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VI using ELBO’s gradients

» -or simple locally conjugate models, VI updates are usually easy
= Sometimes, can find the optimal g even without taking the ELBO's gradients

= For complex models, we have to use the more general gradient-based approach

= Consider the setting when we have latent variables Z and parameters 0
" The ELBO's gradient wir.t. ©

VoL(¢,0) = Vg Eq, (z)[log p(D, Z10) —log q4(2)] | cociier e s
Monte-Carlo approximation

s a0 = Eqy )| Ve {log p(D, Z10) —log g ()] =

straightforward here

* The ELBO's gradient wirt. ¢
V¢L(¢, ('*)) — V(l) IEC[¢(Z) [lOg p(D’ Zl@) _ log q¢ (Z)] Gradient can't go inside

expectation since q(Z)

Monte-Carlo approximation depends on ¢

using samples of q¢(Z) is = [Eq¢(Z) [v¢ {108 p(D; Zl ®) T 108 ng (Z)}]

NOT as Straightforward CS772A: PML



Black-Box Variational Inference (BBVI)

" Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo
» Uses the following identity for the ELBO's derivative
Vsl(q) = VyuEg4[logp(X,Z)— logq(Z|o)]
= E,[V,logq(Z|o)(log p(X,Z) — log q(Z|®))] (proof on next slide)
= Thus ELBO gradient can be written solely in terms of expec. of gradient of log q(Z|¢)
* Required gradients don't depend on the model; only on chosen var. distribution (hence “black-box”)

= Given S samples {Z,}5_, from q(Z|¢), we can get (noisy) gradient as follows

S
Vo£(q) ~ 3 3 Volog a(Z.|6)(log p(X, Z.) — log 4(Z.|6)

s=1

= Above is also called the "score function” based gradient (also REINFORCE method)

Gradient of a log-likelihood or log-probability function wir.t,

its params is called score function; hence the name
*Black Box Variational Inference - Ranganath et al (2014) CS772A: PML



Reparametrization Trick

* Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)
» Suppose we want to compute ELBO's gradient V4Eq, z)[log p(X, Z) — log g4 (Z)]

= Assume a deterministic transformation g
Assumed to not

7 = g(E, ¢) where € ~ p(€) depend on ¢
= With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

VEy)[log p(X, g(€, ¢)) — log gs(g(€, )] = Epe)Vo[log p(X, g(e, ¢)) — log qs(g (€, #))]

= Given S i.i.d. random samples {€,}5_, from p(€), we can get a Monte-Carlo approx.

VEq,z)llog p(X, Z) — log q4(Z)]~ % > [Vslogp(X, g(es; d)) — Vo log go(g(es, ¢))]

* Such gradients are called pathwise gradients® (since we took a "path” from € to Z)

CS772A: PML

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: An Example

» Suppose our variational distribution is g(w|¢) = N (w|u, X), so ¢ = {u, X}

= Suppose our ELBO has a difficult expectation term [, [ f (w)] SVL;’:L{Z’ 3101(2)

* However, note that we need ELBO gradient, not ELBO itself. Let's use the trick

= Reparametrize w as w = u + Lv where v ~ N (0, I) ssﬁlg‘;tzwm&ﬂ'gve

V,LL,LEN(Wll,L,Z)[f(w)] — vILJ-IE‘:J'\/’(VIO,I)[f-(:u 03 LV)] & ]EN(v|o,|)[vu,Lf(H £3 LV)]

" The above is now straightforward Often even one or very
» Fasily take derivatives of f(w) wirt. variational params u, L few samples suffice
= Replace exp. by Monte-Carlo averaging using samples of v from N (0, I) of ow

dw du
VBl fW)] = Exion[Vif(u+ L)) AT F(+ Lvd)D o me
ViENwiws)[f(W)] = Ex(jon[Vif(p+ Lv)] ""‘ off .

. . L . ow 9
" Std. reparam. trick assumes differentiability (recent work on removing th?swre]“q).
CS772A: PML

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: Some Comments

» Standard Reparametrization Trick assumes the model to be differentiable
VEq,z)llog p(X,Z) — log gs(Z)] = Ep¢) [V log p(X, g(€, @) — Ve log go(g(€, ¢))]

= |n contrast, BBVI (score function gradients) only required q(Z) to be differentiable
" Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary /categorical)

= Recent work on continuous relaxation’ of discrete variables'(e.g., Gumbel Softmax for categorical)

" The transformation function g may be difficult to find for general distributions

= Recent work on generalized reparametrizations™

" Also, the transformation function g needs to be invertible (difficult/expensive)
» Recent work on implicit reparametrized gradients”

= Assumes that we can directly draw samples from p(€). If not, then rep. trick isn’t valid®

tCategorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurefglf?i,A_ PML
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016) :



Automatic Differentiation Variational Inference

= Suppose Z is D-dim r.v. with constraints (e.g., non-negativity) and distribution q(Z|¢)
= Assume a transformation T such that u = T(Z) st. u € RP (unconstrained) then

dtBZ
© ou

" Recall the original ELBO expression L(¢) = Egz|) [log

q(u) = q(Z)

p(D.Z)
q(Z|p)
= Assuming q(uly) = N (u|u, ) and using Z = T~1(u), the ELBO becomes
p(D,T~"(w))|det(9Z/0u)|
L@) = Eqeupyp) [108 T, ]

= Eq upy)[log p(D, T2 () + log|det(8Z/0w)|] + H(q(uly))

» Optimize L(Y) wirt. Y to get g(u|y) as a Gaussian and use distribution
transformation equation to get q(Z|¢)

CS772A: PML



Structured Variational Inference

" Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
* Removing the independence assumption of mean-field VI
" |n general, learning more complex forms for the variational approximation family q(Z|¢)

" Jo remove the mean-field assumption in VI, various approaches exist
= Structured mean-field (Saul et al, 1996)
* Hierarchical VI (Ranganath et al, 2016): Variational params ¢+, ¢, ..., ¢ “tied” via a shared prior

q(z1,...,zum|0) = / [H q(zm|dm)| p(¢|0)dep

" Recent work on learning more expressive variational approx. for general VI

, , , C , . C Even simple unimodal components
= Boosting or mixture of simpler distributions, e.g., q(Z) = Y¢=1Ppcqc(Z)< give a multimodal q(2)

= Normalizing flows™*: Turn a simple var. distr. into a complex one via series of invertible transfor.

A mgch more cc')m.plex(e'.g.,. | 2 = fx 00 fi(20), Zo~ qo(2), A.Sm.mple? unimodal variational
multimodal) variational distribution distribution (e.g.. N (0, 1)

obtained via the flow idea = ofr | "

Zrg ~ Qi (2K) = qo(2 det
( ) 0 0 n az,l;_ :

*Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015) CS772A: PML




Other Divergence Measures

" \/| minimizes KL(q||p) but other divergences can be minimized as well
» Recall that VI with minimization of KL(q||p) leads to underestimated variances

= A general form of divergence is Renyi's a-divergence defined as

log f p(2)%q(2)'-dZ

DE(p@D)|a(@®) = —

* KL(p||q) is a special case with & — 1 (can verify using L'Hopital rule of taking limits)

" An even more general form of divergence is f-Divergence

Z
Dr(p(2)||q(2)) = fq(Z)f (%> “

= Many recent variational inference algorithms are based on minimizing such divergences

CS772A: PML



Variational Inference: Some Comments

» Many probabilistic models nowadays rely on VI to do approx. inference

" Fven mean-field with locally-conjugacy used in lots of models
= This + SVI gives excellent scalability as well on large datasets

" Progress in various areas has made VI very popular and widely applicable
= Stochastic Optimization (e.g., SGD)

We covered many of the threads A
s Automatic Differentiation being explored in recent work but Lo 4 /
. a lot of work still being done in
= Monte-Carlo gradient of ELBO this aren ° e»

= Note: Most of these ideas apply also to Variational EM

* Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g.,
Tensorflow Probability, Pylorch, etc), making VI easy even for complex models

= Still a very active area of research, especially for doing VI in complex models
= Models with discrete latent variables
* Reducing the variance in Monte-Carlo estimate of ELBO gradients
= More expressive variational distribution for better approximation C5772A: PML



Sampling for Approximate Inference

" Some typical tasks that we have to solve in probabilistic/fully-Bayesian inference

Ppstgrior —_— p[ﬂlﬁ)p(ﬂ) —_— p[ﬂ|-ﬁ)p[8)
distribution p(g‘p) F-'(‘D] — IP(‘D|H]P(H]£“E

oo —p(D™Y| D) = / p(D"™"|0)p(6|D)dO = E g p)[p(D"|6)]

Needed for model

selection (and in :
onpang 0, L P(Dm) = /P(D\B)P(ﬂm)dﬂ = Ep(o|m)[P(D|0)]

Expected

Needed in EM . omplete data E){p—CLL — /‘p(zw? x)p(x? Zlﬁ)d?_’ = Ep{ﬂg_lx][P(I; E|9)]

log-likelihood

et o 150~ £(q) = Eqlog p(x, 2)] — Eq[log p(2)]
= Sampling methods provide a general way to (approximately) solve these problems

* More general than VI methods which only approximate the posterior distribution
CS772A: PML



Approximating a Prob. Distribution using Samples

= Can approximate any distribution using a set of randomly drawn samples from it

Given large-enough
samples, it is proportional to
the probability density at
that location

Height of each bar
denotes how many
times that location
was sampled

Samples can thought
of as a histogram-
based approximation
of a distribution

|

p(z)

" The samples can also be used for computing expectations (Monte-Carlo averaging)

» Usually straightforward to generate samples if it is a simple/standard distribution

" The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it
s often possible to generate random samples from such a distribution, as we will see.

CS772A: PML



The Empirical Distribution

» Sampling based approx. can be formally represented using an empirical distribution

= Given L points/samples z(1), 2z ..., z(1)  empirical distr. defined by these is

Weights sum to 1 A

Dirac Distribution with Weight of point 70
finite support at |
z®,2®, ., 21 | I
pL(A) = Wffsz“ (A) & l BT
Can think of A4 as being the l /
area over which we want to

evaluate the distribution

Dirac Distribution f A
() =49 " 27
1 if z€ A

CS772A: PML



= Most of these basic methods are based on the idea of transhformation Determinant

of Jacobian

" Generate a random sample x from a distribution g (x) which is easy to sample from

= Apply a transformation on x to make it random sample z from a complex distr p(z) F (). COF of p(2)

= Some popular examples of transformation methods x
* Inverse CDF method 1 /
_ - 1 z =F 1(x)
x ~ Unif(0,1) = z = Inv-CDF ;) (x) ~ p(2) = 77

» Reparametrization method
x ~N(0,1) = z=pu+ox ~N(u,oc°)
= Box-Mueller method: Given (x4, x,) from Unif(0, 1), generate (z4, z,) from N (0, 1,)

z1 = y/—2Inx;cos(2mx,), z; = /—21nx;sin(2mx,)

* Transformation Methods are simple but have limitations
= Mostly limited to standard distributions and/or distributions with very few variables
CS772A: PML



Rejection Sampling

p(2)
p

» Goal: Generate a random sample from a distribution of the form p(z) = . assuming

= We can only evaluate the value of numerator p(z) for any z
= The denominator (normalization constant) Z,, is intractable and we don't know its value

Should have the same
| suonrt as .p(z)
* Assume a proposal distribution q(z) we can generate samples from, and

Mq(z) > p(z) Vz (where M > 0 is some const.)

" Rejection Sampling then works as follows ma(2,) L)
= Sample a random variable z, from q(z)
= Sampling a uniform rv. u ~ Unif[0, Mq(z,)]
» If u < p(z,) then accept z,, otherwise reject it /

= All accepted z,'s will be random samples from p(z). Proof on next slide
CS772A: PML



Rejection Sampling
" \Why z ~ g(z) + accept/reject rule is equivalentto z ~ p(z)~

" | et's look at the pdf of the z's that were accepted, i.e., p(z|accept)

B plz) 1 B B(z)
p(accept|z) = /U. Maq(2) du = Ma(2)
p(z,accept) = q(z)p(accept|z) = pl(\;)
p(accept) = /#d _ % B
p(z|accept) = PL;::S) _ péz) _ o(2)
p

CS772A: PML



Computing Expectations via Monte Carlo Sampling

= Often we are interested in computing expectations of the form

Elfl = | Fw@)dz
where f(z) is some function of the random variable z ~ p(2)
" A simple approx. scheme to compute the above expectation: Monte Carlo integration

Assuming we know how
to sample from p(z)

= Generate L independent samples from p(z): {z({’)}izl ~ p(2)

* Approximate the expectation by the following empirical average

E[f] ~ f = +¥5, f(z®)

" Since the samples are independent of each other, we can show the following (exercise)

Variance in our
]_ estimate decreases

comaion ~ EFFI =E[f]  and var[f] = Jvar[f] = %E[(f—IE[f])z] o L increases

expectation
CS772A: PML



Computing Expectations via Importance Sampling

* How to compute Monte Carlo expec. if we don't know how to sample from p(z)~
= One way is to use transformation methods or rejection sampling
= Another way is to use Importance Sampling (assuming p(z) can be evaluated at least)

= Generate L indep samples from a proposal q(z) we know how sample from: {z(f)}izl ~ q(2)

= Now approximate the expectation as follows

= [ repeas = [ 1oES i@ =1y o)

" This is basically "weighted” Monte Carlo mtegration

)
. @ —P7)
W  q(z®)

denotes the importance weight of each sample z()

= |S works even when we can only evaluate p(z) = % up to a prop. constant

p
* Note: Monte Carlo and Importance Sampling are NOT sampling methods!
* These are only uses for computing expectations (approximately) CS772A: PML

See PRML 11.1.4



Limitations of the Basic Methods

" Transformation based methods: Usually limited to drawing from standard distributions

* Rejection Sampling and Importance Sampling: Require good proposal distributions

Mq(z, )

p(z?)
T2,

MCI(Z) eﬂV€|OpeS p(Z) /\ Ideally, would like q(z) to
give samples from where p(z)

everywhere .
/ \ is large or f(z)p(z) is large
» Difficult to guarantee so if z is

. :.' . - / _ “ | high-dimensional
Rejection Sampling Importance Sampling

q(z) should be such that

" |n general, difficult to find good prop. distr. especially when z is high-dim

= More sophisticated sampling methods like MCMC work well in such high-dim spaces

CS772A: PML



Markov Chain Monte Carlo (MCMC)frue ags s posteio i

conditioned on data, i.e., p(z|x)

= Goal: Generate samples from some target distribution p(z) = £2

p
z usually is high-dim Means we can at least

= Assume we can evaluate p(z) at least up to a proportionality constant- ©=vetP

= MCMC uses a Markov Chain which, when converged, starts giving samples from p(z)

z) 5 z() 5 () — ... g(L_‘?) — z(t7D) z(Ll

A

" e

initial samples typically garbage after convergence, actual samples from p(z)

" Given current sample z™ from the chain, MCMC generates the next sample zUHD 55

= Use a proposal distribution q(z|z(€)) to generate a candidate sample z,
= Accept/reject z, as the next sample based on an acceptance criterion (will see later)

» |f accepted, set z¢FD =z, If rejected, set z¢+D = 7

Should also have the

= Important: The proposal distribution q(z|z®) depends on the previous sample z®

CS772A: PML



MCMC: The Basic Scheme

= The chain run infinitely long (i.e., upon convergence) will give ONE sample from p(z)
MCMC is exact in theory but A

" But we usually require several samples to approximate p(z) | 2Poxmaten practeesince | 5ty /
Thus we say that the infinitely long in practice e'Y»

samples are approximately

" This is done as follows o
from the target distribution
= Start the chain at an initial z(®) Wil treat it as our first
= Using the proposal q(z|z), run the chain long enough, say T; steps sample from p(2)
= Discard the first T; — 1 samples (called “burn-in" samples) and take last sample z(T)

= Continue from z(T) up to T, steps, discard intermediate samples, take last sample z(T2)
= This discarding (called “thinning") helps ensure that z(™) and z{"2) are uncorrelated

" Repeat the same for a total of S times Requirement for Monte
= In the end, we now have S approximately independent samples from p(2) Carlo approximation

* Note: Good choices for Ty and T; — T;_1 (thinning gap) are usually based on heuristics

CS772A: PML
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