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Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗

▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If  accepted, set 𝒛(ℓ+1) = 𝒛∗. If  rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)

2

Means we can at least 

evaluate ෤𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be 

conditioned on data, i.e., 𝑝(𝒛|𝒙)

Should also have the 

same support as 𝑝(𝒛)
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MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics
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MCMC is exact in theory but 

approximate in practice since 

we can’t run the chain for 

infinitely long in practiceThus we say that the 

samples are approximately 

from the target distribution

Will treat it as our first 

sample from 𝑝(𝒛)

Requirement for Monte 

Carlo approximation



CS772A: PML

MCMC: Some Basic Theory

▪ A first order Markov Chain assumes 𝑝 𝒛(ℓ+1)|𝒛 1 , … , 𝒛(ℓ) = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ A 1st order Markov Chain 𝒛(0), 𝒛(1), … , 𝒛(𝐿) is a sequence of r.v.’s and is defined by

▪ An initial state distribution 𝑝(𝒛 0 )

▪ A Transition Function (TF): 𝑇ℓ 𝒛 ℓ → 𝒛 ℓ+1 = 𝑝(𝒛 ℓ+1 |𝒛(ℓ)) – the proposal distribution

▪ TF is a distribution over the values of next state given the value of the current state

▪ Assuming 𝒛 is discrete with 𝐾 possible values, the TF will be 𝐾 ×  𝐾 probability table

▪ Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., 𝑇ℓ = 𝑇 
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MCMC: Some Basic Theory

▪ Consider the following Markov Chain to sample a discrete r.v. 𝒛 with 3 possible values

▪ 𝑝(𝒛) being Stationary means no matter what 𝑝 𝒛 0  is, we will reach 𝑝(𝒛) 

▪ Such transition functions are desirable in MCMC
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𝑝 𝒛 0 = 𝑝 𝑧1
0

, 𝑧2
0

, 𝑧3
0

= [0.5,0.2,0.3]

𝑝 𝒛 1 =  𝑝 𝒛 0 × 𝑇 = [0.2,0.6,0.2]

𝑝 𝒛 0 × 𝑇𝑚 = [0.2,0.4,0.4]

(rounded to single digit after decimal)

(rounded to single digit after decimal)

After doing it a few more 

(say some 𝑚) times 
Stationary/Invariant Distribution 

𝑝(𝒛) of this Markov Chain
𝑝(𝒛) is multinoulli with 𝜋 = [0.2,0.4,0.4]

The initial state 

distribution for 𝒛

Probabilities of the initial 

state taking each of the 

3 possible values

Distribution of 𝒛 after 

taking the first step
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MCMC: Some Basic Theory

▪ A Markov Chain with transition function 𝑇 has stationary distribution 𝑝(𝒛) if  𝑇 satisfies

▪ Detailed Balance ensures “reversibility”

▪ Integrating out (or summing over) detailed balanced condition on both sides w.r.t. 𝒛′

▪ Thus a Markov Chain with detailed balance always converges to a stationary distribution

▪ Detailed balance is sufficient but not necessary condition for having a stationary distr.
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𝑝 𝒛 𝑇 𝒛′|𝒛 = 𝑝 𝒛′ 𝑇(𝒛|𝒛′)
Known as the Detailed 

Balance condition

𝑝 𝒛 = න 𝑝 𝒛′ 𝑇 𝒛 𝒛′ 𝑑𝒛′
Thus 𝑝(𝑧) is the 

stationary distribution of 

this Markov Chain

Here 𝑇 𝑏 𝑎  denotes the 

transition probability of going 

from state 𝑎 to state 𝑏
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Some MCMC Algorithms
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Metropolis-Hastings (MH) Sampling (1960)

▪ Suppose we wish to generate samples from a target distribution 𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝

▪ Assume a suitable proposal distribution 𝑞(𝒛|𝒛(𝜏)), e.g., 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

▪ In each step, draw 𝒛∗ from 𝑞(𝒛|𝒛(𝜏)) and accept 𝒛∗ with probability

▪ Transition function of this Markov Chain

▪ 𝑇 𝒛∗|𝒛(𝜏) = 𝐴(𝒛∗, 𝒛 𝜏 )𝑞(𝒛∗|𝒛(𝜏))   if  state changed

▪ 𝑇 𝒛∗|𝒛(𝜏) = 𝑞 𝒛 𝜏 𝒛 𝜏 + σ
𝒛∗≠𝒛 𝜏 (1 − 𝐴(𝒛∗, 𝒛 𝜏 ))𝑞(𝒛∗|𝒛(𝜏)) otherwise
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Favors acceptance of 𝒛∗ if  it is more 

probable than 𝒛(𝜏) (under 𝑝(𝒛))
Downweight the probability of 

acceptance of 𝑧∗ if  the proposal 

itself  favors its generation (i.e., if  

𝑞(𝑧∗|𝑧 𝜏 ) is high), and upweight 

if  it unfavors the generation

Can Show that this TF 

satisfied detailed balance
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The MH Sampling Algorithm

▪ Initialize 𝒛(1) randomly

▪ For ℓ = 1,2, … , 𝐿
▪ Sample 𝒛∗ ∼ 𝑞(𝒛∗|𝒛(ℓ)) and 𝑢 ∼ Unif(0,1)

▪ Compute acceptance probability

▪ If  𝐴 𝒛∗, 𝒛(ℓ) > 𝑢

▪ Else
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𝒛(ℓ+1) = 𝒛∗

𝒛(ℓ+1) = 𝒛(ℓ)

Meaning accepting 𝒛∗ with 

probability 𝐴 𝒛∗, 𝒛(ℓ)   



CS772A: PML

MH Sampling in Action: A Toy Example..

▪ Target distribution

▪ Proposal distribution
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MH Sampling: Some Comments

▪ If  prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

▪ Some limitations of MH sampling

▪ Can sometimes have very slow convergence (also known as slow “mixing”)

▪ Computing acceptance probability can be expensive*, e.g., if  𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝
 is some target 

posterior then ෤𝑝(𝒛) would require computing likelihood on all the data points (expensive)
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𝑄 𝒛 𝒛 𝜏 = 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

𝜎 large ⇒ many rejections

𝜎 small ⇒ slow diffusion

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015) 

∼
𝐿

𝜎

2

iterations required for convergence
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Gibbs Sampling (Geman & Geman, 1984)

▪ Goal: Sample from a joint distribution 𝑝(𝒛) where 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

▪ Suppose we can’t sample from 𝑝(𝒛) but can sample from each conditional 𝑝(𝑧𝑖|𝒛−𝑖)
▪ In Bayesian models, can be done easily if  we have a locally conjugate model

▪ For Gibbs sampling, the proposal is the conditional distribution 𝑝(𝑧𝑖|𝒛−𝑖)

▪ Gibbs sampling samples from these conditionals in a cyclic order

▪ Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1
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Since only one component 

is changed at a time

Hence no need 

to compute it 
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Gibbs Sampling: Sketch of the Algorithm

▪ 𝑀: Total number of variables, 𝑇: number of Gibbs sampling iterations

▪ Note: Order of updating the variables usually doesn’t matter (but see “Scan Order in Gibbs 
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)
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CP of each component of 𝑧 uses 

the most recent values (from this 

or the previous iteration) of all 

the other components

Assuming 𝒛 =  [𝑧1, 𝑧2, … , 𝑧𝑀]

Each iteration will give us one 

sample 𝒛(𝜏) of 𝒛 =  [𝑧1, 𝑧2, … , 𝑧𝑀] 
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Gibbs Sampling: A Simple Example

▪ Can sample from a 2-D Gaussian using 1-D Gaussians
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Contours of a 

2-D Gaussian

Conditional distribution of 

𝑧1 given 𝑧2 is Gaussian

Conditional distribution of 

𝑧2 given 𝑧1 is Gaussian Gibbs sampling looks like doing  

a co-ordinate-wise update to 

generate each successive 

sample of 𝑧 = [𝑧1, 𝑧2]
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Gibbs Sampling: Another Simple Example
▪ Bayesian linear regression: 𝑝 𝑦𝑛 𝒙𝑛, 𝒘, 𝛽 =  𝒩(𝑦𝑛|𝒘⊤𝒙𝑛, 𝛽−1), 𝑝 𝒘 =  𝒩(𝒘|0, 𝜆−1𝐼),  

𝑝 𝜆 = Gamma(𝜆|𝑎, 𝑏), 𝑝 𝛽 = Gamma(𝛽|𝑐, 𝑑). Gibbs sampler for 𝑝(𝑤, 𝜆, 𝛽|𝑿, 𝒚) will be

▪ Initialize 𝜆, 𝛽 as 𝜆 0 , 𝛽(0). For iteration 𝑡 = 1,2, … , 𝑇
▪ Generate a random sample of 𝒘 by sampling from its CP as

▪ Generate a random sample of 𝜆 by sampling from its CP as

▪ Generate a random sample of 𝛽 by sampling from its CP as

▪ The posterior’s approximation is the set of collected samples 𝒘 𝑡 , 𝜆 𝑡 , 𝛽 𝑡
𝑡=1

𝑇
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𝒘(𝑡) ∼ 𝒩(𝒘|𝝁 𝑡−1 , 𝚺(𝑡−1)) where
𝚺 𝑡−1 = 𝛽(𝑡−1)𝑿⊤𝑿 + 𝜆(𝑡−1) −1

𝝁 𝑡−1 = 𝑿⊤𝑿 +
𝜆(𝑡−1)

𝛽(𝑡−1)

−1

𝑿⊤𝒚

𝜆(𝑡) ∼ Gamma 𝜆|𝑎 +
𝐷

2
, 𝑏 +

𝒘 𝑡 ⊤
𝒘(𝑡)

2

𝛽(𝑡) ∼ Gamma 𝛽|𝑐 +
𝑁

2
, 𝑑 +

𝒚 − 𝑿𝒘 𝑡 2

2

Note: Assuming these are post-

burnin samples and thinning (if  

any) is also considered
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