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Markov Chain Monte Carlo (MCMC)frue ags s posteio i

conditioned on data, i.e., p(z|x)

= Goal: Generate samples from some target distribution p(z) = £2

p
z usually is high-dim Means we can at least

= Assume we can evaluate p(z) at least up to a proportionality constant- ©=vetP

= MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

z) 5 z() 5 () — ... g(L_‘?) — z(t7D) z(Ll

A

" e

initial samples typically garbage after convergence, actual samples from p(z)

" Given current sample z™ from the chain, MCMC generates the next sample zUHD 55

= Use a proposal distribution q(z|z(€)) to generate a candidate sample z,
= Accept/reject z, as the next sample based on an acceptance criterion (will see later)

» |f accepted, set z¢FD =z, If rejected, set z¢+D = 7

Should also have the

= Important: The proposal distribution q(z|z®) depends on the previous sample z®
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MCMC: The Basic Scheme

= The chain run infinitely long (i.e., upon convergence) will give ONE sample from p(z)
MCMC is exact in theory but A

" But we usually require several samples to approximate p(z) | 2Poxmaten practeesince | 5ty /
Thus we say that the infinitely long in practice e'Y»

samples are approximately

" This is done as follows o
from the target distribution
= Start the chain at an initial z(®) Wil treat it as our first
= Using the proposal q(z|z), run the chain long enough, say T; steps sample from p(2)
= Discard the first T; — 1 samples (called “burn-in" samples) and take last sample z(T)

= Continue from z(T) up to T, steps, discard intermediate samples, take last sample z(T2)
= This discarding (called “thinning") helps ensure that z(™) and z{"2) are uncorrelated

" Repeat the same for a total of S times Requirement for Monte
= In the end, we now have S approximately independent samples from p(2) Carlo approximation

* Note: Good choices for Ty and T; — T;_1 (thinning gap) are usually based on heuristics
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MCMC: Some Basic Theory

= A first order Markov Chain assumes p(z¢+9 |z, ..., z®0) = p(z2¢+Y|2D)

= A 1st order Markov Chain Z(O), z(l), ) zW is 4 sequence of rv.'s and is defined by

= An initial state distribution p(z(®)

= A Transition Function (TF): Tp(2®) - zE+D) = p(24+D12(9) — the proposal distribution

" [ is a distribution over the values of next state given the value of the current state

* Assuming z is discrete with K possible values, the TF will be K X K probability table

Transition probabilities I
can be defined using a 2
KxK table if z is a discrete 3
r.v. with K possible values 4
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* Homogeneous Markov Chain: The TF is the same forall € ,ie., Tp =T
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MCMC: Some Basic Theory

= Consider the following Markov Chain to sample a discrete rv. Zz with 3 possible values

The initial state

distribution for z 0 , 0 @
p(2®) =p (zfo), 29, Z?Eo)) LN o
o — =19 91 99
Probabilities of the initial _ %
state taking each of the — [0'5'0'2'0'3] 06 04 O @ ' \‘\®

3 possible values o PR

Jistribution of 2 after p(z(l)) = p(z(o)) X T =10.2,0.6,0.2] (rounded to single digit after decimal)

taking the first step

After doing it a few more Stationary/Invariant Distribution p(z) is multinoulli with T = [0.2,0.4,0.4]

(say some m) times p(2z) of this Markov Chain

p(z(o)) X T™ = [0.2,0.4,0.4] (rounded to single digit after decimal)

" p(z) being Stationary means no matter what p(z(o)) s, we will reach p(z)

= Such transition functions are desirable in MCMC
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MCMC: Some Basic Theory

= A Markov Chain with transition function T has stationary distribution p(z) if T satisfies

Here T(b|a) denotes the

Known as the Detailed transition probability of goin
/ _ ! / P y O going
Balance condition p (Z) T (Z |Z) — p (Z )T(Z | YA ) from state a to state b

" Detailed Balance ensures “reversibility”
= Integrating out (or summing over) detailed balanced condition on both sides wirt. Z'

Thus p(2) is the

tationary distribution of — / / /
e —p(2) = f p(z')T(z|z')dz
* Thus a Markov Chain with detailed balance always converges to a stationary distribution

» Detailed balance is sufficient but not necessary condition for having a stationary distr.
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Some MCMC Algorithms
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Metropolis-Hastings (MH) Sampling (1960)

p(z)
Zp

» Suppose we wish to generate samples from a target distribution p(z) =
= Assume a suitable proposal distribution q(z|z(™), e.g., N'(z|z®, 621

= |n each step, draw z* from q(z|z(™) and accept z* with probability

Favors acceptance of z* if it is more
Q)
probable than 2727 (under p(z)) S Downweight the probability of

7/ N =TT T e
4

~f _ % \)\’q’(z(‘r) |z*) X)\ acceptance of z* if the proposal
S i

‘Pl Z
A(Z Z(T)) — min ]_ ' 'D( itself favors its generation (i.e., if
q(z*1z™) is high), and upweight

__________ if it unfavors the generation

Can Show that this TF
satisfied detailed balance

= Transition function of this Markov Chain
= T(z*|z29) = A(z*, 29)q(z*|2) if state changed
*T(2*129) = q(zP|2) + T .. (1 — A(z",2™))q(2"|2D)  otherwise
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The MH Sampling Algorithm

» |nitialize z(D randomly

sfForf=1,2,...,L
= Sample z* ~ q(z*|z®)) and u ~ Unif(0,1)
= Compute acceptance probability

Az, 29) = min (1, Btz

' B5(200)q(z*|20)

m|f A(z*, Z(f)) > Uu Meaning accepting z* with

probability A(z*,z")
Z(f'l'l) = 7"

= Flse
Z(E+1) — 4 (O
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MH Sampling in Acti

= Target distribution p(z) = N (

= Proposal distribution q(z(*)|z(t~

Approximation with 10 Samples Approximation with 100 Samples

on: A Toy Example..
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MH Sampling: Some Comments

" |f prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

Al 25— i (1, 5’?;:%)

= Some limitations of MH sampling
= Can sometimes have very slow convergence (also known as slow "mixing”)

Q(z|z™®) = N (2|2, 62I) I
Q o large = many rejections ~ (E) iterations required for convergence
- o small = slow diffusion
» Computing acceptance probability can be expensive*, e.q., if p(z) = P s some target
p

posterior then p(z) would require computing likelihood on all the data points (expensive)

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015) CS772A: PML



Gibbs Sampling (Geman & Geman, 1984)

= Goal: Sample from a joint distribution p(z) where z = |24, Z5, ..., Z)]

= Suppose we can't sample from p(z) but can sample from each conditional p(z;|z_;)
" [n Bayesian models, can be done easily it we have a locally conjugate model

* For Gibbs sampling, the proposal is the conditional distribution p(z;|z_;)

" Gibbs sampling samples from these conditionals in a cyclic order Hence no need

to compute it

" Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1

)p(zilz~;)

*

p(z)a(zlz") _ pz}1z")p(z"

A(z*, z) = =
(#:2) p(z)q(z*|z)  p(zilz-))p(z-i)p(z|z-))
where we use the fact that z*, = Z_; — «ociataime
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Gibbs Sampling: Sketch of the Algorithm

* M. Total number of variables, T: number of Gibbs sampling iterations

. Initialize {z; :i =1..... M) = Assuming z = (24,23, ., Zu]
> S .
L Fer=l,. .., /- CP of each component of z uses
_ (T41) () (™) (1) the most recent values (from this
— Sample 2, ~ p(21 |-4°2 o8 yuwegy M ) or the previous iteration) of all
. (7+1) (T7+1) _(7) () the other components
— Sample 2, ~ p(22|2; 2g Tyeens Ar )
A7+1) o | L(T+1) ATEL)  (T) A7)
s SL]']]ple .-j S 1)( --Jl.vl ..... -'J'_l . -'J'_i_l ..... A'J\l )
£ y y Each iteration will give us one
T+ T<rd) T+1)
- Sample -\[ ~ p(:‘.\]|.:(1 é ..... ':f\[—l ).~ sample z® of z = [zq, 2y, ..., Zy]

* Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)
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Gibbs Sampling: A Simple Example

= Can sample from a 2-D Gaussian using 1-D Gaussians

2 Z
P(z)
Contours of a
2-D Gaussian
ta)l
Z1 ‘)‘-
22 7

Conditional distribution of
Z, given zq is Gaussian

P(z,|z,")

B ST Lo, . S

\C) - (lli

a Pz |2,

Conditional distribution of
Zq given z, is Gaussian

z®

z*2)

z*)

——————

Gibbs sampling looks like doing
a co-ordinate-wise update to
generate each successive
sample of z = [z4, 23]
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Gibbs Sampling: Another Simple Example

= Bayesian linear regression: p(Yu X, w, ) = N (y,|w'x,,, B~1), p(w) = N (w|0,171D),
p(1) = Gamma(A|a, b), p(f) = Gamma(f|c, d). Gibbs sampler for p(w, A, B|X, y) will be

= |nitialize A, B as A9, O For iteration t = 1,2, ..., T

» Generate a random sample of w by sampling from its CP as

p(t-1 — (gE-DXTx 4 =D -1
w) ~ N(Wlﬂ(t_l), Z(t_l)) where ( )

(t-1)\ 1
u(t‘l):<XTX+ ) XTy

* Generate a random sample of A by sampling from its CP as Bt=1)

D w® Ty ©®
A®) ~ Gamma /1|a+5,b+ 5
= Generate a random sample of f by sampling from its CP as
2 Note: Assuming these are post-
N ”y — XW(t) ” burnin samples and thinning (if
,B(t) ~ Gamma ,BlC + E, d + 5 any) is also considered

= The posterior's approximation is the set of collected samples {w'®), 2, ,B(t)}fz |
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