
Sampling Methods to Approximate
Distributions and Expectations

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Approximating a Prob. Distribution using Samples

▪ Can approximate any distribution using a set of randomly drawn samples from it

▪ The samples can also be used for computing expectations (Monte-Carlo averaging)

▪ Usually straightforward to generate samples if it is a simple/standard distribution

▪ The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it
is often possible to generate random samples from such a distribution, as we will see.

2

Samples can thought

of as a histogram-

based approximation

of a distribution
Height of each bar

denotes how many

times that location

was sampled

Given large-enough

samples, it is proportional to

the probability density at

that location

𝑝(𝑧)

CS772A: PML

The Empirical Distribution

▪ Sampling based approx. can be formally represented using an empirical distribution

▪ Given 𝐿 points/samples 𝒛(1), 𝒛(2), … , 𝒛(𝐿), empirical distr. defined by these is

3

Weight of point 𝑧(ℓ)
Weights sum to 1

Dirac Distribution

Dirac Distribution with

finite support at

𝒛(1), 𝒛(2), … , 𝒛(𝐿)

Can think of 𝐴 as being the

area over which we want to

evaluate the distribution

CS772A: PML

Sampling: Some Basic Methods

▪ Most of these basic methods are based on the idea of transformation
▪ Generate a random sample 𝑥 from a distribution 𝑞(𝑥) which is easy to sample from

▪ Apply a transformation on 𝑥 to make it random sample 𝑧 from a complex distr 𝑝(𝑧)

▪ Some popular examples of transformation methods
▪ Inverse CDF method

▪ Reparametrization method

▪ Box-Mueller method: Given (𝑥1, 𝑥2) from Unif(0, 1), generate (𝑧1, 𝑧2) from 𝒩(0, 𝐈2)

 𝑧1 = −2 ln 𝑥1cos 2𝜋𝑥2 , 𝑧1 = −2 ln 𝑥1sin(2𝜋𝑥2)

▪ Transformation Methods are simple but have limitations
▪ Mostly limited to standard distributions and/or distributions with very few variables

4

𝑥

𝑧 = 𝐹−1(𝑥)

𝐹(𝑧): CDF of 𝑝(𝑧)

𝑝 𝑧 = 𝑞(𝑥)
𝜕𝑥

𝜕𝑧

Determinant

of Jacobian

CS772A: PML

Rejection Sampling

▪ Goal: Generate a random sample from a distribution of the form 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
, assuming

▪ We can only evaluate the value of numerator 𝑝(𝑧) for any 𝑧

▪ The denominator (normalization constant) 𝑍𝑝 is intractable and we don’t know its value

▪ Assume a proposal distribution 𝑞(𝑧) we can generate samples from, and

▪ Rejection Sampling then works as follows
▪ Sample a random variable 𝑧∗ from 𝑞(𝑧)

▪ Sampling a uniform r.v. 𝑢 ∼ Unif 0, 𝑀𝑞 𝑧∗

▪ If 𝑢 ≤ 𝑝(𝑧∗) then accept 𝑧∗, otherwise reject it

▪ All accepted 𝑧∗’s will be random samples from 𝑝 𝑧 . Proof on next slide

5

Should have the same

support as 𝑝(𝑧)

CS772A: PML

Rejection Sampling

▪ Why 𝑧 ∼ 𝑞(𝑧) + accept/reject rule is equivalent to 𝑧 ∼ 𝑝(𝑧)?

▪ Let’s look at the pdf of the 𝑧’s that were accepted, i.e., 𝑝(𝑧|accept)

6

CS772A: PML

Computing Expectations via Monte Carlo Sampling

▪ Often we are interested in computing expectations of the form

 where 𝑓(𝑧) is some function of the random variable 𝑧 ∼ 𝑝(𝑧)

▪ A simple approx. scheme to compute the above expectation: Monte Carlo integration

▪ Generate 𝐿 independent samples from 𝑝(𝑧): 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑝(𝑧)

▪ Approximate the expectation by the following empirical average

▪ Since the samples are independent of each other, we can show the following (exercise)

7

𝔼 𝑓 = න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧

Unbiased

expectation

Variance in our

estimate decreases

as 𝐿 increases

𝔼 𝑓 ≈ መ𝑓 =
1

𝐿
σℓ=1

𝐿 𝑓(𝑧(ℓ))

Assuming we know how

to sample from 𝑝(𝑧)

CS772A: PML

Computing Expectations via Importance Sampling

▪ How to compute Monte Carlo expec. if we don’t know how to sample from 𝑝(𝑧)?

▪ One way is to use transformation methods or rejection sampling to generate samples

▪ Another way is to use Importance Sampling (assuming 𝑝(𝑧) can be evaluated at least)

▪ Generate 𝐿 indep samples from a proposal 𝑞(𝑧) we know how sample from: 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑞(𝑧)

▪ Now approximate the expectation as follows

▪ This is basically “weighted” Monte Carlo integration

▪ 𝑤(ℓ) =
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)
 denotes the importance weight of each sample 𝑧(ℓ)

▪ IS works even when we can only evaluate 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
 up to a prop. constant

▪ Note: Monte Carlo and Importance Sampling are NOT sampling methods!
▪ These are only uses for computing expectations (approximately)

8

𝔼 𝑓 = න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න 𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

See PRML 11.1.4

CS772A: PML

Limitations of the Basic Methods

▪ Transformation based methods: Usually limited to drawing from standard distributions

▪ Rejection Sampling and Importance Sampling: Require good proposal distributions

▪ In general, difficult to find good prop. distr. especially when 𝑧 is high-dim

▪ More sophisticated sampling methods like MCMC work well in such high-dim spaces

9

𝔼 𝑓 ≈
1

𝐿

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

Ideally, would like 𝑞(𝑧) to

give samples from where 𝑝(𝑧)

is large or 𝑓(𝑧)𝑝(𝑧) is large

Difficult to guarantee so if 𝑧 is

high-dimensional

𝑞(𝑧) should be such that

𝑀𝑞(𝑧) envelopes 𝑝(𝑧)
everywhere

CS772A: PML

Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗

▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If accepted, set 𝒛(ℓ+1) = 𝒛∗. If rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)

10

Means we can at least

evaluate 𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be

conditioned on data, i.e., 𝑝(𝒛|𝒙)

Should also have the

same support as 𝑝(𝒛)

CS772A: PML

MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics

11

MCMC is exact in theory but

approximate in practice since

we can’t run the chain for

infinitely long in practiceThus we say that the

samples are approximately

from the target distribution

Will treat it as our first

sample from 𝑝(𝒛)

Requirement for Monte

Carlo approximation

CS772A: PML

MCMC: Some Basic Theory

▪ A first order Markov Chain assumes 𝑝 𝒛(ℓ+1)|𝒛 1 , … , 𝒛(ℓ) = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ A 1st order Markov Chain 𝒛(0), 𝒛(1), … , 𝒛(𝐿) is a sequence of r.v.’s and is defined by

▪ An initial state distribution 𝑝(𝒛 0)

▪ A Transition Function (TF): 𝑇ℓ 𝒛 ℓ → 𝒛 ℓ+1 = 𝑝(𝒛 ℓ+1 |𝒛(ℓ)) – the proposal distribution

▪ TF is a distribution over the values of next state given the value of the current state

▪ Assuming 𝒛 is discrete with 𝐾 possible values, the TF will be 𝐾 × 𝐾 probability table

▪ Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., 𝑇ℓ = 𝑇

12

	Slide 1: Sampling Methods to Approximate Distributions and Expectations
	Slide 2: Approximating a Prob. Distribution using Samples
	Slide 3: The Empirical Distribution
	Slide 4: Sampling: Some Basic Methods
	Slide 5: Rejection Sampling
	Slide 6: Rejection Sampling
	Slide 7: Computing Expectations via Monte Carlo Sampling
	Slide 8: Computing Expectations via Importance Sampling
	Slide 9: Limitations of the Basic Methods
	Slide 10: Markov Chain Monte Carlo (MCMC)
	Slide 11: MCMC: The Basic Scheme
	Slide 12: MCMC: Some Basic Theory

