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Probabilistic ML Modeling: The Basic Ingredients

▪ Likelihood model 𝑝(𝒟|𝜃) for data 𝒟; prior distribution 𝑝(𝜃|𝛼) over parameters 𝜃

▪ Likelihood defined in terms of distribution(s) we assume data is generated from
▪ It’s like a measure of “fit” between observed data and each possible value of parameters

▪ Its negative is like the “loss function” (high likelihood value = low loss; and vice-versa)

▪ Prior specifies our prior knowledge about 𝜃 before we have seen the data
▪ It also acts as a regularizer for 𝜃 (will see the reason formally later)

▪Note: The prior itself  depends on other parameters 𝛼 (also unknown)
▪ These are sometimes called “hyperparameters” (can set by hand or estimate from data)  
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𝑝(𝒟|𝜃) 𝑝(𝜃|𝛼)

𝜃 𝜃

Likelihood is a function of 𝜃, e.g., 

𝑝 𝒟 𝜃 =  ς𝑖=1
𝑁 𝑝(𝑦𝑖|𝒙𝑖 , 𝜃) 

A distribution 

over 𝜃 for some 

given value of 𝛼
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The Prior: Where does it come from?

▪ The prior 𝑝(𝜃|𝛼) plays an important role in probabilistic/Bayesian modeling

▪ Reflects our prior beliefs about possible parameter values before seeing the data

▪ Can be “subjective” or “objective” (also a topic of debate, which we won’t get into)

▪ Subjective: Prior (our beliefs) derived from past experiments

▪ Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

▪ Can also be seen as a regularizer (connection with non-probabilistic view)
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Parameter Estimation

▪ The parameters 𝜃 are unknown and need to be estimated from training data 𝒟

▪When estimating 𝜃, we may take one of the following approaches

▪ Approach 2 also gives uncertainty about our estimate of 𝜃; Approach 1 doesn’t
▪ But possible to estimate uncertainty in 𝜃 even with Approach 1 (e.g., using ensembles)

▪ Approach 1 is also a simplified/special case/approximation of Approach 2

▪ Can also take a hybrid (Approach 2 for some parameters; Approach 1 for others)

4

▪ 𝜃 has an unknown with fixed value

▪ Estimate the single best estimate 

of 𝜃 by optimizing a loss function

መ𝜃 =  argmin𝜃  ℒ(𝒟; 𝜃)

▪ Treat 𝜃 as a random variable

▪ Estimate 𝜃 by computing its 

distribution conditioned on 𝒟
𝑝(𝜃|𝒟)

Approach 1 Approach 2

Posterior 

distribution
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The Posterior Distribution

▪ The posterior distribution is computed using Bayes rule (Bayesian inference)

▪ Marginal likelihood is an important quantity
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𝑝 𝜃 𝒟, 𝛼 =
𝑝 𝒟, 𝜃 𝛼

𝑝 𝒟 𝛼
=

𝑝(𝒟|𝜃, 𝛼)𝑝 𝜃|𝛼

∫ 𝑝(𝒟|𝜃, 𝛼)𝑝 𝜃|𝛼 𝑑𝜃

=
likelihood × prior

marginal likelihood

𝑝 𝒟 𝛼 = ∫ 𝑝 𝒟 𝜃 𝑝 𝜃|𝛼 𝑑𝜃 =  𝔼𝑝 𝜃|𝛼 𝑝 𝒟 𝜃 ]

The average” likelihood (average 

taken w.r.t. all values of 𝜃 from 

the prior distribution)

Hard to compute in general 

(that’s why posterior is difficult to 

compute in general) but be 

computed exactly in some cases

We can use it also to find 

the best value of 

hyperparameters 𝛼
For example, 

ො𝛼 =  argmax𝛼 log 𝑝(𝒟|𝛼)

=
𝑝(𝒟|𝜃)𝑝 𝜃|𝛼

∫ 𝑝(𝒟|𝜃)𝑝 𝜃|𝛼 𝑑𝜃Given 𝜃, the data is conditionally 

independent of the prior’s 

hyperparameters 𝛼 so 

𝑝(𝒟|𝜃, 𝛼) = 𝑝(𝒟|𝜃)

Assuming 𝛼 is known so 

the posterior is 

conditioned on 𝛼 as well
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“Online” Nature of Bayesian Inference Updates

▪ Bayesian inference can naturally be done in an online fashion
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Also, the posterior’s 

spread/variance gets smaller 

as we use more and more 

data to infer it



CS772A: PML

Point Estimation

▪ Recall that the posterior is 

▪ If  posterior is intractable, can use MLE/MAP to get point estimates

▪Maximum likelihood (ML) estimation: Find 𝜃 for which likelihood is highest

▪Maximum a posteriori (MAP) estimation: Find 𝜃 with largest posterior prob.
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𝑝(𝜃|𝒟, 𝛼) =
𝑝(𝒟|𝜃)𝑝 𝜃|𝛼

𝑝(𝒟|𝛼)

Intractable to compute except for 

some  very simple models or if  the 

likelihood and prior are conjugate 

(discussed later) to each other

Intractable mainly because the 

marginal likelihood (the denominator 

on the RHS is intractable in general)

Meaning the observed data has the 

largest probability for this value of 𝜃

መ𝜃𝑀𝐿 = argmax
𝜃

 log 𝑝(𝒟|𝜃) = argmin
𝜃

 − log 𝑝(𝒟|𝜃) = argmin
𝜃

 𝑁𝐿𝐿(𝜃)
Negative Log likelihood (equivalent to a loss function)

መ𝜃𝑀𝐴𝑃 = argmax
𝜃

 log 𝑝 𝜃 𝒟, 𝛼 = argmax
𝜃

 [log 𝑝 𝒟 𝜃 + log 𝑝 𝜃|𝛼 ]

Akin to a regularizer added to the loss

= argmin
𝜃

 [𝑁𝐿𝐿 𝜃 − log 𝑝 𝜃|𝛼 ]
The regularizer hyperparameter 

is part of prior

Like MLE with info from prior added

However, point 

estimation throws away 

all the uncertainty 

information about 𝜃
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The Predictive Distribution

▪ Predictive distribution is the distribution of test data 𝒟∗ given training data 𝒟

▪ In the general form, we can write it as

▪ If  we only have point estimate of 𝜃(say መ𝜃 obtained from MLE/MAP) then 
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𝑝 𝒟∗ 𝒟 = ∫ 𝑝(𝒟∗, 𝜃|𝒟) 𝑑𝜃

= ∫ 𝑝 𝒟∗ 𝜃, 𝒟 𝑝(𝜃|𝒟) 𝑑𝜃

= ∫ 𝑝 𝒟∗ 𝜃 𝑝(𝜃|𝒟) 𝑑𝜃
Assuming observations 

are i.i.d. given 𝜃

𝑝 𝒟∗ 𝒟 ≈ 𝑝 𝒟∗
෠𝜃

= 𝔼𝑝(𝜃|𝒟)[𝑝 𝒟∗ 𝜃 ]

The “averaged” prediction 

using all possible 𝜃 values 

with each prediction weighted 

by how important 𝜃 is as per 

the posterior distributionAn expectation over the 

posterior distribution 

(averaging over the 

posterior)

Because now the posterior is 

just a point mass at ෠𝜃 

𝑝 𝒟∗ 𝒟  is known as 

posterior predictive 

distribution (PPD)

This approximation of 

PPD is called “plug-in” 

predictive distribution

This expectation may not be 

computable exactly and may 

itself require approximations 

(will see later)

PPD is more robust 

(less chance of 

overfitting) than 

plug-in prediction 

because we aren’t 

relying on a single 

best estimate

In the posterior, not 

showing prior’s 

hyperparameters 𝛼 

for brevity of 

notation
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A “Shortcut”: PPD using Marginal Likelihood

▪ PPD, by definition, is obtained by the following marginalization

▪ Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows

2. If  𝑝 𝒟∗ 𝒟  can be obtained easily from the joint 𝑝(𝒟∗, 𝒟)

▪ Note that the PPD 𝑝 𝒟∗ 𝒟  is also a conditional distribution 

▪ For some distributions (e.g., Gaussian), conditionals can be easily derived from joint
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𝑝 𝒟∗ 𝒟 =
𝑝(𝒟∗, 𝒟)

𝑝(𝒟)

𝑝 𝒟∗ 𝒟 = ∫ 𝑝 𝒟∗ 𝜃 𝑝(𝜃|𝒟) 𝑑𝜃

Joint marginal likelihood 

for training and test data

Marginal likelihood for 

training data

Will see this being used we we 

study Gaussian Process (GP)

Follows simply from Bayes rule

𝑝 𝑎 𝑏 =
𝑝(𝑎, 𝑏)

𝑝(𝑏)
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Bernoulli Observation Model

10
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Estimating a Coin’s Bias
11

▪ Consider a sequence of 𝑁 coin toss outcomes (observations)

▪ Each observation 𝑦𝑛 is a binary random variable. Head: 𝑦𝑛 = 1, Tail: 𝑦𝑛 = 0

▪ Each 𝑦𝑛 is assumed generated by a Bernoulli distribution with param 𝜃 ∈  (0,1)

▪ Here 𝜃 the unknown param (probability of head). Let’s do MLE

▪ Log-likelihood: σ𝑛=1
𝑁 log 𝑝 𝑦𝑛 𝜃  = σ𝑛=1

𝑁  [𝑦𝑛log θ +  (1 − 𝑦𝑛)log (1 − 𝜃)]

▪ Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. 𝜃 gives 

           

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

Probability 

of a head

𝜃𝑀𝐿𝐸 =
σ𝑛=1

𝑁 𝑦𝑛

𝑁

Thus MLE 

solution is simply 

the fraction of 

heads! ☺ Makes 

intuitive sense!

I tossed a coin 5 times – gave 1 head and 

4 tails. Does it means 𝜃  = 0.2?? The 

MLE approach says so. What is I see 0 

head and 5 tails. Does it mean 𝜃  = 0? 

Indeed, with a small number of 

training observations, MLE may 

overfit and may not be reliable. An 

alternative is MAP estimation 

which can incorporate a prior 

distribution over 𝜃

assuming i.i.d. data

Likelihood or 

observation model
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Estimating a Coin’s Bias
12

▪ Let’s do MAP estimation for the bias of the coin

▪ Each likelihood term is Bernoulli 

  

▪ Also need a prior since we want to do MAP estimation

▪ Since 𝜃 ∈  (0,1), a reasonable choice of prior for 𝜃 would be Beta distribution

𝑝 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

The gamma function 𝛼 and 𝛽 (both non-negative reals) 

are the two hyperparameters of this 

Beta prior
Using 𝛼 = 1 and 𝛽 = 1 will make 

the Beta prior a uniform prior

Can set these based on intuition, 

cross-validation, or even learn them

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛  (1 − 𝜃)1−𝑦𝑛
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Estimating a Coin’s Bias
13

▪ The log posterior for the coin-toss model is log-lik + log-prior

▪ Plugging in the expressions for Bernoulli and Beta and ignoring any terms that 
don’t depend on 𝜃, the log posterior simplifies to

▪  Maximizing the above log post. (or min. of its negative) w.r.t. 𝜃 gives

𝐿𝑃 𝜃 = ෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝜃  + log 𝑝 𝜃 𝛼, 𝛽

𝐿𝑃 𝜃 = ෍
𝑛=1

𝑁

𝑦𝑛log θ +  (1 − 𝑦𝑛 log 1 − 𝜃 ] + 𝛼 − 1 log 𝜃 + 𝛽 − 1 log(1 − 𝜃)

𝜃𝑀𝐴𝑃 =
σ𝑛=1

𝑁 𝑦𝑛 + 𝛼 − 1

𝑁 + 𝛼 + 𝛽 − 2

Using 𝛼 = 1 and 𝛽 = 1 gives us 

the same solution as MLE

Recall that 𝛼 = 1 and 𝛽 = 1 for Beta 

distribution is in fact equivalent to a 

uniform prior (hence making MAP 

equivalent to MLE)

Prior’s hyperparameters have an 

interesting interpretation. Can think of 

𝛼 − 1 and 𝛽 − 1 as the number of 

heads and tails, respectively, before 

starting the coin-toss experiment 

(akin to “pseudo-observations”)
Such interpretations of prior’s hyperparameters as 

being “pseudo-observations” exist for various other 

prior distributions as well (in particular, distributions 

belonging to “exponential family” of distributions
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The Posterior Distribution

▪ Let’s do fully Bayesian inference and compute the posterior distribution

▪ Bernoulli likelihood: 𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 =  𝜃𝑦𝑛  (1 − 𝜃)1−𝑦𝑛

▪ Beta prior: 𝑝 𝜃 = Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

▪ The posterior can be computed as 

▪ Here, even without computing the denominator (marg lik), we can identify the posterior
▪ It is Beta distribution since 

▪ Thus 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

▪ Here, finding the posterior boiled down to simply “multiply, add stuff, and identify”

▪ Here, posterior has the same form as prior (both Beta): property of conjugate priors.
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𝑝 𝜃 𝒚 =
𝑝 𝜃 𝑝(𝒚|𝜃)

𝑝(𝒚)
=

𝑝 𝜃 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝜃)

𝑝(𝒚)
=

Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛

∫
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛𝑑𝜃

𝜃σ𝑛=1
𝑁 𝑦𝑛  (1 − 𝜃)𝑁−σ𝑛=1

𝑁 𝑦𝑛

Number of heads (𝑁1)

Number of tails (𝑁0)

𝑝 𝜃 𝒚   ∝ 𝜃𝛼+𝑁1−1 1 − 𝜃 𝛽+𝑁0−1 
Exercise: Show that the 

normalization constant equals
Γ(𝛼 + 𝛽 + 𝑁)

Γ 𝛼 + σ𝑛=1
𝑁 𝑦𝑛 Γ 𝛽 + 𝑁 − σ𝑛=1

𝑁 𝑦𝑛

  

Hint: Use the fact that the 

posterior must integrate to 1

∫ 𝑝 𝜃 𝒚 𝑑𝜃 = 1
  

Hyperparams 𝛼, 𝛽 

not shown for brevity
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Conjugacy and Conjugate Priors
15

▪Many pairs of distributions are conjugate to each other
▪ Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Binomial (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior 

▪ Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior 

▪ Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior 

▪ and many other such pairs ..

▪ Tip: If  two distr are conjugate to each other, their functional forms are similar
▪ Example: Bernoulli and Beta have the forms

▪More on conjugate priors when we look at exponential family distributions

Not true in general, but in some 

cases (e.g., the variance of the 

Gaussian likelihood is fixed)

Bernoulli 𝑦 𝜃 =  𝜃𝑦 (1 − 𝜃)1−𝑦

Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
 𝜃𝛼−1 1 − 𝜃 𝛽−1 

This is why, when we multiply them while 

computing the posterior, the exponents get added 

and we get the same form for the posterior as the 

prior but with just updated hyperparameter. Also, 

we can identify the posterior and its 

hyperparameters simply by inspection
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Predictive Distribution

▪ Suppose we want to compute the prob that the next outcome 𝑦𝑁+1 will be head (=1)

▪ The posterior predictive distribution (averaging over all 𝜃’s weighted by their respective 
posterior probabilities)

▪ Therefore the PPD will be

▪ The plug-in predictive distribution using a point estimate መ𝜃 (e.g., using MLE/MAP)
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Expectation of 𝜃 w.r.t. the Beta posterior 

distribution 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

For models where likelihood and 

prior  are conjugate to each other, 

the PPD can be computed easily 

in closed form (more on this 

when we talk about exponential 

family distributions)

  

𝑝 𝑦𝑁+1 = 1 𝒚 = න
0

1

𝑝(𝑦𝑁+1 = 1, 𝜃|𝒚) 𝑑𝜃 = න
0

1

𝑝 𝑦𝑁+1 = 1 𝜃 𝑝(𝜃|𝒚) 𝑑𝜃

= න
0

1

𝜃 × 𝑝(𝜃|𝒚) 𝑑𝜃

=  𝔼𝑝(𝜃|𝒚)[𝜃] 

=
𝛼 + 𝑁1

𝛼 + 𝛽 + 𝑁

𝑝(𝑦𝑁+1|𝒚) = Bernoulli(𝑦𝑁+1|𝔼𝑝(𝜃|𝒚)[𝜃]) 

𝑝 𝑦𝑁+1 = 1 𝒚 ≈ 𝑝 𝑦𝑁+1 = 1 ෠𝜃 𝑝(𝑦𝑁+1|𝒚) = Bernoulli(𝑦𝑁+1| ෠𝜃) = ෠𝜃
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Multinoulli Observation Model
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The Posterior Distribution

▪ Assume 𝑁 discrete obs 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁} with each 𝑦𝑛 ∈ {1,2, … , 𝐾}, e.g.,

▪ 𝑦𝑛 represents the outcome of a dice roll with 𝐾 faces

▪ 𝑦𝑛 represents the class label of the 𝑛𝑡ℎ example in a classification problem (total 𝐾 classes)

▪ 𝑦𝑛 represents the identity of the 𝑛𝑡ℎ word in a sequence of words

▪ Assume likelihood to be multinoulli with unknown params 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾]

▪ 𝝅 is a vector of probabilities (“probability vector”), e.g.,
▪ Biases of the 𝐾 sides of the dice

▪ Prior class probabilities in multi-class classification (𝑝 𝑦𝑛 = 𝑘 = 𝜋𝑘)

▪ Probabilities of observing each word of the 𝐾 words in a vocabulary

▪ Assume a conjugate prior (Dirichlet) on 𝝅 with hyperparams 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝐾]
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𝑝 𝑦𝑛 𝜋 =  multinoulli 𝑦𝑛 𝜋 = ෑ
𝑘=1

𝐾

𝜋𝑘
𝕀[𝑦𝑛=𝑘]

These sum to 1

Each 𝛼𝑘 ≥ 0

Generalization of Bernoulli to 

𝐾 > 2 discrete outcomes

Generalization of Beta to 

𝐾-dimensional probability 

vectors

Called the 

concentration 

parameter of the 

Dirichlet (assumed 

known for now)

Large values of 𝛼 will 

give a Dirichlet peaked 

around its mean (next 

slides illustrates this)

MLE/MAP left as 

an exercise
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Brief Detour: Dirichlet Distribution

▪ An important distribution. Models non-neg. vectors 𝜋 that also sum to one

▪ A random draw from 𝐾-dim Dirich. will be a point under (𝐾-1)-dim probability simplex
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Basically, probability vectors

(1,0,0)

(0,1,0) (0,0,1)

(1/2,0,1/2)(1/2,1/2,0)

(0,1/2,1/2)

(1/2,1/4,1/4)

(1/4,1/4,1/2)(1/4,1/2,1/4)

(3/8,1/4,3/8)(3/8,3/8,1/4)

(1/4,3/8,3/8)

The probability simplex of a 

2-dim simplex (representing 

a 3-dim Dirichlet) and the 

coordinates of various 

points on the simplex
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Brief Detour: Dirichlet Distribution

▪ A visualization of Dirichlet distribution for different values of concentration param

▪ Interesting fact: Can generate a 𝐾-dim Dirichlet random variable by independently 
generating 𝐾 gamma random variables and normalizing them to sum to 1 
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Visualizations of PDFs of some 3-dim 

Dirichlet distributions (each generated 

using a different conc. Param vector 𝜶)

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3

𝜋1

𝜋2

𝜋3 𝜋3
𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a uniform 

distribution if  

all 𝛼𝑘’s are 1
All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 
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The Posterior Distribution

▪ Posterior 𝑝(𝝅|𝒚) is easy to compute due to conjugacy b/w multinoulli and Dir.

▪ Assuming 𝑦𝑛’s are i.i.d. given 𝝅, 𝑝 𝒚 𝝅 =  ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝝅), and therefore

▪ Even without computing marg-lik, 𝑝(𝒚|𝜶), we can see that the posterior is Dirichlet 

▪ Denoting 𝑁𝑘 =  σ𝑛=1
𝑁 𝕀[𝑦𝑛 = 𝑘], number of observations with with value 𝑘

▪ Note: 𝑁1, , 𝑁2 . . . , 𝑁𝐾 are the sufficient statistics for this estimation problem
▪ We only need the suff-stats to estimate the parameters and values of individual observations aren’t 

needed (another property from exponential family of distributions – more on this later)
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𝑝 𝝅 𝒚, 𝜶 =
𝑝(𝝅, 𝒚|𝜶)

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅, 𝜶

𝑝(𝒚|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝒚 𝝅

𝑝(𝒚|𝜶)

Likelihood Prior

Marg-lik = ∫ 𝑝(𝝅|𝜶)𝑝 𝒚 𝝅 d𝝅

Don’t need to compute for this 

case because of conjugacy

𝑝 𝝅 𝒚, 𝜶 ∝ ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘−1
× ς𝑛=1

𝑁 ς𝑘=1
𝐾 𝜋𝑘

𝕀[𝑦𝑛=𝑘]
  

𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)  
Similar to number 

of heads and tails 

for the coin bias 

estimation problem

= ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘+σ𝑛=1
𝑁 𝕀[𝑦𝑛=𝑘] −1
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The Predictive Distribution
▪ Finally, let’s also look at the posterior predictive distribution for this model

▪ PPD is the prob distr of a new 𝑦∗ ∈ 1,2, … , 𝐾 , given training data 𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝑁}

▪ 𝑝 𝑦∗ 𝝅 =  multinoulli 𝑦∗ 𝝅 ,  𝑝 𝝅 𝒚, 𝜶 =  Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)

▪ Can compute the posterior predictive probability for each of the 𝐾 possible outcomes

▪ Thus PPD is multinoulli with probability vector 
𝛼𝑘+𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘+𝑁

𝑘=1

𝐾

 

▪ Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 𝝅 
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𝑝 𝑦∗ 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

𝑝 𝑦∗ = 𝑘 𝒚, 𝜶 = ∫ 𝑝 𝑦∗ = 𝑘 𝝅 𝒑 𝝅 𝒚, 𝜶 𝒅𝝅

= ∫ 𝜋𝑘 × Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)𝑑𝜋

=
𝛼𝑘 + 𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘 + 𝑁

(Expectation of 𝜋𝑘 w.r.t the Dirichlet posterior)

Note how these probabilities 

have been “smoothened” due 

to the use of the prior + the 

averaging over the posterior

A similar effect was 

achieved in the Beta-

Bernoulli model, too

Will be a multinoulli. Just need 

to estimate the probabilities of 

each of the 𝐾 outcomes
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