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Approximating a Prob. Distribution using Samples

▪ Can approximate any distribution using a set of randomly drawn samples from it

▪ The samples can also be used for computing expectations (Monte-Carlo averaging)

▪ Usually straightforward to generate samples if  it is a simple/standard distribution

▪ The interesting bit: Even if  the distribution is “difficult” (e.g., an intractable posterior), it 
is often possible to generate random samples from such a distribution, as we will see.
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Samples can thought 

of as a histogram-

based approximation 

of a distribution
Height of each bar 

denotes how many 

times that location 

was sampled

Given large-enough 

samples, it is proportional to 

the probability density at 

that location

𝑝(𝑧)
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The Empirical Distribution

▪ Sampling based approx. can be formally represented using an empirical distribution

▪ Given 𝐿 points/samples 𝒛(1), 𝒛(2), … , 𝒛(𝐿), empirical distr. defined by these is
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Weight of point 𝑧(ℓ)
Weights sum to 1

Dirac Distribution

Dirac Distribution with 

finite support at 

𝒛(1), 𝒛(2), … , 𝒛(𝐿)

Can think of 𝐴 as being the 

area over which we want to 

evaluate the distribution
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Sampling: Some Basic Methods

▪ Most of these basic methods are based on the idea of transformation
▪ Generate a random sample 𝑥 from a distribution 𝑞(𝑥) which is easy to sample from

▪ Apply a transformation on 𝑥 to make it random sample 𝑧 from a complex distr 𝑝(𝑧)

▪ Some popular examples of transformation methods
▪ Inverse CDF method

▪ Reparametrization method

▪ Box-Mueller method: Given (𝑥1, 𝑥2) from Unif(0, 1), generate (𝑧1, 𝑧2) from 𝒩(0, 𝐈2)

   𝑧1 = −2 ln 𝑥1cos 2𝜋𝑥2 ,  𝑧1 = −2 ln 𝑥1sin(2𝜋𝑥2)

▪ Transformation Methods are simple but have limitations
▪ Mostly limited to standard distributions and/or distributions with very few variables
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𝑥

𝑧 = 𝐹−1(𝑥)

𝐹(𝑧): CDF of 𝑝(𝑧)

𝑝 𝑧 = 𝑞(𝑥)
𝜕𝑥

𝜕𝑧
 

Determinant 

of Jacobian
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Rejection Sampling

▪ Goal: Generate a random sample from a distribution of the form 𝑝 𝑧 =
෤𝑝(𝑧)

𝑍𝑝
, assuming

▪ We can only evaluate the value of numerator ෤𝑝(𝑧) for any 𝑧

▪ The denominator (normalization constant) 𝑍𝑝 is intractable and we don’t know its value

▪ Assume a proposal distribution 𝑞(𝑧) we can generate samples from, and

▪ Rejection Sampling then works as follows
▪ Sample a random variable 𝑧∗ from 𝑞(𝑧)

▪ Sampling a uniform r.v. 𝑢 ∼ Unif 0, 𝑀𝑞 𝑧∗

▪ If  𝑢 ≤ ෤𝑝(𝑧∗) then accept 𝑧∗, otherwise reject it

▪ All accepted 𝑧∗’s will be random samples from 𝑝 𝑧 . Proof on next slide
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Should have the same 

support as 𝑝(𝑧)
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Rejection Sampling

▪ Why 𝑧 ∼  𝑞(𝑧) + accept/reject rule is equivalent to 𝑧 ∼  𝑝(𝑧)?

▪ Let’s look at the pdf of the  𝑧’s that were accepted, i.e., 𝑝(𝑧|accept)
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Computing Expectations via Monte Carlo Sampling

▪ Often we are interested in computing expectations of the form

   where 𝑓(𝑧) is some function of the random variable 𝑧 ∼  𝑝(𝑧)

▪ A simple approx. scheme to compute the above expectation: Monte Carlo integration

▪ Generate 𝐿 independent samples from 𝑝(𝑧): 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑝(𝑧)

▪ Approximate the expectation by the following empirical average

▪ Since the samples are independent of each other, we can show the following (exercise)
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𝔼 𝑓 =  න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧

Unbiased 

expectation

Variance in our 

estimate decreases 

as 𝐿 increases

𝔼 𝑓 ≈  መ𝑓 =
1

𝐿
σℓ=1

𝐿 𝑓(𝑧(ℓ)) 

Assuming we know how 

to sample from 𝑝(𝑧)
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Computing Expectations via Importance Sampling

▪ How to compute Monte Carlo expec. if  we don’t know how to sample from 𝑝(𝑧)?

▪ One way is to use transformation methods or rejection sampling to generate samples

▪ Another way is to use Importance Sampling (assuming 𝑝(𝑧) can be evaluated at least)

▪ Generate 𝐿 indep samples from a proposal 𝑞(𝑧) we know how sample from: 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑞(𝑧)

▪ Now approximate the expectation as follows

▪ This is basically “weighted” Monte Carlo integration

▪ 𝑤(ℓ) =
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)
 denotes the importance weight of each sample 𝑧(ℓ)

▪ IS works even when we can only evaluate 𝑝 𝑧 =
෤𝑝(𝑧)

𝑍𝑝
 up to a prop. constant

▪ Note: Monte Carlo and Importance Sampling are NOT sampling methods!
▪ These are only uses for computing expectations (approximately)
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𝔼 𝑓 =  න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න 𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿
෍

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

See PRML 11.1.4
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Limitations of the Basic Methods

▪ Transformation based methods: Usually limited to drawing from standard distributions

▪ Rejection Sampling and Importance Sampling: Require good proposal distributions

▪ In general, difficult to find good prop. distr. especially when 𝑧 is high-dim

▪ More sophisticated sampling methods like MCMC work well in such high-dim spaces
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𝔼 𝑓 ≈
1

𝐿
෍

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

Ideally, would like 𝑞(𝑧)  to 

give samples from where 𝑝(𝑧) 

is large or 𝑓(𝑧)𝑝(𝑧) is large

Difficult to guarantee so if  𝑧 is 

high-dimensional

𝑞(𝑧) should be such that 

𝑀𝑞(𝑧) envelopes ෤𝑝(𝑧) 
everywhere 
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Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗

▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If  accepted, set 𝒛(ℓ+1) = 𝒛∗. If  rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)
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Means we can at least 

evaluate ෤𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be 

conditioned on data, i.e., 𝑝(𝒛|𝒙)

Should also have the 

same support as 𝑝(𝒛)
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MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics
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MCMC is exact in theory but 

approximate in practice since 

we can’t run the chain for 

infinitely long in practiceThus we say that the 

samples are approximately 

from the target distribution

Will treat it as our first 

sample from 𝑝(𝒛)

Requirement for Monte 

Carlo approximation
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MCMC: Some Basic Theory

▪ A first order Markov Chain assumes 𝑝 𝒛(ℓ+1)|𝒛 1 , … , 𝒛(ℓ) = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ A 1st order Markov Chain 𝒛(0), 𝒛(1), … , 𝒛(𝐿) is a sequence of r.v.’s and is defined by

▪ An initial state distribution 𝑝(𝒛 0 )

▪ A Transition Function (TF): 𝑇ℓ 𝒛 ℓ → 𝒛 ℓ+1 = 𝑝(𝒛 ℓ+1 |𝒛(ℓ)) – the proposal distribution

▪ TF is a distribution over the values of next state given the value of the current state

▪ Assuming 𝒛 is discrete with 𝐾 possible values, the TF will be 𝐾 ×  𝐾 probability table

▪ Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., 𝑇ℓ = 𝑇 
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