Deep Generative Models

CS772A: Probabilistic Machine Learning
Piyush Rai

Latent Variable Models for Generation Tasks

* Assume a K-dim latent variable z,, is transformed to generate to D-dim observation x,,

Also possible to use a

p(z) p(x|f(z; W)) GP to model f
Zn f can be some linear or nonlinear model
which defines the parameters of the
distribution of p(x|z) and W denotes the

parameters of this model

" [t is common to use a Gaussian prior for z, (though other priors can be used)

" |[f we use a neural net or GP, such models can generate very high-quality data
= Take the trained network, generate a random z from prior, pass it through the model to generate x

Some sample images generated by Vector Quantized Variational Auto-Encoder
(VQ-VAE), a state-of-the-art latent variable model for generation

CS772A: PML

p(2zy|¢): A suitable prio

, . siprsasme o cetnmetensermmss, ()
Factor Analysis and Probabilistic PCA g

Oan®

N

* FA and PPCA assume f to be a linear model

= |n FA/PPCA, latent variables z,, € R¥ typically assumed to have a Gaussian prior
" |[f we want sparse latent variabled, can use Laplace or spike-and-slab prior on z,
* More complex extensions of FA/PPCA use a mixture of Gaussians prior on z,,

= Assumption: Observations x,, € R typically assumed to have a Gaussian likelihood
= Other likelihood models (e.g., exp-family) can also be used it data not real-valued

" Relationship between z,, and x,, modeled by a noisy linear mapping

K
p(zn) = N(anO, I)
X, =Wz, +¢€, = Wy Zn, + €
n n n Zk:l fink h P(XnlZyn) = N (x,|Wzp, V)

Zero-mean and diagonal or Linear combination

spherical Gaussian noise of the columns of W Diagonal for FA,
spherical for PPCA

" | inear Gaussian Model. W, z,,'s, and W can be learned (e.g, using EM, VI, MCMC)
CS772A: PML

SO m e va rl a ntS Of FA/P P CA Non-negative priors often give a nice

Popular for modeling count- interpretability to such latent

: valued data (in text analysis, variable models (will see some more
" Gamma-Poisson latent factor model recommender systems, etc) | | examples of such models shortly)

" Assumes K-dim non-negative latent variable z, and D-dim count-valued observations X,
" An example: Each x,, is the word-count vector representing a document

This is the rate of the Poisson. It should

p(zn) — I]§=1 Gamma(znk | dk, bk)) beTnon-negative, exp(W, z,,), or simply
_ L if wyis al negative (e.g.
p(Xp|Zy) = [14-1 Poisson(Xpqlf (Wg, Zp)) g 2 garmrma/Dirchiet prior o iifg

" This can be thought of as a probabilistic non-negative matrix factorization model

= Dirichlet-Multinomial/Multinoulli PCA

= Assumes K-dim non-negative latent variable z, and D categorical obs X, = {X,q}0-1
= An example: Each x,, is a document with D words in it (each word is a categorical value)

Also sums to 1 . hl This should give the probability vector of
7.) = Dirichlet(z.|a the multinoulli over x,,4. It should be
p(n) D (_n |)] non-negative and should sums to 1
P(Xn|Zn) = [lg=1 Multinoulli(xnq|f (W4, Zn))

CS772A: PML

A Deep Generative Model: Variational Auto-encoder (VAE)

= VAE* is a probabilistic extension of autoencoders (AE). An AE is shown below

Reconstructed

Input < Ideally they are identical. ------------------ > input

~

Bottleneck!
ecoder 1 = i i
% @ . (x/ Lag(6,9) = n - (x() — fo(gs (x(})))2

An compressed low dimensional
representation of the input.

* The basic difference is that VAE assumes a prior p(z) on the latent code z
" This enables it to not just compress the data but also generate synthetic data
* How: Sample z from a prior and pass it through the decoder

= Thus VAE can learn good latent representation + generate novel synthetic data
" The name has "Variational” in it since it is learned using VI principles

*Autoencoding Variational Bayes (Kingma and Welling, 2013) Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html CS772A: PML

Variational Autoencoder (VAE)

" VAE has three main components | Here 6 collectively denotes all the Using the idea of
‘Amortized Inference’

= A prior Do (z) over latent codes | parameters of the prior and likelihood
ilisti t slid
= A probabilistic decoder/generator pg (x|z), modeled by a deep neural net (next slide)

= A posterior or probabilistic encoder pg(z|x) approx. by an “inference network” q4(z]x)
Here ¢ collectively denotes all
the parameters that define the

inference network

ELBO for a - -
single data E(O, Qb‘X) — 4“qq5(z|x) _10gp9 (X, Z) — 10g q()b(Z‘X)]

point

» VAE is learned by maximizing the ELBO

]E/Iazjxir;ized to | — i‘qu(z\x) [Og Pe (X‘Z)] — KL (QQﬁ(Z‘X) HpQ (Z))
Hmantd ibopnma q¢ should be such that data x is q¢ should also be simple (close
reconstructed well from z (high log-lik) to the prior)

" The Reparametrization Trick is commonly used to optimize the ELBO
= Posterior is inferred only over z, and usually only point estimate on 6 .-l

Amortized Inference

» | atent variable models need to infer the posterior p(z,|x,,) for each observation x,,

= This can be slow if we have lots of observations because

1. We need to iterate over each p(Z,,|x;,)
2. Learning the global parameters needs wait for step 1 to finish for all observations

* One way to address this is via Stochastic VI

* Amortized inference is another appealing alternative (used in VAE and other LVMs too)
If q is Gaussian then the NN will

p(znlxn) ~ Q(and)n) = Q(anNN(xn, W)) output a mean and a variance

" Thus no need to learn ¢,,'s (one per data point) but just a single NN with params W
= This will be our “encoder network” for learning z,

= Also very efficient to get p(z,|x,) for a new data point x,
CS772A: PML

Variational Autoencoder: The Complete Pipeline

» Both probabilistic encoder and decoder learned jointly by maximizing the ELBO

Input «---

Reparametrization trick
used for computing
ELBO’s gradient wirt. ¢

Probabilistic Encoder
¢ (z|x)
Mean 7

Ideally they are identical.

L0, p|x) = Ey, (z/x) [log pe(x,2) — log ¢4 (z|x)]
= By (2lx) 108 po(x|2)] — KL (g¢ (z|x)[|pe(z))

Reconstructed

______________________ »

X~ x'

Sampled /
latent vector

g

Std. dev

Z—=pm+0oOE
e ~N(0,I)

Probabilistic
>.—> Decoder
po(x|z)

—~

An compressed low dimensional
representation of the input.

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

CS772A: PML

Generative Adversarial Network (GAN)

, , . . Unlike VAE, no explicit parametric
= GAN is an implicit generative latent variable model likelihood model p(x|z)

» Can generate from it but can't compute p(x) - the model doesn't define it explicitly

G D

= GAN is trained using an adversarial way (Goodfellow et al, 2013) 1hus can train
‘ The discriminator can be a “S'”9 m'eth’ods that
Assuming data X binary classifier or any method require likelihood
S eds _— Differentiable module that can compare b/w two (MLE, VI, etc)
Real wor ——= Sample [~
images % Real D(x) distributions (real and fake here)
Y - i c Discriminator network is trained to
s G /7| B & @ make D (x) close to 1
8 G(z)
o O | Fake p(G
§ g 1 Generstor | —| samvie J Sl Discriminator network is trained to make D (G (z))
5 (O wy | e/ g’! close to O and generator network is trained to make it
g - . to be close to 1 to fool the discriminator into
3 _/ Differentiable module believing that G(z) is a real sample
Min-max OptiMIZAtION |- cce oo
— i
- min max V(D, G) = Ex~pys(x)[108 D(X)] + Eznp,(2)[log(1l — D(G(2))]
i 1

CS772A: PML

Generative Adversarial Network (GAN)

" The GAN training criterion was

- V\/|th G fixed, the optimal D (exercise)

Dg(x) =

Distribution of real data

pdata(x) 5 S : - .
istribution of synthetic data
Paata(Xx) + Pg (x))

" Given the optimal D, The optimal generator G is found by minimizing

Pdata (x) - pg (x)]
G X~Pdata gpdata(x) + Dy (x)_ X~Pg gpdata(x) + pg (x)

Jensen-Shannon

. x) +p,(x) x)+ p,(x
d|vergence between — KL [pdata(x) pdata()2 pg() + KL [pg (X) pdata()2 pg() _
Pdata and pg- -

Minimized when Thus GAN can learn the true data
Py = Pdata distribution if the generator and

discriminator have enough modeling power CS772A: PML

" The GAN training procedure can be summarized as

64 and 6, denote the params of the deep neural nets

YT defining the generator and discriminator, respectivel
Initialize 0, 0,; gmed pectively

1

2 for each training iteration do | |n practice, for stable training, we run K > 1 steps of

3 for K steps do optimizing w.rt. D and 1 step of optimizing wirt. G

4 Sample minibatch of M noise vectors z,, ~ ¢.(z);

5 Sample minibatch of M examples x,,, ~ pp;

6 Update the discriminator by performing stochastic gradient ascent using this gradient:
Vo, 1 Yo 108 D(x,) +log(1 = D(G(2,)))].

7 Sample minibatch of M noise vectors z,, ~ q.(z);

8 Update the generator by performing stochastic gradient descent using this gradient:

| Vo, Coei log(1 = D(G(z,0))).

9 Return 6,, 6,

Reason: Generator is bad initially so
discriminator will always predict correctly
initially and log(1 — D (G (z)) will saturate

In practice, in this step, instead of minimizing
log(1 — D(G(z)), we maximize log (D(G(Z)))

CS772A: PML

GANSs that also learn latent representations

12

" The standard GAN can only generate data. Can't learn the latent z from x
®» Bidirectional GAN* (BiGAN) is a GAN variant that allows this

Consists of an
encoder as well

*Adversarial Feature Learning (Donahue et a Dumoulin |, 2017)

-

.

-

,

Opd

o

Can be shown*

to “invert" G

©

L

’

#Adversarially Learned Inference (Dumoulin et al, 2017)

Real pair/fake pair?

D —

CS772A: PML

Evaluating GANSs igh S and on

FID is desirable

" Two measures that are commonly used to evaluate GANs Both IS and FID measure how

= |nception score (IS): Evaluates the distribution of generated data realistic the generated data is

= Frechet inception distance (FID): Compared the distribution of real data and generated data

" Inception Score defined as exp(Ey~p, [KL(p(y|x)||p(¥))]) will be high if

= Very few high-probability classes in each sample x: Low entropy for p(y|x)
= We have diverse classes across samples: Marginal p(y) is close to uniform (high entropy)

» F[D uses extracted features (using a deep neural net) of real and generated data
» Usually from the layers closer to the output layer

® [hese features are used to estimate two Gaussian distributions

Using real data N(HR, ZR) N(‘LlG, ZG) Using generated data
= FID is then defined as FID = |ug; — ur|? + trace(Z; + Zr — (Z:25)Y2)
" [hese measures can also be used for evaluating other deep gen models like’VAEVE

GAN: Some Issues/Comments

= GAN training can be hard and the basic GAN suffers from several issues
" |nstability of training procedure

» Mode Collapse problem: Lack of diversity in generated samples
* Generator may find some data that can easily fool the discriminator
= |t will stuck at that mode of the data distribution and keep generating data like that

GAN 1: No mode collapse (all 10
modes captured in generation)

I
~he—murowos
PRI~
Louyxyafaaw
) R R) N B
NRISH o3
PW JdR2Qyg
COJdoa~~0OW

NANANANARANANA

WANANANADANANA

NANANANANANANR

RYPSPYpEpEpES GAN 2: Mode collapse (stuck on
IARARARANANANR

LEPSREPEPIPIY one of the modes)

|L| L' Ll ‘_‘ L‘ L‘ L!

20k steps

4 3
L
7 4
QL
33
3 &
v 7z
¢ &
i
éE
i E
éE
E#
é#
é#
é#

Wy
f &
7?4
33
T e
WE
1
24
£ §
£ §
£ #
#
£ §
£ §
§
£ #
S S

#
&
F:
£
F:
£
£
P

=
x
=
[}
o

* Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)
CS772A: PML

	Slide 1: Deep Generative Models
	Slide 2: Latent Variable Models for Generation Tasks
	Slide 3: Factor Analysis and Probabilistic PCA
	Slide 4: Some Variants of FA/PPCA
	Slide 5: A Deep Generative Model: Variational Auto-encoder (VAE)
	Slide 6: Variational Autoencoder (VAE)
	Slide 7: Amortized Inference
	Slide 8: Variational Autoencoder: The Complete Pipeline
	Slide 9: Generative Adversarial Network (GAN)
	Slide 10: Generative Adversarial Network (GAN)
	Slide 11: GAN Optimization
	Slide 12: GANs that also learn latent representations
	Slide 13: Evaluating GANs
	Slide 14: GAN: Some Issues/Comments

