LVMs and EM Algorithm (contd),
Variational Inference
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Expectation Maximization

| atent variables
- —

= EM is a method to optimize log p(D|®) = log Y., p(D, Z|®) for point estimation of ©
» EM optimizes L(q, ) = )., q(Z)log {P(D,ZIG))

}, which is a lower bound on log p(X|0)

q(Z)

Computing the
CP of latent
variables

Maximizing the
expected CLL

= CP q(t) in step 2 and expectation in step 3 may not be tractable. May need approximations

CS772A: PML



Gaussian Mixture Model (GMM)

= N observations {x,,}}_, each from one of the K Gaussians {N (u;, Z;) Heq
" \We don't know which Gaussian each observation x,, comes from
* Assume z,, € {1,2, ..., K} denotes which Gaussian generated x,,

= Suppose we want to do point estimation for the parameters {u;, %;}—4

@ @ p(xy | (s, i, 23 1)
p(z,|m) = multinoulli(z,, |) K

K
108 P(xal0) = l0g ) MV (xalpt, %)
1=

7'[ Z Can use gradient based optimization
n for MLE of © but the update
equations are a bit complicated

EM would give simpler updates
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Detour: MLE for GMM when Z is KNOWN gt cusicaton v

(Gaussian class conditionals

= Derivation of the MLE solution for ® = {my,, tx, Zx} 5= When Z is known

0= dI'ginaXxe p(X,Z|@) — argmaXe H?I;I:l p(xn:zn|®)mu|tmou||i

. Gaussian
_ -—-N
= argmaxe [I}-1p(2a]0) p(xx|Z, 6)
n general, in models with probability distributions
from the exponential family, the MLE problem will
usually have a simple analytic form _ TN K Znk TTK — Znk
Also, due to the form of the likelihood N ] K
(Gaussian) and prior (multinoulli), the P
MLE problem had a nice separable = dIrgmaXeg [Tl,'kp (Xn |Zn = k, @)] nk
structure after taking the log An=1 4 k=1
JV K
Can see that, when estimating the _ _ Znk
parameters of the k™ Gaussian = argmaxg lOg ‘ ‘ [T[kp(xn |ZTL — k' ®)]
(x> Hp» Zi ). we only will only need in=1+ k=1

training examples from the k" class,
i.e., examples for which z,;, =1

N K
argmaxe ) ) zuillog e + 10g N (alite, 50
n= =
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EM for Gaussian Mixture Model (GMM)

1. Initialize ® = {my, Ui, Zx}hoq @S OO Sett =1
2. Set CP ¢ = p(z|X,0 D), Assuming i.i.d. data, this means computing Vn, k

Probability of data point n _ t—1 _ t—1 . t—1

belonging to the k-th Gaussian p(znk — 1|xn, ®( )) X p(z — 1|@( )) p(x |Z k — 1; ®( ))
"Soft-clustering” " _ t—1 t—1

Same as writing z,, = k — 7T;(< )N ( | ( ) Z( ))

EM for GMM does two A

things: soft-clustering 5 /

3. Set 0®) = argmaxg E e [log p(X, Z|0)] = argmaxg Q(0,0¢-1)) ™ estimating the e’»

This only required expectation for EM N density p(X|0)

for GMM is [E[z,,,] which can be @(t) = argmaxg Z Ep(anxn @(t_l)) [lOg p(xn, Zn | G))]

computed easily using the CP of z,
n_

N Ny, = Zg=1 E[zpnk]
I(ct)_ Nz _1[E[an] deﬂot;tes t?e effictive = argmaxg [z Z Znk llog n.k —-1) 4+ logN (xnl,u(t 1) Z(t 1))]]
n= number of points =1 =1
®)_ i N from k-th Gaussian
5= _Z E[Zne] Gt — 1) (e — 1 )T © Lupoy L= 1 [ k n
Nk n=1
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EM for GMM: The Full Algorithm e

N (xn | B Zk)
YK RN (xn| e e)

Need to normalize: E[zy;] =

* The EM algo for GMM required E[z,;]. Note z,,;, € {0,1}

ElZe) = Yk = 0 X p(Zne = 01, ©) + 1 X p(zpse = 1]y, ©) = PZnic = 1, 8) < 72 N (| e, Zc)

EM for Gaussian Mixture Model

Q Initialize © = {7k, puk, Tk } 1, as 00 sett=1
@ E step: compute the expectation of each z, (we need it in M step)

Accounts for fraction of Accounts for cluster shapes (since
Soft K-means, which is more of a heuristicto | | points in each cluster (t—1 (t—1) (t—1) each cluster is a Gaussian
get soft-clustering, also gave us probabilities E[z ] — ,},(f) — K T (Xx \,u, X /)/ vn. k
* (t—1 t—1 (t—1 !
but doesn't account for cluster shapes or ZE LTy )N( n|Hr( ) L E! ))

fraction of points in each cluster

© Given “responsibilities” v, = E[zux], andre—estimate © via MLE

Effective number of points

() _
My = Z Y nk = in the k™" cluster
M-step 1
EE:) = N_k Z Y nk (xn (xn (I'))
0 — N
k N

Q@ Sett =t + 1 and go to step 2 if not yet converged CS7T72A: PML




Bayesian Linear Regression (Revisited)

N X D input matrix N X1 responses

= N observations (X,y) = {x,,, Vo n=1 from a lin-reg model with weights w
" Suppose the hyperparameters are also unknown, so need to estimate w, 8, A

(Yl w,8) = N(p|w'x,, 7 pW|A) = N(w[0,A7) @_’@

|
CP of w: = model, there are no
p(W|X) yl ﬁ) A) N(Wlﬂj z) Ioc;jl \laiik:ables. w,B,A —@
Many ways to u = ﬁA_ley are all "global” N

optimize the marginal z — (ﬁXTX T /11)_1

likelihood in MLE-I,
e.g., gradient descent

MLE-I

EM solves the MLE-I

problem by optimizing

a lower bound on the m
log marginal

likelihood, and gives

simple update

equations for B, 4

In this latent variable

A

(B\’ )l) = argmaxpg lOg p(y|X, :8' /1)
w treated as latent

Expected CLL Data variable here

(B,4) = argmaxg s E,,, x, pe-v s¢e-m)[log p(y, WX, B, D]
= argmaxg E, .,y -1 3¢-0)[log p(y|w, X, B) + log p(w|2)]
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EM for Bayesian Linear Regression °

(B©,20)) = argmaxg ; E[log p(y, w|X, pE~, 2(-D)]

1. Initialize B as BO and 1 as 2D Set t = 1

2. Update the CP of w as
p(w|X, y,ﬁ(t_l),/l(t_l)) = N (u®,z®)

2® = (BE-DXTX 4 2D ,)—1 u® = gt-DE O XTy
3. Update f and A as
D D Note the dependence: CP of A

t) — —
A( ) — — w depends on current values e 4 /

E [WTW] u(t) Tﬂ(t) + trace(z (t)) of 8,4 and their update e’y

depends on the CP on w

t N Less common but another alternative:
’B( ) = > Compute CP of £ and A in step 2, and
_ (t) “ Ty (1) compute MLE on w in step 3. That
||y X” + trace(X ) X) would amount to doing MLE-I for w

4. If not converged, sett =t + 1 and go to step 2
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MLE-Il for Bayesian Lin. Reg.

" The MLE-Il problem for Bayesian linear regression

(B, ) = argmaxg ; log p(y|X, 8, )
N 1 1
= argmaxgy (21) Z|7 T+ 271X T X| 72 exp <_EJ’T([3‘1I +A7IXTX) "1y

®* This objective doesn't have a closed form solution

" Solved using iterative/alternating optimization

» Gradient descent for A, 8

= Alternating optimization (A, B and the mean/covariance of the CP depend on each other) -
similar to EM but with some differences — next slide

" EM is also a way to do MLE-Il but EM doesn't optimize the marginal likelihood
but a lower bound on the marginal likelihood
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10

An algorithm for MLE-II for Bayesian Lin. Reg.

1. Initialize B as lg(O) and A as 19 Sett =1 (B, 1) = argmaxg , log p(y|X, 5, 1)
2. Update the CP of w as
p(w(t)lx, y,ﬁ(t—l)’/’l(t—l)) — N(ﬂ(t),A(t)_l)

-1
AW = gD xTx 4 2(E=1 p®d = =140 “xTy
3. U pdate ﬁ, A asS In practice, we can compute them in the
; beginning for XT X and multiply by In each iteration, we
RHS depends on f and A ) y© B0 n this o toget fn )75 10 ompute the
Thus it is an implicit solution A — . T ; . d=1
(though still in closed form) ”( ) M( ) {ng’)}d=1 — eigvals(ﬁ(t'l)XTX)
where
RHS depends on 8 and 4. ¢ N — ]/(t) D n(t)
Thus it is an implicit solution ﬁ( ) = y(t) — z d A
(though still in closed form) (t) 2 d=1 A1) 4 () ..
g ”y —Xp ” Na voa [/

Note that this MLE-|| e’»

4. If not converged, sett =t + 1 and go to step 2 procedure for Bayesian linear

regression looks very similar to
the EM algo for BLR S772A: PML



EM: Some other examples

" Problems with missing features (which are treated as latent variables)
= Suppose each input x,, has two parts - observed and missing: x,, = [x9PS, xTsS]
= For such problems, MLE for a model p(X|®), assuming i.i.d. data, would have the form
N Suppose we are estimating the
o — obs mean/covariance of a multivariate
@ o argmaX@ z _ logp(xn |®) Gaussian given N input, with some inputs
n=1 observations may have missing features

N
= argmaxe ) log [ p([xa?, x> @) x>

n=

= Here x5S can be treated as a latent variable
= The CP will be p(ass | x%bs, 0) An example of

semi-supervised

= Using the CP, compute expected CLL and maximize it w.rt. © learning

" Problems with missing labels (which are treated as latent variables) | This partis lie GMM

thus EM can be used

+M K Z
log 2 p (X, yn = ¢|©)
=N+1 c=1
CS772A: PML
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© = argmaxg log p(xpn, Y0

n=1




EM when CP and/or expectation is intractable e

* =M solves the following step for estimating ©
) = argmaxg E o (log p(D, Z|0)] = argmaxe [ logp(D,Z|0) p(z|6¢ V), D)dz

" The above problem may be difficult to solve it one/both of the following is true
1. CP p(Z|®(t‘1), 2)) can't be computed exactly (Solution: Need to approximate the CP)

2. Integral for the expectation is intractable (Solution: Use Monte Carlo approximation)
» Draw M i.i.d. samples of Z from the current (exact/approximate) CP p(Z|®(t_1),1))

oM L (t-1)
tz%},., ~ r(2]6“7,D)
" Use these samples to get a Monte-Carlo approximation of expected CLL and maximize
1 M .
0®) = argmaxg Mz log p(D,ZV|0)
i=1

= Monte-Carlo approximation is commonly used in such problems
CS772A: PML



EM: Some Final Comments

" The E and M steps may not always be possible to perform exactly. Some reasons

» The conditional posterior of latent variables p(Z|X, ®) may not be easy to compute
= Will need to approximate p(Z|X, ©) using methods such as MCMC or variational inference r.c s in

» Even if p(Z|X, 0) is easy, the expected CLL may not be easy to compute Monte-Carlo EM

Can often be approximated

E['Og p(X Zle‘)] — f |Og p(x Z‘@)p(Z|X G))dZ by Monte-Carlo using

sample from the CP of Z

= Maximization of the expected CLL may not be possible in closed form

* EM works even if the M step is only solved approximately (Generalized EM)

" [ M step has multiple parameters whose updates depend on each other, they are
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

= Other advanced probabilistic inference algos are based on ideas similar to EM

= £.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (V1)
CS772A: PML



Variational Inference (VI)

= Assume a latent variable model with data D and latent variables Z

= A simple setting might look something like this
This setting is just one example. VI
is applicable in more general and
more complex probabilistic models
@ @
N

with and without latent variables
= Assume the likelihood is p(D|Z, ®) and prior is p(Z|®). Want posterior over Z
" 0 = (0, @) denotes the other parameters that define the likelihood and the prior

" For now, assume 0 is known and only Z is unknown (the © unknown case later)
= Assume CP p(Z|D, 0) is intractable
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Variational Inference (VI)

= Assuming p(Z|D, ©) is intractable, VI approximates it by a distr q(Z|¢) or q4(Z)

Find the optimal ¢ which
makes our approximation
q(Z|®) as closed as
possible to the true
posterior p(Z|D)

Kullback Leibler divergence | | Also possible to use KL[p||q]
KL[q||p] between q and p or divergences other than KL

¢" = argming KL[q4(Z2)|[p(Z]D, 0)]

q¢ defines a class of distributions parametrized
by ¢ sometimes called “variational parameters”

N

Approximation class

KL[a(2)llp(z]

True posterior

e

X: data
Z. unknowns

Name “variational” comes from
Physics and refers to problems
where we are optimizing functions
of distributions (here the function is
the KL divergence)
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Variational Inference (VI)

" The optimization problem

¢* = argming KL[q4(Z)||p(Z|D, 0)]

= argming IE%(Z)

p(D|Z,0)p(Z|0)
p(D|O)

log g4 (Z) — log

= argminy Iqub(Z)

log q4(Z) — log p(D|Z,0) — logp(Z|0)| + log p(D|6)

= Since log p(D|O) is independent of ¢, the optimization problem becomes

¢* = argming Eq,2)

¢* = argming Eg 2 :log qp(Z) — log p(D,Z|®):

log q4(Z) — log p(D|Z,0) — logp(Z|0)]

¢* = argmaxg Iqub(Z) [log p(D,Z|0) —log qd,(Z): = argmax L(¢, 0)

= Note that L(¢p, 0) < log p(D|0O) and is called “Evidence Lower Bound” (ELBO)
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The ELBO

* The ELBO is defined as _
L(¢,0) = Eq,z)|logp(D,Z10) —log q4(2).

= Eq, 2 [logp(D,Z]|0)] + H[q4(Z).
= Thus maximizing the ELBO wirt. ¢ gives us a q4(Z) which

= Maximizes the expected joint probability of data and latent variables

" Has a high entropy
= \\e can also write the ELLBO as follows

L(¢,0) = Eq, (z)[logp(D|Z,0)] — KL[q4(Z)||p(Z]|06)]

= Thus maximizing the ELBO wirt. ¢ will give us a qg(Z) which
= Explains the data D well, i.e., gives it large expected probability E,[log p(D|Z, ©)]

" |s close to the prior p(Z), i.e. is simple/reqularized (small KL[qy(Z)||p(Z]0©)) Mool




Maximizing the ELBO

" We need to maximize the ELBO wirt. ¢ (for now, assuming 0 is known)

£(¢,0) = E,,n[log p(DIZ,0)] — KL[q4(2)||p(Z|0)]

" The general approach to maximize ELBO is based on gradient-based methods
= Assume some suitable/convenient form for g4 (Z), e.g., N'(Z|u, X) so ¢ = (1, X)
= Maximize the ELBO wirt. ¢ using gradient ascent

brr1 = ¢Pr + 1 Vg L(P, 0)

» Note: Expectations in ELBO and ELBO's gradients w.rt. ¢ may not be easy

= Will see methods to handle such issues later
= Assuming simple forms for g4 (Z) also helps (we can use random variable transformation
methods to transform the simple form to more expressive ones — will see later)

Unknown O case later
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