
1 Introduction to Information Theory

We begin with an overview of probability on discrete spaces. Let the discrete set of outcomes of some
experiment be Ω. The set Ω is usually called the sample space. Subsets of this set are called the events. A
probability distribution on Ω is a function P : Ω→ [0, 1] such that the following are true.

1. P (∅) = 0. When we do the experiment, we stipulate that some outcome in Ω should occur. Thus, the
probability that no outcome in Ω occurs, should be zero.

2. We would like to state that the probability of a set S of outcomes is the sum of the probabilities of
the individual outcomes in S.

We generalize this to say the following. Suppose S is partitioned into disjoint sets A1, A2, . . . . Then
S can be viewed either as a whole, or as a union of the different Ais. Since the set is the same when
viewed in both these ways, we have the stipulation that the probability of S should be the sum of the
probabilities of the different Ais. We have the following condition.

For disjoint events A1, A2, . . . ,

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

3. Either an event A happens, or it does not happen. Since these events are mutually exclusive and
exhaustive, by the previous condition, their probabilities have to add up to the probability of the
entire space of outcomes. Set P (Ω) = 1. Thus we have the following condition. (Note that, the values
set to Ω and ∅ satisfy the stipulation.)

For any event A, P (Ac) = 1− P (A).

Then the pair (Ω, P ) is called a discrete probability space.

Example 1.0.1. Let Ω be the set of outcomes of a fair coin toss. Then the function µ(H) = 0.5 and
µ(T ) = 0.5 defines a distribution. �

Example 1.0.2. For a number n, let π(n) = 2−n. Then (N− {0}, π) forms a distribution. �

Let (Ω, F ) be a discrete probability space for the subsequent discussion.

A random variable is a function X : Ω → Γ where Γ is a discrete set. The probability distribution
induced by X on Γ, denoted pX , is defined for every x ∈ Γ as

p
X

(x) = F{ω ∈ Ω | X(ω) = x}.

This can be abbreviated as
p

X
(x) = F (X−1(x)).

Thus X imposes a probability structure on the image Γ using the probability distribution on the domain
Ω.
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Example 1.0.3. Consider a game of darts, where the board has 3 bands, red, blue and green from outside
in, and the bull’s eye is marked in black. Let the score a player gets be 10, 20, 10 and 40, respectively for
dart throws on red, blue, green and black. Assume that the probability that a dart falls on red is 0.5, blue
is 0.2, green is 0.2 and bull’s eye is 0.1.

This can be abstracted by the random variable: X(red) = 10, X(blue) = 20, X(green) = 10 and
X(black) = 40.

Then after a throw, pX(10) = F ({ red, green }) = 0.7. �

We now would like to define multidimensional probability distributions induced by random variables.
Consider a distribution F2 defined on Ω× Ω.

Definition 1.0.4. Let X : Ω → Γ and Y : Ω → Π be two random variables. The joint distribution
pX,Y : Ω× Ω→ Γ×Π is defined as

p
X,Y

(γ, π) = F2

(
(X−1(γ), Y −1(π))

)
.

It is possible to define marginal distributions

p
Y |X

(π | γ) =
p

X,Y
(γ, π)

p
X

(γ)
.

That is, pY |X(· | γ) is the probability distribution which is produced by scaling down the whole of the space
Γ to a particular outcome γ. It follows that

p
X,Y

(γ, π) = p
X

(γ) p
Y |X

(π | γ) = p
Y

(π) p
X|Y

(γ | π).

Example 1.0.5. Let Ω = {H,T} represent the outcome of a coin toss. We consider the sample space Ω×Ω
of two coin tosses. Let F2 be defined as F2(T, T ) = 0.1, F2(H,T ) = 0.2, F2(T,H) = 0.3 and F2(H,H) = 0.4.

Let X be the map X(T ) = 1, X(H) = 2, and Y be the map Y (H) = 10, Y (T ) = 20. The following table
represents a joint distribution X,Y . (That is, the first coin toss is “scored” according to X and the second
according to Y .)

(0.25,0.75) (0.33, 0.67)
20 0.3 0.4 (0.42, 0.58)
10 0.1 0.2 (0.33, 0.67)

1 2

�

An important notion which characterizes the theory of probability, is the idea of independence. Inde-
pendence tries to capture the idea that the occurrence of an event does not give any information about
the occurrence of another. The mathematical way to capture this notion is as follows. Two outcomes are
said to be independent if F2(ω1, ω2) = F (ω1)F (ω2). Similarly, two events A and B are independent if
F (A ∩B) = F (A)F (B). We extend this to the concept of two random variables being independent.
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Definition 1.0.6. Two random variables X : Ω→ Γ and Y : Ω→ Π are independent if

p
X,Y

(γ, π) = p
X

(γ)p
Y

(π).

Alternatively, we can say that X is independent of Y if p
X|Y

= p
X

. We can verify that if X is independent

of Y , then Y is independent of X. We can think of this as the most basic instance of “symmetry of
information”.

Example 1.0.7. It is easily verified that the joint distribution in the previous example does not define lead
to independent X and Y . Let Ω, X and Y be as before. Let F2 be defined as F2(TT ) = 0.01, F2(TH) = 0.09,
F2(HT ) = 0.09, F2(HH) = 0.81. This distribution is the product distribution generated by

F =
(

T H
0.1 0.9

)
.

We can verify that X and Y are independent of each other in this distribution.

(0.1,0.9) (0.1, 0.9)
20 0.09 0.81 (0.1, 0.9)
10 0.01 0.09 (0.1, 0.9)

1 2

�

For more than two random variables, we can define various degrees of independence.

Definition 1.0.8. Random variables X1, X2, . . . , Xn are said to be mutually independent if

p
X1,X2,...,Xn

(x1, . . . , xn) = p
X1

(x1), p
X2

(x2) . . . p
Xn

(xn).

Mutual independence is the strongest form of independence among n random variables. Another fre-
quently useful notion is the weaker notion of pairwise independence.

Definition 1.0.9. Random variables X1, X2, . . . , Xn are said to be pairwise independent if every pair of
distinct random variables among them are independent.

Mutual independence implies pairwise independence, but not conversely. An example to show that
pairwise independence does not imply mutual independence is shown below, using the properties of the
parity function.

Example 1.0.10. Consider two bits b0 and b1 produced by flips of a fair coin, and designating T with 1
and H with 0. Consider b2 defined as the parity (XOR) of b0 and b1. It can be verified that any pair (bi, bj)
of distinct bits are independent, but the three variables are not mutually independent. �

With this basic set of definitions from probability, we can now define the notion of entropy of a random
variable.
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Definition 1.0.11. Let (Ω, P ) be a discrete probability space, and X : Ω → Γ be a random variable. The
entropy of the random variable X is defined to be

H(X) = −
∑
x∈Γ

p
X

(x) log p
X

(x),

where we adopt the convention that 0 log 0 = 0.

We can think of the entropy of a random variable as follows. If we assign an optimal coding scheme for
the image X(Ω), where the higher the probability of a point, the fewer the bits we use in its encoding, we
would use log 1

P (x) bits to represent a point x. The entropy then is the weighted average of the length of this
encoding scheme. Thus the entropy is the expected length of an optimal encoding of the random variable
X, where X is distributed according to pX .

Once we are familiar with the notion of probabilities induced by a random variable, we can drop the
subscript from the probability. This is done to ease the burden of notation, when there is no confusion
regarding which random variable we are talking about.

In the case where Γ consists of two symbols, we have the binary entropy function, H(X) = −p log p −
(1− p) log(1− p). We denote this as h(p).

For two random variables X and Y , we can define the notions of joint entropy, and conditional entropies.

Definition 1.0.12. The joint entropy of two random variables X and Y is defined as

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) = −E log p
X,Y

.

The conditional entropy of Y given X is defined by

H(Y | X) = −
∑
x,y

p
X,Y

(x, y) log p
Y |X

(y | x) = −Ep
X,Y

log p
Y |X

.

Note the asymmetry in the last definition. We can understand this condition better by writing p(x, y)
as p(x)p(y | x). Then

H(Y | X) = −
∑
x,y

p(x)p(y | x) log p(y | x).

This summation can now be separated into two sums, since x and y do not vary together.

H(Y | X) =
∑

x

p(x)

[
−
∑

y

p(y | x) log p(y | x)

]
.

The inner term is the entropy H(Y | X = x). Thus

H(Y | X) =
∑

x

p(x)H(Y | X = x).

Definition 1.0.13. The information about X contained in Y is defined as I(X;Y ) = H(X)−H(X | Y ).
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Then, we have the property of symmetry of information.

Lemma 1.0.14. I(X;Y ) = I(Y ;X).

Proof.

I(X;Y ) = H(X)−H(X | Y )

= −
∑

x

p(x) log p(x) +
∑
x,y

p(x, y) log p(x | y)

=
∑

x

p(x) log
1

p(x)
+
∑
x,y

p(x, y) log
p(x, y)
p(y)

We know that the probability of a point x, namely p(x) is the sum of all p(x, y) where y takes all values in
Π. Thus, we can write the above sum as∑

x

∑
y

p(x, y) log
1

p(x)
+
∑
x,y

p(x, y) log
p(x, y)
p(y)

=
∑
x,y

p(x, y) log
1

p(x)
+
∑
x,y

p(x, y) log
p(x, y)
p(y)

[Notation]

=
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

.

By the symmetry of the resultant expression, I(X;Y ) = I(Y ;X).

An important property of the logarithm function is its concavity. The secant between two points on the
graph of a concave function always lies below the graph. This characterizes concavity. A consequence of
this fact is Jensen’s Inequality. This is a very convenient tool in the analysis of convex or concave functions.

Theorem 1.0.15 (Jensen’s Inequality). Let X : Ω→ R be a random variable with E[X] <∞, and f : R→ R
be a concave function. Then,

f(E[X]) ≥ E[f(X)].

Jensen’s inequality can hence be used to perform the following kind of inequality:

log
[∑

pixi

]
≥
∑

pi log xi.

Usually, the left side is easier to estimate. From the geometric observation that the tangent to the graph
of a concave function lies above the graph, we have the following useful upper bound on the logarithm
function.

Theorem 1.0.16 (Fundamental Inequality). For any a > 0, we have

ln a ≤ a− 1.

To illustrate an application of Jensen’s inequality, we will prove that the entropy of an n-dimensional
probability distribution is at most log n.
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Lemma 1.0.17. Let P = (p0, p2, . . . , pn−1) be an n-dimensional probability distribution. Then H(P ) ≤
log n.

Proof.

H(P ) =
n−1∑
i=0

[
pi log

1
pi

]

≤ log
n−1∑
i=0

pi

pi
[log is concave, and Jensen’s inequality. ]

= log
n−1∑
i=0

1

= log n.

Similarly, the fundamental inequality gives us a lower bound on the entropy, proving that it is non-
negative.

Lemma 1.0.18. Let P = (p0, p1, . . . , pn−1) be an n-dimensional probability distribution. Then H(P ) ≥ 0.

Proof.

H(P ) =
n−1∑
i=0

pi log
1
pi

≥
n−1∑
i=0

pi [1− pi] [Fundamental Inequality].

Both pi and 1− pi are non-negative terms, since they are coordinates of a probability vector. H(P ) is lower
bounded by a sum of nonnegative terms, thus, H(P ) ≥ 0.

We can push the above analysis a bit further and get the result that H(P ) = 0 if and only if P is a
deterministic distribution. It is easily verified that if P is a deterministic distribution, then H(P ) = 0. We
now prove the converse.

Lemma 1.0.19. Let P = (p0, p1, . . . , pn−1) be an n-dimensional probability distribution. Then H(P ) = 0
only if P is a deterministic distribution.

Proof. By the fundamental inequality, we have

H(P ) ≥
n−1∑
i=0

pi [1− pi] ≥ 0.

Assume H(P ) = 0. Then, the above sum of non-negative terms is 0, thus each of the constituent
summands is equal to 0. This can happen only if pi = 1 or pi = 0 for each i. Observing that P is a
probability distribution, thus exactly one pi is 1, is enough to prove the result.
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Similarly, from symmetry of information and the fundamental inequality, we can prove that I(X : Y ) ≥ 0.

For, we have the following.

I(X : Y ) = −
∑
x,y

p(x, y) log
p(x)p(y)
p(x, y)

≥
∑
x,y

p(x, y)
[
1− p(x)p(y)

p(x, y)

]
(by Fundamental Inequality for − log.)

=
∑
x,y

p(x, y)−
∑
x,y

p(x)p(y)

= 1−
∑

x

p(x)
∑

y

p(y)

= 1− 1 = 0.

1.1 Majorization*

We will just introduce a theory that is very useful in the study of entropy, how entropy changes when the
probability distribution changes. Consider probability distributions on a set of n elements. We have proved
that the entropy of the uniform distribution is maximal, and is equal to log n. Similarly, we have proved
that the entropy of a “deterministic” distribution, where one of the events has probability 1, and the rest
have probability 0, is minimal, and equal to 0 (take 0 log 0 = 0 by convention.)

This says the following. The space of probability distributions on n elements can be seen as a convex
set, with vertices being the deterministic distributions (1, 0, 0, ..., 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1). The
entropy is maximal at the centroid of this set - this point corresponds to the uniform distribution. It then
decreases outwards towards the vertices, and reaches 0 at each of the vertices.

How do we compare the entropy at two arbitrary points within this convex set? Can we determine some
easily verifiable property of the probability distributions and use that to say qualitatively which distribution
has greater entropy?

There is a powerful theory of majorization which can be used for this purpose. Majorization is a
comparison criterion for two n-dimensional vectors. A vector ~x is said to be majorized by another vector ~y
if, informally, ~y is more “equitably distributed” than ~x.

Definition 1.1.1. Let ~x and ~y be two non-negative n-dimensional vectors. Let ~a be ~x sorted in descending
order of coordinate values, and ~b be ~y sorted in descending order of coordinate values. Then, ~x is majorized
by ~y and we write ~x ≤ ~y if the following hold.

a0 ≥ b0
a0 + a1 ≥ b0 + b1

. . .

a0 + a1 + · · ·+ an − 1 = b0 + b1 + · · ·+ bn−1.

For example, (1, 0, 0) ≤ (1/2, 0, 1/2) ≤ (1/3, 1/3, 1/3).
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Thus, majorization provides an way to compare probability vectors. If a probability vector majorizes
another probability vector, then their entropies can be compared. This is because an n-dimensional entropy
function has a property called Schur concavity.

Definition 1.1.2. A function f : Rn → R is called Schur concave if f(~x) ≥ f(~y) whenever ~x ≤ ~y.

Shannon-entropy is Schur concave, as can be seen by an easy application of the following theorem.

Theorem 1.1.3 (Schur). A symmetric, continuous function f : Rn → R is Schur-concave if and only if the
projection of f onto each coordinate is a continuous concave function.

The theorem connecting these concepts enables us to compare the entropies of probability vectors in an
easy manner. A probability vector ~x has greater entropy than ~y if ~x ≤ ~y.

Note that, majorization is just a sufficient condition for comparing entropies. There are vectors which
do not majorize one another, with different entropies: For example, the 3-dimensional probability vector
(0.6, 0.25, 0.15) has greater entropy than (0.5, 0.5, 0) even though they do not majorize one another.

1.2 Kullback-Leibler Divergence

Majorization was a qualitative notion of comparing two probability distributions. A very useful quantitative
notion to compare two probability measures is known as the Kullback-Leibler divergence.

Definition 1.2.1. Let P and Q be two n-dimensional probability distributions. The Kullback-Leibler
Divergence of Q from P is defined as

D(P ||Q) =
n−1∑
i=0

Pi log
Qi

Pi
.

We can interpret this as follows. Note that

D(P ||Q) = −
n−1∑
i=0

Pi logPi +
n−1∑
i=0

Pi logQi = H(P )−

(
−

n−1∑
i=0

Pi logQi

)
.

This form is amenable to some interpretation. Suppose a sample space is distributed according to P .
We mistakenly encode the space as though the space were distributed according to Q. Then, the divergence
D(P ||Q) may be interpreted as the ‘coding inefficiency rate’ of encoding the space with respect to Q when
the optimal rate would have been achieved with respect to P .

The KL-divergence does not have many properties of a Euclidean distance, and hence is not a satisfactory
notion of ‘distance’ between probability vectors. However, it is remarkably useful.

Note: For example, the universal integrable test for a computable probability measure P in the previous
chapter was the total KL divergence of M from P on any string x. Also, the deficiency test for the weak
law of large numbers was approximately the KL divergence between the uniform distribution and px.
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We conclude our discussion by proving some basic facts about the KL-divergence. We prove that
D(P ||Q) = 0 if and only if P = Q. One direction is easy: if P = Q, then D(P ||Q) = 0. The converse is
slightly tricky.

Lemma 1.2.2. For finite positive probability distributions P and Q, P = Q only if D(P ||Q) = 0.

Proof. First, we prove that D(P ||Q) ≥ 0. We will analyze the calculations needed in this result to prove the
lemma.

First, we see that

D(P ||Q) =
∑

pi log
pi

qi

=
∑

pi

[
− log

qi
pi

]
≥
∑

pi

[
1− qi

pi

]
[Fundamental Inequality]

=
∑

pi −
∑

qi

= 0. [P and Q are probabilities.]

Then D(P ||Q) = 0 only if the inequality between lines 2 and 3 is an equality. We know that

− log
qi
pi
−
[
1− qi

pi

]
≥ 0,

hence every summand

pi

[
− log

qi
pi

]
in line 2 is at least the corresponding summand

pi

[
1− qi

pi

]
.

Thus line 2 and line 3 are equal only if the corresponding summands are equal. Thus, for every i, qi

pi
= 1,

proving that P = Q.
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