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VI using ELBO’s gradients

▪ For simple locally conjugate models, VI updates are usually easy
▪ Sometimes, can find the optimal 𝑞 even without taking the ELBO’s gradients

▪ For complex models, we have to use the more general gradient-based approach

▪ Consider the setting when we have latent variables 𝒁 and parameters Θ

▪ The ELBO’s gradient w.r.t. Θ

▪ The ELBO’s gradient w.r.t. 𝜙
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∇Θℒ 𝜙, Θ = ∇Θ 𝔼𝑞𝜙(𝒁)[log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 ]

= 𝔼𝑞𝜙(𝒁) ∇Θ log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

∇𝜙ℒ 𝜙, Θ = ∇𝜙 𝔼𝑞𝜙(𝒁)[log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁 ]

≠ 𝔼𝑞𝜙(𝒁) ∇𝜙 log 𝑝 𝓓, 𝒁 Θ − log 𝑞𝜙 𝒁

Monte-Carlo approximation 

using samples of 𝑞𝜙(𝒁) is 

straightforward here

Monte-Carlo approximation 

using samples of 𝑞𝜙(𝒁) is 

NOT as straightforward

Gradient can’t go inside 

expectation since 𝑞(𝑍) 

depends on 𝜙

Gradient can go inside 

expectation since 𝑞(𝑍) 

doesn’t depend on Θ
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Black-Box Variational Inference (BBVI)

▪ Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo

▪ Uses the following identity for the ELBO’s derivative

▪ Thus ELBO gradient can be written solely in terms of expec. of gradient of log 𝑞(𝒁|𝜙)

▪ Required gradients don’t depend on the model; only on chosen var. distribution (hence “black-box”)

▪ Given 𝑆 samples 𝑍𝑠 𝑠=1
𝑆  from 𝑞(𝒁|𝜙), we can get (noisy) gradient as follows 

▪ Above is also called the “score function” based gradient (also REINFORCE method)
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∗Black Box Variational Inference - Ranganath et al (2014)

Gradient of a log-likelihood or log-probability function w.r.t. 

its params is called score function; hence the name
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Reparametrization Trick

▪ Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)

▪ Suppose we want to compute ELBO’s gradient

▪ Assume a deterministic transformation 𝑔

▪ With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

▪ Given 𝑆 i.i.d. random samples 𝜖𝑠 𝑠=1
𝑆  from 𝑝(𝜖), we can get a Monte-Carlo approx.

▪ Such gradients are called pathwise gradients* (since we took a “path” from 𝜖 to 𝒁)
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𝒁 = 𝑔(𝜖, 𝜙) 𝜖 ∼ 𝑝(𝜖)where
Assumed to not 

depend on 𝜙

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: An Example

▪ Suppose our variational distribution is 𝑞 𝒘|𝜙 =  𝒩(𝒘|𝝁, 𝚺), so 𝜙 = {𝝁, 𝚺}

▪ Suppose our ELBO has a difficult expectation term 𝔼𝑞[𝑓 𝒘 ]

▪ However, note that we need ELBO gradient, not ELBO itself. Let’s use the trick

▪ Reparametrize 𝒘 as 𝒘 = 𝝁 + 𝐋𝐯 where 𝐯 ~ 𝒩(𝟎, 𝑰)

▪ The above is now straightforward

▪ Easily take derivatives of 𝑓(𝒘) w.r.t. variational params 𝝁, 𝐋

▪ Replace exp. by Monte-Carlo averaging using samples of 𝐯 from 𝒩(𝟎, 𝑰)

▪ Std. reparam. trick assumes differentiability (recent work on removing this req). 
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Or 𝜙 = {𝝁, 𝐋} 
where 𝐋 =  chol(Σ)

Note that we will still have 

𝑞 𝒘|𝜙 =  𝒩(𝒘|𝝁, 𝚺) 

Often even one or very 

few samples suffice

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝝁

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝐋

Chain Rule

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: Some Comments

▪ Standard Reparametrization Trick assumes the model to be differentiable

▪ In contrast, BBVI (score function gradients) only required 𝑞(𝒁) to be differentiable

▪ Thus rep. trick often isn’t applicable, e.g., when 𝒁 is discrete (e.g., binary /categorical)

▪ Recent work on continuous relaxation† of  discrete variables†(e.g., Gumbel Softmax for categorical)

▪ The transformation function 𝑔 may be difficult to find for general distributions

▪ Recent work on generalized reparametrizations*

▪ Also, the transformation function 𝑔 needs to be invertible (difficult/expensive)
▪ Recent work on implicit reparametrized gradients#

▪ Assumes that we can directly draw samples from 𝑝(𝜖). If  not, then rep. trick isn’t valid@
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†Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), ∗ The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)
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Automatic Differentiation Variational Inference

▪ Suppose 𝒁 is 𝐷-dim r.v. with constraints (e.g., non-negativity) and distribution 𝑞(𝒁|𝜙) 

▪ Assume a transformation 𝑇 such that 𝒖 = 𝑇(𝒁) s.t. 𝒖 ∈ ℝ𝐷 (unconstrained) then

▪ Recall the original ELBO expression ℒ 𝜙 =  𝔼𝑞(𝒁|𝜙) log
𝑝(𝑫,𝒁)

𝑞(𝒁|𝜙)

▪ Assuming 𝑞 𝒖 𝜓 =  𝒩(𝒖|𝜇, Σ) and using 𝒁 = 𝑇−1(𝒖), the ELBO becomes

▪Optimize ℒ 𝜓  w.r.t. 𝜓 to get 𝑞 𝒖 𝜓  as a Gaussian and use distribution 
transformation equation to get 𝑞(𝒁|𝜙) 
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𝑞 𝒖 = 𝑞(𝒁) det
𝜕𝒁

𝜕𝒖

ℒ 𝜓 =  𝔼𝑞 𝒖 𝜓 log
𝑝(𝑫, 𝑇−1(𝒖)) det 𝜕𝒁/𝜕𝒖

𝑞 𝒖 𝜓

= 𝔼𝑞 𝒖 𝜓 log 𝑝(𝑫, 𝑇−1(𝒖)) +  log det 𝜕𝒁/𝜕𝒖 + H(𝑞(𝒖|𝜓))
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Structured Variational Inference

▪ Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
▪ Removing the independence assumption of mean-field VI

▪ In general, learning more complex forms for the variational approximation family 𝑞 𝒁 𝜙

▪ To remove the mean-field assumption in VI, various approaches exist
▪ Structured mean-field (Saul et al, 1996)

▪ Hierarchical VI (Ranganath et al, 2016): Variational params 𝜙1, 𝜙2, … , 𝜙𝑀 “tied” via a shared prior

▪ Recent work on learning more expressive variational approx. for general VI

▪ Boosting or mixture of simpler distributions, e.g., 𝑞 𝒁 =  σ𝑐=1
𝐶 𝜌𝑐𝑞𝑐(𝒁)

▪ Normalizing flows*: Turn a simple var. distr. into a complex one via series of invertible transfor.
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A simple unimodal variational 

distribution (e.g.. 𝒩(0, 𝐼)
A much more complex(e.g., 

multimodal) variational distribution 

obtained via the flow idea

∗Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015)

Even simple unimodal components 

will give a multimodal 𝑞 𝒁
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Other Divergence Measures

▪ VI minimizes 𝐾𝐿(𝑞||𝑝) but other divergences can be minimized as well

▪ Recall that VI with minimization of 𝐾𝐿(𝑞||𝑝) leads to underestimated variances

▪ A general form of divergence is Renyi’s 𝛼-divergence defined as

▪ 𝐾𝐿(𝑝||𝑞) is a special case with 𝛼 → 1 (can verify using L’Hopital rule of taking limits)

▪ An even more general form of divergence is 𝑓-Divergence

▪ Many recent variational inference algorithms are based on minimizing such divergences
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𝐷𝛼
𝑅(𝑝(𝒁)| 𝑞 𝒁 =

1

𝛼 − 1
 log න 𝑝 𝒁 𝛼𝑞 𝒁 1−𝛼𝑑𝒁

𝐷𝑓(𝑝(𝒁)| 𝑞 𝒁 =  න 𝑞 𝒁 𝑓
𝑝(𝒁)

𝑞(𝒁)
𝑑𝒁
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Variational Inference: Some Comments

▪ Many probabilistic models nowadays rely on VI to do approx. inference

▪ Even mean-field with locally-conjugacy used in lots of models
▪ This + SVI gives excellent scalability as well on large datasets

▪ Progress in various areas has made VI very popular and widely applicable
▪ Stochastic Optimization (e.g., SGD)

▪ Automatic Differentiation

▪ Monte-Carlo gradient of ELBO

▪ Note: Most of these ideas apply also to Variational EM

▪ Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g., 
Tensorflow Probability, PyTorch, etc), making VI easy even for complex models

▪ Still a very active area of research, especially for doing VI in complex models
▪ Models with discrete latent variables

▪ Reducing the variance in Monte-Carlo estimate of ELBO gradients

▪ More expressive variational distribution for better approximation
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We covered many of the threads 

being explored in recent work but 

a lot of work still being done in 

this area
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Sampling for Approximate Inference

▪ Some typical tasks that we have to solve in probabilistic/fully-Bayesian inference

▪ Sampling methods provide a general way to (approximately) solve these problems

▪ More general than VI methods which only approximate the posterior distribution
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]

Posterior 

distribution

Posterior 

predictive 

distribution

Marginal 

likelihood

Expected 

complete data 

log-likelihood

Evidence lower 

bound (ELBO)Needed in VI

Needed in EM

Needed for model 

selection (and in 

computing 

posterior too)
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Approximating a Prob. Distribution using Samples

▪ Can approximate any distribution using a set of randomly drawn samples from it

▪ The samples can also be used for computing expectations (Monte-Carlo averaging)

▪ Usually straightforward to generate samples if  it is a simple/standard distribution

▪ The interesting bit: Even if  the distribution is “difficult” (e.g., an intractable posterior), it 
is often possible to generate random samples from such a distribution, as we will see.
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Samples can thought 

of as a histogram-

based approximation 

of a distribution
Height of each bar 

denotes how many 

times that location 

was sampled

Given large-enough 

samples, it is proportional to 

the probability density at 

that location

𝑝(𝑧)
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The Empirical Distribution

▪ Sampling based approx. can be formally represented using an empirical distribution

▪ Given 𝐿 points/samples 𝒛(1), 𝒛(2), … , 𝒛(𝐿), empirical distr. defined by these is
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Weight of point 𝑧(ℓ)
Weights sum to 1

Dirac Distribution

Dirac Distribution with 

finite support at 

𝒛(1), 𝒛(2), … , 𝒛(𝐿)

Can think of 𝐴 as being the 

area over which we want to 

evaluate the distribution
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Sampling: Some Basic Methods

▪ Most of these basic methods are based on the idea of transformation
▪ Generate a random sample 𝑥 from a distribution 𝑞(𝑥) which is easy to sample from

▪ Apply a transformation on 𝑥 to make it random sample 𝑧 from a complex distr 𝑝(𝑧)

▪ Some popular examples of transformation methods
▪ Inverse CDF method

▪ Reparametrization method

▪ Box-Mueller method: Given (𝑥1, 𝑥2) from Unif(0, 1), generate (𝑧1, 𝑧2) from 𝒩(0, 𝐈2)

   𝑧1 = −2 ln 𝑥1cos 2𝜋𝑥2 ,  𝑧1 = −2 ln 𝑥1sin(2𝜋𝑥2)

▪ Transformation Methods are simple but have limitations
▪ Mostly limited to standard distributions and/or distributions with very few variables
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𝑥

𝑧 = 𝐹−1(𝑥)

𝐹(𝑧): CDF of 𝑝(𝑧)

𝑝 𝑧 = 𝑞(𝑥)
𝜕𝑥

𝜕𝑧
 

Determinant 

of Jacobian
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Rejection Sampling

▪ Goal: Generate a random sample from a distribution of the form 𝑝 𝑧 =
෤𝑝(𝑧)

𝑍𝑝
, assuming

▪ We can only evaluate the value of numerator ෤𝑝(𝑧) for any 𝑧

▪ The denominator (normalization constant) 𝑍𝑝 is intractable and we don’t know its value

▪ Assume a proposal distribution 𝑞(𝑧) we can generate samples from, and

▪ Rejection Sampling then works as follows
▪ Sample a random variable 𝑧∗ from 𝑞(𝑧)

▪ Sampling a uniform r.v. 𝑢 ∼ Unif 0, 𝑀𝑞 𝑧∗

▪ If  𝑢 ≤ ෤𝑝(𝑧∗) then accept 𝑧∗, otherwise reject it

▪ All accepted 𝑧∗’s will be random samples from 𝑝 𝑧 . Proof on next slide

15

Should have the same 

support as 𝑝(𝑧)
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Rejection Sampling

▪ Why 𝑧 ∼  𝑞(𝑧) + accept/reject rule is equivalent to 𝑧 ∼  𝑝(𝑧)?

▪ Let’s look at the pdf of the  𝑧’s that were accepted, i.e., 𝑝(𝑧|accept)

16
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Computing Expectations via Monte Carlo Sampling

▪ Often we are interested in computing expectations of the form

   where 𝑓(𝑧) is some function of the random variable 𝑧 ∼  𝑝(𝑧)

▪ A simple approx. scheme to compute the above expectation: Monte Carlo integration

▪ Generate 𝐿 independent samples from 𝑝(𝑧): 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑝(𝑧)

▪ Approximate the expectation by the following empirical average

▪ Since the samples are independent of each other, we can show the following (exercise)

17

𝔼 𝑓 =  න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧

Unbiased 

expectation

Variance in our 

estimate decreases 

as 𝐿 increases

𝔼 𝑓 ≈  መ𝑓 =
1

𝐿
σℓ=1

𝐿 𝑓(𝑧(ℓ)) 

Assuming we know how 

to sample from 𝑝(𝑧)
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Computing Expectations via Importance Sampling

▪ How to compute Monte Carlo expec. if  we don’t know how to sample from 𝑝(𝑧)?

▪ One way is to use transformation methods or rejection sampling

▪ Another way is to use Importance Sampling (assuming 𝑝(𝑧) can be evaluated at least)

▪ Generate 𝐿 indep samples from a proposal 𝑞(𝑧) we know how sample from: 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑞(𝑧)

▪ Now approximate the expectation as follows

▪ This is basically “weighted” Monte Carlo integration

▪ 𝑤(ℓ) =
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)
 denotes the importance weight of each sample 𝑧(ℓ)

▪ IS works even when we can only evaluate 𝑝 𝑧 =
෤𝑝(𝑧)

𝑍𝑝
 up to a prop. constant

▪ Note: Monte Carlo and Importance Sampling are NOT sampling methods!
▪ These are only uses for computing expectations (approximately)
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𝔼 𝑓 =  න 𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න 𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿
෍

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

See PRML 11.1.4
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Limitations of the Basic Methods

▪ Transformation based methods: Usually limited to drawing from standard distributions

▪ Rejection Sampling and Importance Sampling: Require good proposal distributions

▪ In general, difficult to find good prop. distr. especially when 𝑧 is high-dim

▪ More sophisticated sampling methods like MCMC work well in such high-dim spaces
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𝔼 𝑓 ≈
1

𝐿
෍

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

Ideally, would like 𝑞(𝑧)  to 

give samples from where 𝑝(𝑧) 

is large or 𝑓(𝑧)𝑝(𝑧) is large

Difficult to guarantee so if  𝑧 is 

high-dimensional

𝑞(𝑧) should be such that 

𝑀𝑞(𝑧) envelopes ෤𝑝(𝑧) 
everywhere 



CS772A: PML

Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗

▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If  accepted, set 𝒛(ℓ+1) = 𝒛∗. If  rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)
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Means we can at least 

evaluate ෤𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be 

conditioned on data, i.e., 𝑝(𝒛|𝒙)

Should also have the 

same support as 𝑝(𝒛)
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MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics

21

MCMC is exact in theory but 

approximate in practice since 

we can’t run the chain for 

infinitely long in practiceThus we say that the 

samples are approximately 

from the target distribution

Will treat it as our first 

sample from 𝑝(𝒛)

Requirement for Monte 

Carlo approximation
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