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Passive Learning

▪ Standard supervised learning is passive
▪ Learner has no control over what labelled training examples it gets to learn from
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Labeled Training Examples

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , …

Random Unlabeled 

     Examples

Supervised Passive Learner
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Active Learning

▪ In Active Learning, the learner can request specific labelled examples as it trains
▪ In particular, examples that the learner thinks will be most useful to learn the underlying function
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Supervised Active Learner

Assumes some small amount of initial 

labelled training examples 𝒟 =
𝑥𝑛, 𝑦𝑛 𝑛=1

𝑁  are available to learn 

an initial model

The new labelled examples 

acquired “actively” are used to 

improve the initial model by 

retraining it using the updated 

training data 𝒟 = {𝒟 ∪ (𝑥∗, 𝑦∗)} 
and repeating the process until 

we get the desired accuracy or 

our budget exhausts

Using the current model, 

identify the most useful 

example(s) from the 

unlabeled data pool

Query the expert for the true label of the 

selected unlabeled example, say 𝑥1

⟨𝑥1, ? ⟩ 

⟨𝑥1, 𝑦1⟩ 

⟨𝑥2, 𝑦2⟩ 

⟨𝑥2, ? ⟩ 

Although one example in each 

iteration is more common, labels of 

one or more than one examples can 

be queried (“batch” active learning”) 

It is therefore also a sequential 

learning strategy (training data 

is not given all at once)

Will soon see what are some 

common notions of usefulness
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Active Learning

▪ The figure below is another illustration of AL
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(unlabeled examples)(provides true labels for
 the unlabeled examples)
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Measuring Usefulness in AL

▪ Various ways to measure the usefulness of an unlabeled example 𝒙∗ 
▪ Defined by an “acquisition function” 𝐴(𝒙∗) (high value for most useful unlabeled examples)

▪ Approach 1: For 𝑥∗, look at uncertainty in output 𝑦∗ predicted by the current model
▪ Can use variance in the posterior predictive distribution: 𝐴 𝒙∗ =  var(𝑦∗) 

▪ More generally, can use entropy of the PPD: 𝐴 𝒙∗ = ℍ[𝑝 𝑦∗ 𝒙∗, 𝒟 ]

▪ Approach 2: Look at how much our model will improve if  we add this unlabeled 
example with its true label, to our training set, and retrain the model
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Note that this is the “marginal entropy” of 

the output distribution since the posterior 

predictive of the output is obtained by 

marginalizing over the posterior

High entropy Low entropy

Given the acquisition function, the most 

useful example can be selected from the 

pool as 

ෝ𝒙∗ = argmax𝑥∗∈ 𝒳𝑝𝑜𝑜𝑙 𝐴 𝒙∗|𝑝 𝜃 𝒟

Note: We will use 

shorthand 𝐴(𝒙∗) 

𝐴 𝑥∗ =  ℍ 𝑝 𝜃 𝒟 − 𝔼𝑝 𝑦∗ 𝑥∗, 𝒟 ℍ 𝑝 𝜃 𝒟 ∪ 𝒙∗, 𝑦∗ = 𝕀[𝜃; 𝑦∗|𝒟, 𝒙∗]

Entropy of the current posterior Entropy of the new posterior after including the 

new example in our training set

Need to use expectation 

here since 𝑦∗ is not known

Mutual Information
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Batch Active Learning

▪ Approaches we saw work by querying and adding one example at a time

▪ Expensive in practice since we have to retrain every time after including a new example

▪ Especially true for deep learning models which are computationally expensive to train

▪ In practice, we want to use AL to jointly query the labels of 𝐵 > 1 examples

▪Difficult to construct such joint acquisition function and maximize them

▪ A greedy scheme is to simply select the 𝐵 highest scoring points

▪ The above however is myopic and ignores correlations among the selected points
▪ Some recent works have addresses this issue1

7

(ෝ𝒙1, ෝ𝒙2, … , ෝ𝒙𝐵) = argmax(𝒙1,𝒙2,…,𝒙𝐵)∈ 𝒳𝑝𝑜𝑜𝑙 𝐴 𝒙1, 𝒙2, … , 𝒙𝐵|𝑝 𝜃 𝒟

𝐴 𝒙1, 𝒙2, … , 𝒙𝐵|𝑝 𝜃 𝒟 =  ෍
𝑏=1

𝐵

𝕀[𝜃; 𝑦𝑏|𝒟, 𝒙𝑏]

1BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning (Kirsch et al, NeurIPS 2019)
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Bayesian Optimization
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Bayesian Optimization: The Basic Formulation

▪ Consider finding the optima 𝑥∗(say minima) of a function 𝑓 𝑥    

▪ Caveat: We don’t know the form of the function; can’t get its gradient, Hessian, etc

▪ Can only query the function’s values at certain points (i.e., only “black-box” access)
▪ The values may or may not be noisy (i.e., we may be given 𝑓(𝑥) or 𝑓 𝑥 + 𝜖)

9



CS772A: PML

Bayesian Optimization: Some Applications

▪ Drug Design: Want to find the optimal chemical composition for a drug

▪ Optimal composition will be the one that has the best efficacy

▪ But we don’t know the efficacy function

▪ Can only know the efficacy via doing clinical trials

▪ Each trial is expensive; can’t do too many trials

▪ Hyperparameter Optimization: Want to find the optimal hyperparameters for a model

▪ Optimal hyperparam values will be those that give the lowest test error 

▪ Don’t know the true “test error” function

▪ Need to train the model each time with different h.p. values and compute test error

▪ Training every time will be expensive (e.g., for deep nets)

▪ Note: Hyperparams here can even refer to the structure of a deep net (depth, width, etc)

▪Many other applications: Website design via A/B testing, material design, 
optimizing physics based models (e.g., aircraft design), etc
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Bayesian Optimization

▪ Can use BO to find maxima or minima

▪ Would like to locate the optima by querying the function’s values (say, from an oracle)

▪ We would like to do so using as few queries as possible

▪ Reason: The function’s evaluation may be time-consuming or costly
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Assuming the goal is 

to find the minima
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Bayesian Optimization

▪ Suppose we are allowed to make the queries sequentially

▪ This information will be available to us in form of query-function value pairs  

▪ Queries so far can help us estimate the function

▪ BO uses past queries + function’s estimate+uncertainty to decide where to query next

▪ Similar to Active Learning but the goal is to learn 𝑓 as well as finds its optima
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Dotted curve: True function

Green curve: Current estimate (“surrogate”) of the function

Shaded region: Uncertainty in the function’s estimate

{ 𝑥𝑛, 𝑓 𝑥𝑛 }𝑛=1
𝑁

Note: Function values 

can be noisy too, e.g., 

𝑓 𝑥𝑛 + 𝜖𝑛

By solving a 

regression problem
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Bayesian Optimization

▪ BO requires two ingredients 

▪ A regression model to learn a surrogate of 𝑓(𝑥) given previous queries { 𝑥𝑛, 𝑓 𝑥𝑛 }𝑛=1
𝑁  

▪ An acquisition function 𝐴(𝑥) to tell us where to query next

▪ Note: The regression model must also have estimate of function’s uncertainty
▪ Bayesian nonlinear regression, such as GP, Bayesian Neural network, etc would be ideal
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Note: Function values 

can be noisy too, e.g., 

𝑓 𝑥𝑛 + 𝜖𝑛

A typical example of what 𝐴(𝑥) 

might look like, assuming that the 

goal is to find the maxima of 𝑓 𝑥

Dotted curve: True function

Green curve: Current surrogate of the function

Shaded region: Uncertainty in the function’s estimate

Assumption: 𝐴(𝑥) should be 

easier to optimize than 𝑓 𝑥
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Bayesian Optimization: An Illustration

▪ Suppose our goal is to find the maxima of 𝑓(𝑥) using BO
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Pic source: http://krasserm.github.io/2018/03/21/bayesian-optimization/
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Some Basic Acquisition Functions for BO
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(assuming we are finding the minima)
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Acquisition Functions: Probability of Improvement

▪ Assume past queries 𝒟𝑁 = 𝑿, 𝒇 = 𝑥𝑛, 𝑓 𝑥𝑛 𝑛=1

𝑁
 and suppose 𝑓𝑚𝑖𝑛 =  min 𝒇

▪ Suppose 𝑓𝑛𝑒𝑤 denotes the function’s value at the next query point 𝑥𝑛𝑒𝑤

▪ We have an improvement if  𝑓𝑛𝑒𝑤  < 𝑓𝑚𝑖𝑛 (recall we are doing minimization)

▪ Assuming the function is real-valued, suppose the posterior predictive for 𝑥𝑛𝑒𝑤 is

▪ We can define a probability of improvement based acquisition function

▪ The optimal query point will be one that maximizes 𝐴𝑃𝐼 𝑥𝑛𝑒𝑤   

16

𝑝(𝑓𝑛𝑒𝑤|𝑥𝑛𝑒𝑤 , 𝒟𝑁) =  𝒩(𝑓𝑛𝑒𝑤|𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 ) 

𝐴𝑃𝐼 𝑥𝑛𝑒𝑤 = 𝑝 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑚𝑖𝑛 = න
−∞

𝑓𝑚𝑖𝑛

𝒩 𝑓𝑛𝑒𝑤 𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 𝑑𝑓𝑛𝑒𝑤 = Φ
𝑓𝑚𝑖𝑛  − 𝜇(𝑥𝑛𝑒𝑤)

𝜎(𝑥𝑛𝑒𝑤)

Exercise: Verify

𝑥∗ =  argmax𝑥𝑛𝑒𝑤
𝐴𝑃𝐼(𝑥𝑛𝑒𝑤)

Φ() denotes CDF 

of 𝒩(0,1)
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Acquisition Functions: Expected Improvement

▪ PI doesn’t take into account the amount of improvement

▪ Expected Improvement (EI) takes this into account and is defined as

▪ The optimal query point will be one that maximizes 𝐴𝐸𝐼(𝑥𝑛𝑒𝑤)

▪Note that the above acquisition function trades off exploitation vs exploration
▪ Will prefer points with small predictive mean 𝜇 𝑥𝑛𝑒𝑤 : Exploitation

▪ Will prefer points with large predictive variance 𝜎 𝑥𝑛𝑒𝑤 : Exploration
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𝐴𝐸𝐼 𝑥𝑛𝑒𝑤 = 𝔼[𝑓𝑚𝑖𝑛  − 𝑓𝑛𝑒𝑤] = න
−∞

𝑓𝑚𝑖𝑛

(𝑓𝑚𝑖𝑛  − 𝑓𝑛𝑒𝑤)𝒩 𝑓𝑛𝑒𝑤 𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 𝑑𝑓𝑛𝑒𝑤

= 𝑓𝑚𝑖𝑛  − 𝜇 𝑥𝑛𝑒𝑤 Φ
𝑓𝑚𝑖𝑛  − 𝜇 𝑥𝑛𝑒𝑤

𝜎 𝑥𝑛𝑒𝑤
+ 𝜎 𝑥𝑛𝑒𝑤 𝒩

𝑓𝑚𝑖𝑛  − 𝜇 𝑥𝑛𝑒𝑤

𝜎 𝑥𝑛𝑒𝑤
; 0,1

𝑥∗ =  argmax𝑥𝑛𝑒𝑤
𝐴𝐸𝐼(𝑥𝑛𝑒𝑤)

Focus on points where 

the function has small 

values (since we are 

looking for its minima)

Focus on points where 

the function has high 

uncertainty (so that 

including them 

improves our estimate 

of the function)

Exercise: Prove 

this result
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Acquisition Functions: Lower Confidence Bound

▪ Lower Confidence Bound (LCB) also takes into account exploitation vs exploration

▪ Used when the regression model is a Gaussian Process (GP)

▪ Assume the posterior predictive for a new point to be

▪ The LCB based acquisition function is defined as

▪ Point with the smallest LCB is selected as the next query point

▪ 𝜅 is a parameter to trade-off exploitation (low mean) and exploration (high variance)

▪ Under certain conditions, the iterative application of this acquisition function will 
converge to the true global optima of 𝑓 (Srinivas et al. 2010)
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𝑝(𝑓𝑛𝑒𝑤|𝑥𝑛𝑒𝑤 , 𝒟𝑁) =  𝒩(𝑓𝑛𝑒𝑤|𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 ) 

𝐴𝐿𝐶𝐵 𝑥𝑛𝑒𝑤 = 𝜇 𝑥𝑛𝑒𝑤 − 𝜅 𝜎 𝑥𝑛𝑒𝑤

𝑥∗ =  argmin𝑥𝑛𝑒𝑤
𝐴𝐿𝐶𝐵(𝑥𝑛𝑒𝑤)

When using BO for maximization, we use 

Upper Confidence Bound (UCB) defined as 

𝐴𝑈𝐶𝐵 𝑥𝑛𝑒𝑤 =  𝜇 𝑥𝑛𝑒𝑤 + 𝜅 𝜎 𝑥𝑛𝑒𝑤  and 

𝑥∗ =  argmax𝑥𝑛𝑒𝑤
𝐴𝑈𝐶𝐵(𝑥𝑛𝑒𝑤) 

Thus prefer points at which 

the function has low mean 

but high variance
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Bayesian Optimization: The Overall Algo

▪ Initialize 𝒟 = {}

▪ For 𝑛 = 1,2, … , 𝑁 (or until the budget doesn’t exhaust)

▪ Select the next query point 𝑥𝑛 by optimizing the acquisition function

▪ Get function’s value from the black-box oracle: 𝑓𝑛 = 𝑓 𝑥𝑛

▪ 𝒟 = {𝒟 ∪ (𝑥𝑛, 𝑓𝑛)}

▪ Update the regression model for 𝑓 using data 𝒟
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𝑥𝑛 =  argopt𝑥  𝐴(𝑥)

Can get the function’s 

minima from this set of 

function’s values
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BO: Some Challenges/Open Problems

▪ Learning the regression model for the function
▪ GPs are flexible but can be expensive as 𝑁 grows

▪ Bayesian neural networks can be a more efficient alternative to GPs (Snoek et al, 2015)

▪ Hyperparams of the regression model itself  (e.g., GP cov. function, Bayesian NN hyperparam)

▪ High-dimensional Bayesian Optimization (optimizing functions of many variables)
▪ Most existing methods work well only for a moderate-dimensional 𝑥

▪ Number of function evaluations required would be quite large in high dimensions

▪ Lot of recent work on this (e.g., based on dimensionality reduction)

▪ Multitask Bayesian Optimization (joint BO for several related functions)
▪ Basic idea: If  two functions are similar their optima would also be nearby
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