θ is known)

▪ The general approach to maximize ELBO is based on gradient-based methods

▪ Assume some suitable/convenient form for 𝑞𝜙 𝒁 , e.g., 𝒩(𝒁|𝜇, Σ) so 𝜙 = (𝜇, Σ)

▪ Maximize the ELBO w.r.t. 𝜙 using gradient ascent

▪Note: Expectations in ELBO and ELBO’s gradients w.r.t. 𝜙 may not be easy

▪ Will see methods to handle such issues later

▪ Assuming simple forms for 𝑞𝜙 𝒁  also helps (we can use random variable transformation 

methods to transform the simple form to more expressive ones – will see later)

18

ℒ 𝜙, Θ = 𝔼𝑞𝜙(𝒁)[log 𝑝(𝓓|𝒁, Θ)] − KL[𝑞𝜙 𝒁 ||𝑝 𝒁 Θ ]

Unknown Θ case later

𝜙𝑡+1 = 𝜙𝑡 + 𝜂𝑡 ∇𝜙𝑡
ℒ 𝜙, Θ
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