Sampling Methods (contd)

CS772A: Probabilistic Machine Learning Piyush Rai

MCMC: The Basic Scheme

- The chain run infinitely long (i.e., upon convergence) will give ONE sample from $p({m z})$
- But we usually require several samples to approximate p(z)
- This is done as follows
 - Start the chain at an initial $m{z}^{(0)}$
 - Using the proposal $q(\mathbf{z}|\mathbf{z}^{(\ell)})$, run the chain long enough, say T_1 steps
 - Discard the first $T_1 1$ samples (called "burn-in" samples) and take last sample $\mathbf{z}^{(T_1)}$
 - Continue from $\mathbf{z}^{(T_1)}$ up to T_2 steps, discard intermediate samples, take last sample $\mathbf{z}^{(T_2)}$
 - This discarding (called "thinning") helps ensure that $z^{(T_1)}$ and $z^{(T_2)}$ are uncorrelated
 - Repeat the same for a total of S times
 - In the end, we now have S approximately independent samples from p(z)
- Note: Good choices for T_1 and $T_i T_{i-1}$ (thinning gap) are usually based on heuristics

MCMC is exact in theory but approximate in practice since

we can't run the chain for

infinitely long in practice

CS772A: PML

Requirement for Monte Carlo approximation

MCMC: Some Basic Theory

- A first order Markov Chain assumes $p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}) = p(\mathbf{z}^{(\ell+1)}|\mathbf{z}^{(\ell)})$
- A 1st order Markov Chain $z^{(0)}, z^{(1)}, \dots, z^{(L)}$ is a sequence of r.v.'s and is defined by
 - An initial state distribution $p(\mathbf{z}^{(0)})$
 - A Transition Function (TF): $T_{\ell}(z^{(\ell)} \rightarrow z^{(\ell+1)}) = p(z^{(\ell+1)}|z^{(\ell)})$ the proposal distribution
- TF is a <u>distribution</u> over the values of next state given the value of the current state
- Assuming z is discrete with K possible values, the TF will be $K \times K$ probability table

Transition probabilities can be defined using a *KxK* table if **z** is a discrete r.v. with *K* possible values

 \blacksquare Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., $T_\ell = T$

MCMC: Some Basic Theory

Consider the following Markov Chain to sample a discrete r.v. z with 3 possible values

Distribution of \mathbf{z} after $p(\mathbf{z}^{(1)}) = p(\mathbf{z}^{(0)}) \times T = [0.2, 0.6, 0.2]$ (rounded to single digit after decimal)

• p(z) being Stationary means no matter what $p(z^{(0)})$ is, we will reach p(z)

MCMC: Some Basic Theory

• A Markov Chain with transition function T has stationary distribution p(z) if T satisfies

Known as the Detailed
Balance condition
$$p(z)T(z'|z) = p(z')T(z|z')$$

Here T(b|a) denotes the transition probability of going from state *a* to state *b*

Detailed Balance ensures "reversibility"

Known as the

Integrating out (or summing over) detailed balanced condition on both sides w.r.t. \mathbf{z}'

Thus
$$p(z)$$
 is the stationary distribution of this Markov Chain $p(z) = \int p(z')T(z|z')dz'$

- Thus a Markov Chain with detailed balance always converges to a stationary distribution
- Detailed balance is sufficient but not necessary condition for having a stationary distr.

CS772A: PML

Some MCMC Algorithms

Metropolis-Hastings (MH) Sampling (1960)

- Suppose we wish to generate samples from a target distribution $p(z) = \frac{p(z)}{Z_p}$
- Assume a suitable proposal distribution $q(\mathbf{z}|\mathbf{z}^{(\tau)})$, e.g., $\mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)}, \sigma^2 \mathbf{I})$
- In each step, draw z^* from $q(z|z^{(\tau)})$ and accept z^* with probability

Transition function of this Markov Chain
T(z*|z^(\tau)) = A(z*, z^(\tau))q(z*|z^(\tau)) if state changed
T(z*|z^(\tau)) = q(z^(\tau)|z^(\tau)) + \sum_{z* \neq z^{(\tau)}}(1 - A(z*, z^(\tau)))q(z*|z^(\tau)) otherwise

The MH Sampling Algorithm

- Initialize $z^{(1)}$ randomly
- For $\ell = 1, 2, \dots, L$
 - Sample $\mathbf{z}^* \sim q(\mathbf{z}^* | \mathbf{z}^{(\ell)})$ and $u \sim \text{Unif}(0,1)$
 - Compute acceptance probability

$$A(z^*, z^{(\ell)}) = \min\left(1, \frac{\tilde{p}(z^*)q(z^{(\ell)}|z^*)}{\tilde{p}(z^{(\ell)})q(z^*|z^{(\ell)})}\right)$$

If $A(z^*, z^{(\ell)}) > u$
$$z^{(\ell+1)} = z^*$$

Meaning accepting z^* with
probability $A(z^*, z^{(\ell)})$

Else

$$\mathbf{z}^{(\ell+1)} = \mathbf{z}^{(\ell)}$$

MH Sampling in Action: A Toy Example..

- Target distribution $p(z) = \mathcal{N}\left(\begin{bmatrix}4\\4\end{bmatrix}, \begin{bmatrix}1 & 0.8\\0.8 & 1\end{bmatrix}\right)$
- Proposal distribution $q(z^{(t)}|z^{(t-1)}) = \mathcal{N}\left(z^{(t-1)}, \begin{bmatrix} 0.01 & 0\\ 0 & 0.01 \end{bmatrix}\right)$

MH Sampling: Some Comments

If prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(au)}) = \min\left(1, rac{\widetilde{p}(\boldsymbol{z}^*)}{\widetilde{p}(\boldsymbol{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - Can sometimes have very slow convergence (also known as slow "mixing")

 $Q(\mathbf{z}|\mathbf{z}^{(\tau)}) = \mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)}, \sigma^2 \mathbf{I})$ $\sigma \text{ large } \Rightarrow \text{ many rejections}$ $\sigma \text{ small } \Rightarrow \text{ slow diffusion}$ $\sim \left(\frac{L}{\sigma}\right)^2 \text{ iterations required for convergence}$

CS772A: PML

• Computing acceptance probability can be expensive*, e.g., if $p(z) = \frac{\tilde{p}(z)}{Z_p}$ is some target posterior then $\tilde{p}(z)$ would require computing likelihood on all the data points (expensive)

Gibbs Sampling (Geman & Geman, 1984)

- Goal: Sample from a joint distribution p(z) where $z = [z_1, z_2, ..., z_M]$
- Suppose we can't sample from p(z) but can sample from each conditional p(z_i|z_{-i})
 In Bayesian models, can be done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i | \mathbf{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1

$$A(z^*, z) = \frac{p(z^*)q(z|z^*)}{p(z)q(z^*|z)} = \frac{p(z_i^*|z_{-i}^*)p(z_{-i})p(z_i|z_{-i}^*)}{p(z_i|z_{-i})p(z_{-i})p(z_i^*|z_{-i})} = 1$$

where we use the fact that $z_{-i}^* = z_{-i} \checkmark$ Since only one component
is changed at a time

Hence no need

to compute it

17

Gibbs Sampling: Sketch of the Algorithm

• M: Total number of variables, T: number of Gibbs sampling iterations

1. Initialize {
$$z_i : i = 1, ..., M$$
}
Assuming $\mathbf{z} = [z_1, z_2, ..., z_M]$
2. For $\tau = 1, ..., T$:
- Sample $z_1^{(\tau+1)} \sim p(z_1 | z_2^{(\tau)}, z_3^{(\tau)}, ..., z_M^{(\tau)})$.
- Sample $z_2^{(\tau+1)} \sim p(z_2 | z_1^{(\tau+1)}, z_3^{(\tau)}, ..., z_M^{(\tau)})$.
:
- Sample $z_j^{(\tau+1)} \sim p(z_j | z_1^{(\tau+1)}, ..., z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, ..., z_M^{(\tau)})$.
:
- Sample $z_M^{(\tau+1)} \sim p(z_M | z_1^{(\tau+1)}, z_2^{(\tau+1)}, ..., z_{M-1}^{(\tau+1)})$.
Each iteration will give us one sample $\mathbf{z}_M^{(\tau)}$ of $\mathbf{z} = [z_1, z_2, ..., z_M]$

 Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much" from NIPS 2016)

CS772A: PML

Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians

14

Gibbs Sampling: Another Simple Example

- Bayesian linear regression: $p(y_n | \mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(y_n | \mathbf{w}^\top \mathbf{x}_n, \beta^{-1}), p(\mathbf{w}) = \mathcal{N}(\mathbf{w} | 0, \lambda^{-1}I),$ $p(\lambda) = \text{Gamma}(\lambda | a, b), p(\beta) = \text{Gamma}(\beta | c, d).$ Gibbs sampler for $p(\mathbf{w}, \lambda, \beta | \mathbf{X}, \mathbf{y})$ will be
- Initialize λ, β as $\lambda^{(0)}, \beta^{(0)}$. For iteration t = 1, 2, ..., T
 - Generate a random sample of \boldsymbol{w} by sampling from its CP as

$$\boldsymbol{w}^{(t)} \sim \mathcal{N}(\boldsymbol{w} | \boldsymbol{\mu}^{(t-1)}, \boldsymbol{\Sigma}^{(t-1)})$$
 where

- Generate a random sample of λ by sampling from its CP as

$$\lambda^{(t)} \sim \text{Gamma}\left(\lambda | a + \frac{D}{2}, b + \frac{{w^{(t)}}^{\mathsf{T}} w^{(t)}}{2}\right)$$

• Generate a random sample of β by sampling from its CP as

$$\beta^{(t)} \sim \text{Gamma}\left(\beta|c+\frac{N}{2}, d+\frac{\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}^{(t)}\|^2}{2}\right)$$

Note: Assuming these are postburnin samples and thinning (if any) is also considered

• The posterior's approximation is the set of collected samples $\{w^{(t)}, \lambda^{(t)}, \beta^{(t)}\}_{t=1}^{T}$

$$\boldsymbol{\Sigma}^{(t-1)} = \left(\boldsymbol{\beta}^{(t-1)}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \boldsymbol{\lambda}^{(t-1)}\right)^{-1}$$
$$\boldsymbol{\mu}^{(t-1)} = \left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \frac{\boldsymbol{\lambda}^{(t-1)}}{\boldsymbol{\beta}^{(t-1)}}\right)^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

15

CS772A: PML