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Approximating a Prob. Distribution using Samples

= Can approximate any distribution using a set of randomly drawn samples from it

Given large-enough
samples, it is proportional to
the probability density at
that location

Height of each bar
denotes how many
times that location
was sampled

Samples can thought
of as a histogram-
based approximation
of a distribution

|

p(z)

" The samples can also be used for computing expectations (Monte-Carlo averaging)

» Usually straightforward to generate samples if it is a simple/standard distribution

" The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it
s often possible to generate random samples from such a distribution, as we will see.

CS772A: PML



The Empirical Distribution

» Sampling based approx. can be formally represented using an empirical distribution

= Given L points/samples z(1), 2z ..., z(1)  empirical distr. defined by these is

Weights sum to 1 A

Dirac Distribution with Weight of point 70
finite support at |
z®,2®, ., 21 | I
pL(A) = Wffsz“ (A) & l BT
Can think of A4 as being the l /
area over which we want to

evaluate the distribution

Dirac Distribution f A
() =49 " 27
1 if z€ A
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= Most of these basic methods are based on the idea of transhformation Determinant

of Jacobian

" Generate a random sample x from a distribution g (x) which is easy to sample from

= Apply a transformation on x to make it random sample z from a complex distr p(z) F (). COF of p(2)

= Some popular examples of transformation methods x
* Inverse CDF method 1 /
_ - 1 z =F 1(x)
x ~ Unif(0,1) = z = Inv-CDF ;) (x) ~ p(2) = 77

» Reparametrization method
x ~N(0,1) = z=pu+ox ~N(u,oc°)
= Box-Mueller method: Given (x4, x,) from Unif(0, 1), generate (z4, z,) from N (0, 1,)

z1 = y/—2Inx;cos(2mx,), z; = /—21nx;sin(2mx,)

* Transformation Methods are simple but have limitations
= Mostly limited to standard distributions and/or distributions with very few variables
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Rejection Sampling

p(2)
p

» Goal: Generate a random sample from a distribution of the form p(z) = . assuming

= We can only evaluate the value of numerator p(z) for any z
= The denominator (normalization constant) Z,, is intractable and we don't know its value

Should have the same
| suonrt as .p(z)
* Assume a proposal distribution q(z) we can generate samples from, and

Mq(z) > p(z) Vz (where M > 0 is some const.)

" Rejection Sampling then works as follows ma(2,) L)
= Sample a random variable z, from q(z)
= Sampling a uniform rv. u ~ Unif[0, Mq(z,)]
» If u < p(z,) then accept z,, otherwise reject it /

= All accepted z,'s will be random samples from p(z). Proof on next slide
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Rejection Sampling
" \Why z ~ g(z) + accept/reject rule is equivalentto z ~ p(z)~

" | et's look at the pdf of the z's that were accepted, i.e., p(z|accept)

B plz) 1 B B(z)
p(accept|z) = /U. Maq(2) du = Ma(2)
p(z,accept) = q(z)p(accept|z) = pl(\;)
p(accept) = /#d _ % B
p(z|accept) = PL;::S) _ péz) _ o(2)
p
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Computing Expectations via Monte Carlo Sampling

= Often we are interested in computing expectations of the form

Elfl = | Fw@)dz
where f(z) is some function of the random variable z ~ p(2)
" A simple approx. scheme to compute the above expectation: Monte Carlo integration

Assuming we know how
to sample from p(z)

= Generate L independent samples from p(z): {z({’)}izl ~ p(2)

* Approximate the expectation by the following empirical average

E[f] ~ f = +¥5, f(z®)

" Since the samples are independent of each other, we can show the following (exercise)

Variance in our
]_ estimate decreases

comaion ~ EFFI =E[f]  and var[f] = Jvar[f] = %E[(f—IE[f])z] o L increases

expectation
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Computing Expectations via Importance Sampling

* How to compute Monte Carlo expec. if we don't know how to sample from p(z)~
= One way is to use transformation methods or rejection sampling to generate samples
= Another way is to use Importance Sampling (assuming p(z) can be evaluated at least)

= Generate L indep samples from a proposal q(z) we know how sample from: {z(f)}izl ~ q(2)

= Now approximate the expectation as follows

= [ repeas = [ 1oES i@ =1y o)

" This is basically "weighted” Monte Carlo mtegration

)
. @ —P7)
W  q(z®)

denotes the importance weight of each sample z()

= |S works even when we can only evaluate p(z) = % up to a prop. constant

p
* Note: Monte Carlo and Importance Sampling are NOT sampling methods!
* These are only uses for computing expectations (approximately) CS772A: PML
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Limitations of the Basic Methods

" Transformation based methods: Usually limited to drawing from standard distributions

* Rejection Sampling and Importance Sampling: Require good proposal distributions

Mq(z, )

p(z?)
T2,

MCI(Z) eﬂV€|OpeS p(Z) /\ Ideally, would like q(z) to
give samples from where p(z)

everywhere .
/ \ is large or f(z)p(z) is large
» Difficult to guarantee so if z is

. :.' . - / _ “ | high-dimensional
Rejection Sampling Importance Sampling

q(z) should be such that

" |n general, difficult to find good prop. distr. especially when z is high-dim

= More sophisticated sampling methods like MCMC work well in such high-dim spaces
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Markov Chain Monte Carlo (MCMC)frue ags s posteio i

conditioned on data, i.e., p(z|x)

= Goal: Generate samples from some target distribution p(z) = £2

p
z usually is high-dim Means we can at least

= Assume we can evaluate p(z) at least up to a proportionality constant- ©=vetP

= MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

z) 5 z() 5 () — ... g(L_‘?) — z(t7D) z(Ll

A

" e

initial samples typically garbage after convergence, actual samples from p(z)

" Given current sample z™ from the chain, MCMC generates the next sample zUHD 55

= Use a proposal distribution q(z|z(€)) to generate a candidate sample z,
= Accept/reject z, as the next sample based on an acceptance criterion (will see later)

» |f accepted, set z¢FD =z, If rejected, set z¢+D = 7

Should also have the

= Important: The proposal distribution q(z|z®) depends on the previous sample z®
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MCMC: The Basic Scheme

= The chain run infinitely long (i.e., upon convergence) will give ONE sample from p(z)
MCMC is exact in theory but A

" But we usually require several samples to approximate p(z) | 2Poxmaten practeesince | 5ty /
Thus we say that the infinitely long in practice e'Y»

samples are approximately

" This is done as follows o
from the target distribution
= Start the chain at an initial z(®) Wil treat it as our first
= Using the proposal q(z|z), run the chain long enough, say T; steps sample from p(2)
= Discard the first T; — 1 samples (called “burn-in" samples) and take last sample z(T)

= Continue from z(T) up to T, steps, discard intermediate samples, take last sample z(T2)
= This discarding (called “thinning") helps ensure that z(™) and z{"2) are uncorrelated

" Repeat the same for a total of S times Requirement for Monte
= In the end, we now have S approximately independent samples from p(2) Carlo approximation

* Note: Good choices for Ty and T; — T;_1 (thinning gap) are usually based on heuristics
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MCMC: Some Basic Theory

= A first order Markov Chain assumes p(z¢+9 |z, ..., z®0) = p(z2¢+Y|2D)

= A 1st order Markov Chain Z(O), z(l), ) zW is 4 sequence of rv.'s and is defined by

= An initial state distribution p(z(®)

= A Transition Function (TF): Tp(2®) - zE+D) = p(24+D12(9) — the proposal distribution

" [ is a distribution over the values of next state given the value of the current state

* Assuming z is discrete with K possible values, the TF will be K X K probability table

Transition probabilities I
can be defined using a 2
KxK table if z is a discrete 3
r.v. with K possible values 4
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* Homogeneous Markov Chain: The TF is the same forall € ,ie., Tp =T
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