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Probabilistic ML Modeling: The Basic Ingredients

= |ikelihood model p(D|8) for data D; prior distribution p(8|a) over parameters 6

A A distribution 4
over @ for some 9
p(D|0) given value of a p(fla)
Likelihood is a function of 8, e.g.,
p(DI6) = TIiL1 p(ilxi, 6)
> >
2 6

= | ikelihood defined in terms of distribution(s) we assume data is generated from
" |t's like a measure of 'fit" between observed data and each possible value of parameters
" |ts negative is like the "loss function” (high likelihood value = low loss; and vice-versa)

= Prior specifies our prior knowledge about 8 before we have seen the data
" [t also acts as a reqularizer for 8 (will see the reason formally later)

= Note: The prior itself depends on other parameters a (also unknown)
" These are sometimes called "hyperparameters” (can set by hand or estimate from data)). py.



The Prior: Where does it come from?

* The prior p(@|a) plays an important role in probabilistic/Bayesian modeling

» Reflects our prior beliefs about possible parameter values before seeing the data

= Can be "subjective” or "objective” (also a topic of debate, which we won't get into)
" Subjective: Prior (our beliefs) derived from past experiments
= Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

" Can also be seen as a reqgularizer (connection with non-probabilistic view)
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Parameter Estimation

" The parameters 8 are unknown and need to be estimated from training data D
= \When estimating 8, we may take one of the following approaches
Approach 1 Approach 2

" @ has an unknown with fixed value | | =  Treat @ as a random variable
= Estimate the single best estimate | |=  Estimate 8 by computing its
of 8 by optimizing a loss function distribution conditioned on D

é _ argmina L(D, 8) Posterior p(elz))

distribution

= Approach 2 also gives uncertainty about our estimate of 8; Approach 1 doesn't
" But possible to estimate uncertainty in 8 even with Approach 1 (e.g., using ensembles)

" Approach 1 is also a simplified/special case/approximation of Approach 2
» Can also take a hybrid (Approach 2 for some parameters; Approach 1 for @thgers)



The Posterior Distribution

" The posterior distribution is computed using Bayes rule (Bayesian inference)

p(D,0|a) p(D|6, a)p(0|a)
p(0]|D,a) = 5 =
Assuming a is known so p( |C¥) f p(Dlg' a)p(9|a)d9
oo ~ p@DI6)p(fla) likelihood X prior

conditioned on a as well _

Given 6, the data is conditionally — J p(D | H)p(@la)d@ - marginal llkellhOOd

independent of the prior's
hyperparameters a so

p(D16,a) = p(D|6)
Hard to compute in general

" Marginal |ike|ihOOd |S an ImpOrtaﬂt quaﬂtlty (that's why posterior is difficult to

The average” likelihood (average compute in general) but be

taken ,W-“t;a”,va“ﬂes of 8 from computed exactly in some cases
the prior distribution)

p(@la) — fp(DlH)p(@la)d@ — IEp(9|a)p(D|8)] We can use it also to find

the best value of

For example, hyperparameters a

a = argmax, log p(D|a)
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“Online” Nature of Bayesian Inference Updates

" Bayesian inference can naturally be done in an online fashion

Also, the posterior’'s
spread/variance gets smaller

: as we use more and more

" N | p

Posterior
P(6]|D)

ikelihood
P(D|0)

D Prior .
P(0) Old posterior becomes

the new prior
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Point Estimation

Intractable mainly because the

marginal likelihood (the denominator However, point

" Reca” that the pOSteﬂor 1S on the RHS s intractable in general) estimation throws away
Intractable to compute except for all the uncertainty
some very simple models or if the 01D . P (D | H)p (8 | C() information about 6
likelihood and prior are conjugate p( | ) CZ) T D
(discussed later) to each other p( | a)

Meaning the observed data has the

= [f posterior is intractable, can use MLE/MAP to get point estimates | fargest probabity for this value of 6
= Maximum likelihood (ML) estimation: Find @ for which likelihood is highest

Negative Log likelihood (equivalent to a loss function)

0y = argmax logp(D|6) = argmgn —logp(D|6) = argmgin NLL(O)

= Maximum a posteriori (MAP) estimation: Find 8 with largest posterior prob.

Oy ap = argmax log p(61D, a) = argmax [log p(D|6) + log p (0]
Like MLE with info from prior added = argm@in [NLL(H) — lOg p(@ | a)]

The regularizer hyperparameter
Akin to a regularizer added to the loss is part of prior
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The Predictive Distribution

= Predictive distribution is the distribution of test data D, given training data D

' ' In th ior PPD is more robust
" In the general form, we can write it as e possre o | | 7D e
hyperparameters a overfitting) than

p(D*ll)) is known as p (D* |D) — f p (D*, 6 |D) dQ for brevity of ng;r;:(ﬁ:i?ggt

posterior predictive notation . ‘
relying on a single

distribution (PPD) — f p(D* 9’ D)p(g |D) dg best estimate

Assuming observations The "averaged” prediction
are i.id. given 8 —_ using all possible 8 values
: - f p (D* 8)p (9 | D) d@ vvithgeach prediction weighted
This expectation may not be by how important 8 is as per
computable exactly and may An expectation over the _ the posterior distribution
itself require approximations posterior distribution — ]Ep (9 |D) [p (D* | 9)]
(will see later) (averaging over the
posterior)

= [f we only have point estimate of 8 (say 8 obtained from MLE/MAP) then
This approximation of p(‘Z)* |D) ~ p(@*

PPD is called "plug-in”
predictive distribution

é\ Because now the posterior is
just a point mass at 8
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A “Shortcut”™: PPD using Marginal Likelihood

= PPD, by definition, is obtained by the following marginalization

p(D.|D) = | p(D.16)p(0]|D) db

" Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows | oint marginal likelinood

for training and test data
Follows simply from Bayes rule p (D* D)
)

plalp) = 222 p(D,.|D) =

p(b)

Marginal likelihood for

p (D) training data
2. If p(D,|D) can be obtained easily from the joint p(D,, D)

= Note that the PPD p(D,|D) is also a conditional distribution Will see this being used we we

study Gaussian Process (GP)

" For some distributions (e.g., Gaussian), conditionals can be easily derived from joint
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Bernoulli Observation Model
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Estimating a Coin’s Bias

= Consider a sequence of N coin toss outcomes (observations) Probability
of a head

" Fach observation vy, is a binary random variable. Head: y,, = 1, Tail: y,, = 0

* Fach y, is assumed generated by a Bernoulli distribution with param 8 € (0,1)

Likelihood or _ 1—
observation model P(yn|9) = Bernomh()’nl@) = grn (1-26) In

" Here 8 the unknown param (probability of head). Let's do MLE

assuming i.i.d. data

" Log-likelihood: Yp=1 108 p(¥10) = IN_; [yulog8 + (1 —yy)log (1 — 6)]

* Maximizing log-lik, or minimizing neg. log-lik (NLL) w.rt. 8 gives

| g ) ) o and N Thus MLE Indeed, with a small number of
tOS,SG a comn 5 times — gave 1?? cad an —1 yn solution is simply | | training observations, MLE may
4 tails. Does it means 6 = OZ 2 The 6 — n= the fraction of overfit and may not be reliable. An
MLE approach Says so.lV\/hat s I'see O MLE N heads! © Makes | | alternative is MAP estimation
& head and 5 tails. Does it mean 8 = Q7 ntuitive sensel which can incorporate a prior
| distribution over 8
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Estimating a Coin’s Bias
" | et's do MAP estimation for the bias of the coin
" Fach likelihood term is Bernoulli
p(y,|0) = Bernoulli(y,|0) = ¥ (1 — §)1 In
" Also need a prior since we want to do MAP estimation

" Since 8 € (0,1), a reasonable choice of prior for 8 would be Beta distribution

- Tla+p)
POIEE) = Har)

The gamma function «a and B (both non-negative reals)
are the two hyperparameters of this

Beta prior

6&—1(1 _ H)ﬁ—l

Usinga = 1 and f = 1 will make
the Beta prior a uniform prior

Can set these based on intuition,
cross-validation, or even learn them




Estimating a Coin’s Bias
" The log posterior for the coin-toss model is log-lik + log-prior

N
LP(0) =z log p(y,10) +logp(Bla,p)

n=1
" Plugging in the expressions for Bernoulli and Beta and ignoring any terms that
don't depend on 8, the log posterior simplifies to
N
LP(0) = z |y, log0 4+ (1 —y,)log(1—6)]+ (a—1)logh + (f — 1)log(1 —0)

n=1

= Maximizing the above log post. (or min. of its negative) w.rt. 8 gives

Prior's hyperparameters have an

Usinga = 1and f = 1 gives us N +a—1 interesting interpretation. Can think of
the same solution as MLE H _ n=1 Yn a — 1 and B — 1 as the number of

MAP — N + a + ﬁ — 9 heads and tails, respectively, before
Recall that @ = 1 and 8 = 1 for Beta starting the coin-toss experiment
distribution is in fact equivalent toa Such interpretations of prior's hyperparameters as (akin to “pSGUdO_ObservaﬂonS")
uniform pr]or (hence making MAP being “pseudo-observations” exist for various other

val MLE prior distributions as well (in particular, distributions
equivalent to ) belonging to “exponential family” of distributions CS772A: PML



The Posterior Distribution

" | et's do fully Bayesian inference and compute the posterior distribution
= Bernoulli likelihood: p(y,,|6) = Bernoulli(y,|0) = 6Yr (1 — 0)* ™ ¥»

= Beta prior: p(6) = Beta(@|a, ) = Fig;;g% 9“‘1(% — Hf)hﬁd_iw Number of tails (Np)

" The pg)ypsefgarigarﬁcan be computed as §Zn=1Yn (1 — §)N~-Zn=1¥n
not shown for brevity

p(8ly) = LLPUNE) _ p(O) My pOmIO) oo oo Moy o0 oy
p(y) p(y) f%@a—l(l_g)ﬁ—1 Hg:l Yyn (1-0)1-Ynde

" Here, even without computing the denominator (marg lik), we can identify the posterior
" |t is Beta distribution since p(@|y) oc @%TN1=1(1 — 0)F+No~1 [ crecise: Show that the &\

L ]
normalization constant equals vy | /

= ThUS P(9|y) — Beta(9|a _I_ Nl,,B + NO) Hint: Use the fact that the [(a+ B +N) e’»
1Yn)

posterior must integrate to 1
[ p(6ly)do = 1 [(a+ Y= y)T(B+N =3

" Here, finding the posterior boiled down to simply "multiply, add stuff, and identify”

" Here, posterior has the same form as prior (both Beta): property of conjugate prigrs. su.



Conjugacy and Conjugate Priors

* Many pairs of distributions are conjugate to each other
= Bernoulli (likelihood) + Beta (prior) = Beta posterior
= Binomial (likelihood) + Beta (prior) = Beta posterior
= Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior | Not true in general, but in some
: : : . , cases (e.g., the variance of the
= Poisson (likelihood) + Gamma (prior) = Gamma posterior Gaussian likelihood is fixed)
" Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

" and many other such pairs ..

= Tip: If two distr are conjugate to each other, their functional forms are similar

» Example: Bernoulli and Beta have the forms This is why, when we multiply them while
computing the posterior, the exponents get added
. _ ny _ o\1-y and we get the same form for the posterior as the
Bernoulh(yl@) =0 (1 0) prior but with just updated hyperparameter. Also,
F(Ol + ﬁ) we can identify the posterior and its
Beta(@|a,f) = ———= 0% 1(1 - H)ﬁ_l hyperparameters simply by inspection
F(a)r'(B)

= More on conjugate priors when we ook at exponential family distributionscs772A_ .



Predictive Distribution

" Suppose we want to compute the prob that the next outcome yy 41 Will be head (=1)

" The posterior predictive distribution (averaging over all 8's weighted by their respective
posterior probabilities)

1
p(yn+1 = 1ly) = j
0

1

pmwpnﬁwme=ijﬂ=ummwww
0

1
=fQXwanw
0

Expectation of 8 w.r.t. the Beta posterior

— [Ep(g ly) [6] distribution p(8|y) = Beta(8|a + N1, B + Ny)
a+ Ny For models where likelihood and A
— prior are conjugate to each other, "j p /
m [herefore the PPD will be a+p+N the PPD can be computed easily »
in closed form (more on this e

when we talk about exponential

p(yN+1 |y) — Bernoulli(yN+1 | Ep(@ |ly) [6]) family distributions)
= The plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

P =1Uy) = p(yne1 =1[8) =0 == p(Yn+1ly) = Bernoulli(yy;1]0)
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Multinoulli Observation Model
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MLE/MAP left as

The Posterior Distribution sameers

= Assume N discrete obs y = {y{, V5, ..., Yy} with each y,, € {1,2, ..., K}, eq,

=y, represents the outcome of a dice roll with K faces

= y. represents the class label of the nt" example in a classification problem (total K classes)

=y, represents the identity of the nt word in a sequence of words These sum to 1

= Assume likelihood to be multinoulli with unknown params T = [y, 5, ..., Tk |
K

. . I[yn=kK] Generalization of Bernoulli to
) = multinoulli(y,|) = ‘ ‘ m,” "
p(ynlm) (Ynlm) w1 K K > 2 discrete outcomes
' ey “ aF " Large values of a will

" 7T is a vector of probabilities (“probability vector”), e.g., — g = Dicret peakes

» Biases of the K sides of the dice concentratiofn h aroune = mean tﬁfft

. Qo . : e : — — parameter of the
= Prior class probabilities in multi-class classification (p(y, = k) = m) |20 (assumed
= Probabilities of observing each word of the K words in a vocabulary known for now) Fach ay =0

= Assume a conjugate prior (Dirichlet) on 1 with hyperparams & = a4, @5, ..., ak]

p(7m|a) = Dirichlet(w|a, ..., ak)

vectors

K K
r(zle lek) ap—1 1 ay—1 Generalization of Beta to
— =K r H Uy — m H Ty K-dimensional probability
[Ther M) ) k=1
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Brief Detour: Dirichlet Distribution

Basically, probability vectors

* An important distribution. Models non-neg. vectors 1 that also sum to one

* A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

The probability simplex of a
2-dim simplex (representing
a 3-dim Dirichlet) and the

coordinates of various
points on the simplex

(1/2,1/2,0)

(1,0,0)

p(m|a) = Dirichlet(w|aa, . . ., ak) = E_(Ikzk -1 %) H Xl — ) Hﬂ'ak .
1
¥ ¥
(1/2,1/4,1/4) Hean = [ K o U FK ]
(1/2,0,1/2) | -
(3/8,3/8,1/4) (3/8,1/4,3/8) _ o
Mode = { o1 - 1 ;ﬁ‘ : ] (ap > 1)
g O — K Yoo — K

(1/4,1/4,1/2)

(0,1,0)

(0,0,1)
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Brief Detour: Dirichlet Distribution -

= A visualization of Dirichlet distribution for different values of concentration param

Like a uniform ) ) o L
distribution if Draws from a 3-dimensional Dirichlet with different o

Visualizations of PDFs of some 3-dim | alagsaret fo=(1.1.1)
Dirichlet distributions (each generated
usmg a different conc. Param vector «)

o= (10, 10, 10)

Al a's large results in
peak around the
center of the simplex

a controls the shape

of the Dirichlet (just
like Beta distribution’s
hyperparameters)

;;;;;;;;;
L O T
T

B A T e 15 O
T4

" Interesting fact: Can generate a K-dim Dirichlet random variable by independently
generating K gamma random variables and normalizing them to sum to 1 CST72A: PML



The Posterior Distribution

Likelihood Prior

= Posterior p(1T|y) is easy to compute due to conjugacy b/w multinoulli and Dir.

Don't need to compute for this

) p (Tt' yl a) . p (Tl'l a)p (Y|7T; a) . p (Tl'l a)p (}’|7T) case because of conjugacy

, @) = = =
p(mly p(y|a) p(y|a) p(yla) — Maglk=[ p@lapyimdn
= Assuming y,,'s are i.i.d. given i, p(y|m) = N_1 p(y,|T), and therefore
N k] —
p(ly, @) o [T}y m " X [I=y ey m 7™ = [IEL mk o= =l =
= Even without computing marg-lik, p(y|a&), we can see that the posterior is Dirichlet
= Denoting N = YN _. [y, = k], number of observations with with value k

o Similar to number
p(m|y, @) = Dirichlet(m|a,; + Ny, @y + Ny, ..., @ + Ni) ot heads and taie
o L ' . . for the coin bias
» Note: Nq,, N, ..., Ng are the sufficient statistics for this estimation problem | estimation problem
* We only need the suff-stats to estimate the parameters and values of individual observations aren’t
needed (another property from exponential family of distributions — more on this later)
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The Predictive Distribution

" Finally, let's also look at the posterior predictive distribution for this model

» PPD is the prob distr of a new y, € {1,2, ..., K}, given training data y = {y4, V5, ..., Yn}

Will be a multinoulli. Just need

to estimate the probabilities of p (y* |y’ a) — f p (y* |Tl')p (T[ | y, a) dT[

each of the K outcomes
* p(y,|m) = multinoulli(y,|m), p(m|y, @) = Dirichlet(m|a; + N, a, + Ny, ..., ax + Ng)
= Can compute the posterior predictive probability for each of the K possible outcomes

p(y. = kly, @) = [ p(y. = klm)p(wly, a)dm
= [ m,, x Dirichlet(m|a; + Ny, ay + Ny, ..., ax + Ni)dm

__ % + Nie (Expectation of m, wir.t the Dirichlet posterior)
Ilgzl ay + N A similar effect was
Note how these probabilities achieved in the Beta-
: : C o ai+Np have been “smoothened” due Bernoulli model, too
" Thus PPD is multinoulli with probability vector {ZK ” +N} to the use of the prior + the
k=1 Yk

k=1 averaging over the posterior

= Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 1T

CS772A: PML
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