
2 Plain Kolmogorov Complexity

In this section, we introduce plain Kolmogorov Complexity, prove the invariance theorem - that is, the complexity
of a string does not depend crucially on the particular model of computation we choose. We then prove that
the notion is uncomputable, and prove some theorems about upper and lower bounds. We give an estimate of
the number of strings with high complexity, and conclude the section with a survey of the deficiencies of plain
Kolmogorov Complexity.

We recall the fact that there is a computable enumeration φ0, φ1, . . . of the partial computable functions.
We can now show that there is a universal partial computable function from strings to strings. For, there is a
universal Turing machine U which takes inputs in the format 〈sn, x〉, and computes φn(x). U ’s behavior in other
cases is undefined. The partial computable function ψ computed by the universal Turing machine is a universal
partial computable function.

We can now define the complexity of a string with respect to a given partial computable function φ.

Definition 2.0.1. Let x, y, p be strings. Any partial computable function φ, together with p and y, such that
φ(〈y, p〉) = x is a description of x. The complexity Cφ of x conditioned on y is defined by

Cφ(x|y) = min{|p| : φ(〈y, p〉) = x},

and Cφ(x|y) =∞ otherwise. We call p a program to compute x given y.

Example 2.0.2. Fix a string w and consider the string ww. Let L be the maximum length of any instruction
in a programming language that we use.

We describe two programs with indices sM and sN which outputs strings. Let sM be a program, that, given
a string x, prints xx. This is a fairly simple program, and can be computed by the following code.
——————–
1. Input x.
2. Print xx.
——————–

The length of the program is essentially the length of the two instructions.
On the other hand, the second program sN has w hardcoded into it, and prints ww. The code is as follows.

——————–
1. String = w.
2. Print ww.
——————–

The length of sN is the length of the two instructions together with the length of w, since we hardcode w
into the text of the program.

Let φ be a Turing machine capable of simulating sM and sN . (We do not necessarily say that φ is a universal
partial computable function, i. e., it can compute any partial computable function whatsoever.)
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That is, φ(〈sM , w〉) = ww. Then Cφ(ww|w) ≤ |sM | ≈ 2L.
We can derive only the inequality because, there might be shorter programs which could produce ww given

w.
On the other hand, φ(〈sN , λ〉) = ww. That is, sN is a program, which given no information, can output the

string ww. Since there is such a program sN , we get the estimate that

Cφ(ww|λ) ≤ |sN | ≈ 2L+ |w|.

Thus the conditional complexity of ww depends on the string that we condition on. (End of example)

Example 2.0.3. Since there is a program which merely outputs its input, we have that Cφ(x|x) ≤ 2L.

We have defined complexity to be a function which depends on the partial computable function φ we choose.
In what follows, we prove that a universal partial computable function causes at most an additive constant more
than Cφ, where the constant depends on φ but not on x or y.

In order to ease the notational burden, we extend the pairing function to encode an arbitrary number of
arguments. (Strictly speaking, we have an infinite number of tuple functions: for every n, there is a function
〈〉n : Σ∗(n) → Σ∗ which maps tuples having n strings, to a single string.) encode Thus, 〈a, 〈b, c〉〉 can be written
as 〈a, b, c〉, with value bd(a)01bd(b)01bd(c)01.

Theorem 2.0.4. There is a universal partial computable function ψ : Σ∗ → Σ∗ such that for any partial
computable function φ : Σ∗ → Σ∗, there is a constant cφ depending only on φ, such that for any strings x and y,

Cψ(x|y) ≤ Cφ(x|y) + cφ.

Proof. Let ψ be the partial computable function computed by a universal Turing machine U such that U on
input 〈sn, y, p〉 computes the nth partial computable function, φn, on input 〈y, p〉.

Then,
ψ(〈sn, y, p〉) = φn(〈y, p〉).

Thus, the only additional input that ψ needs to compute φn on any input, is the number n. This, in our
encoding requires 2|sn|+ 2 bits. Therefore,

Cψ(x|y) ≤ Cφn(x|y) + 2|sn|+ 2.

So, we can say that the complexity of a string as measured by a fixed universal Turing machine is at most a
constant more than the complexity as measured by any other function, where the constant depends only on the
other function, and not on the string. This helps us to

Definition 2.0.5.
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2.1 Upper bound

We now prove an upper bound for the plain Kolmogorov complexity of any string. We know that for any finite
string x, there is a program with x hardcoded inside it, with a single instruction of the form “print x”. Let this
program be sM in the computable enumeration of Turing machines. Then |sM | ≈ L + |x|. Thus, we have the
following theorem.

Theorem 2.1.1. There is a constant c such that for any string x, C(x) is at most |x|+ c.

We will later prove that this inequality is tight - that is, there are some strings which attain this maximum
complexity. The shortest program which describes such a string x is “print x”.

2.2 Uncomputability of plain Kolmogorov complexity

Berry’s paradox considers the following description - “The smallest number which cannot be described with twelve
words.” The paradox arises as follows. We know that there are finitely many combinations of twelve words.
Hence there are only finitely many numbers that are describable in twelve words. Since there are infinitely many
numbers, there is such a smallest n which is not describable in twelve words. On the other hand, the above
phrase used only ten words to describe n.

The resolution to the paradox comes from the fact that we were not careful with the allowable descriptions.
If we fix the set of allowable descriptions, and then consider the numbers under that description scheme which
is not describable in twelve words under that scheme, it does define a number. This is what we have achieved
by fixing the allowed descriptions of strings - a partial computable function p, which, on some string y computes
a string x, is considered a valid description of x. Thus the theory of computability helps us to avoid Berry’s
paradox and allows us a well-defined notion.

Once a concept is well-defined, computer scientists are interested to know if the concept is computable.
However, Berry’s paradox causes C to be uncomputable. Thus, even though we have evaded the paradox for one
step by ending up with a well-defined notion, we cannot have a computable notion because of the paradox.

Theorem 2.2.1. The unconditional Kolmogorov complexity of a string is uncomputable.

The proof is inspired by Berry’s paradox. We consider the phrase “the smallest string x with C(x) > n.”
Then we prove that if it is computable, then it is possible to compute x as follows: There is a program with n
hardcoded in it. This program enumerates strings y in the standard enumeration of strings, querying C(y) until
it sees the first string with C(y) > n. This is the x that we want. However, this new program turns out to be
substantially shorter than n in infinitely many cases, contradicting our claim that no program shorter than n
bits produces x.

Proof. Let C be a computable function. Let n be an arbitrary number. Consider the first string x in the
standard enumeration of strings, with C(x) > n. There is such a string, since C is defined for every string, and
C eventually increases to ∞.

Consider the following program which computes x.
——————————

3



1. Set integer i to 0.
2. while C(si) ≤ n do Increment i end while
3. Output si.
——————————–

First, we observe that, if C is total computable, then this program outputs the first string in the standard
enumeration of strings, with C(x) > n.

Now we consider the length of the above program. We assume that any primitive instruction in our language
has length L. If C is a computable function, there is a program sM which computes it. So the length of the
above program is approximately 4L+ |0|+ |sM |+ |n|. We know that using the standard enumeration of strings,
n can be represented by the string sn, and the length of sn is approximately log2 n. So the length of the above
program is approximately

4L+ |s0|+ |sn| ≈ 4L+ 1 + log n.

But we have the following inequality for n.

n < C(x) ≤ 4L+ 1 + logn.

Since n is arbitrary, this implies that n < 4L+ 1 log n for all n, which is a contradiction.

2.3 Upper & lower bounds, and their computability

If a function is uncomputable, we can of course ask whether it is approximable - whether we can, given an
error bound M , compute the complexity C(x) ±M . This in itself is a very strong demand. We could weaken
this further by asking, is it possible to upper bound or lower bound C? That is, can we prove that there are
computable functions C+ and C− such that for any string x, C−(x) < C(x) < C+(x)? We know that theorem
2.2.1 provides a computable upper bound. The lower bound, however, turns out to be uncomputable, in a very
strong sense.

Let us define the function m : Σ∗ → N by

m(x) = min
y≥x

C(y).

Then, we have the following theorem.

Theorem 2.3.1. For any total computable function F : Σ∗ → N monotonically increasing to ∞ from some x0

onwards, we have m(x) < F (x) for all large enough x.

Proof. Suppose the assertion is false, and F is such a total computable function, with F (x) ≤ m(x) for an infinite
set of points x. 1 Let G : Σ∗ → N be defined by

G(x) = max{F (x)− 1, 0}.
1The negation of the statement “P (x) holds for all large enough x”, i.e., ∃x0∀x > x0P (x), is ∀x0∃x > x0¬P (x), that is, “P (x) is

false for infinitely many x”.
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Since F is total computable and is monotone increasing to∞, so is G. Also, G(x) ≤ m(x) for infinitely many
x.

The only possibility of G(x) being equal to F (x) is when both are zero. However, we know that F monoton-
ically increases to ∞, so G(x) can be equal to F (x) only for finitely many x. Thus, for infinitely many x, we
have

G(x) < F (x) ≤ m(x) = min
y≥x

C(y).

We write
M(sn) = max

C(x)≤n
x.

That is, M(sn) is the last string in the standard enumeration whose complexity is at most n. It is easy to verify
that the next string after the M(sn)th string in the standard enumeration is

min
m(x)>n

x.

It follows that for infinitely many x,

max
G(x)≤n

x ≥ min
m(x)>n

x > M(sn),

and the function Γ(sn) = maxG(x)≤n x is total recursive. Thus Γ(sn) > M(sn). That is, C(Γ(sn)) > n. But,
by Theorem 2.0.4, there is a constant c such that

C(Γ(sn)) ≤ CΓ(Γ(sn)) + c < log2 n+ c.

Thus, there is a constant c such that for all n, n < log2 n+ c, which is impossible.

In fact, even if the above function F is allowed to be partial, thus giving it the freedom not to be defined on
some inputs, it is still not possible to lower bound C.

Theorem 2.3.2 (Kolmogorov). For any partial computable function F : Σ∗ → N monotonically increasing to ∞
from some x0 onwards, we have m(x) < F (x) whenever F (x) is defined, for all large enough x.

Proof. HW 4.

Though the Kolmogorov complexity can vary between |x|+ c and m(x), it does so fairly smoothly.
Let us fix the encoding: 〈x, y〉 = bd(x)01y.

Lemma 2.3.3. There is a constant c such that for all x and h

|C(x+ h)− C(x)| ≤ 2|h|+ c.
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Proof. Let px be the shortest program for x. Therefore, ψ(px) = x. The word x + h can be obtained from the
tuple 〈h, px〉 by applying it to the function F (〈a, b〉) = a+ ψ(b). F is total computable, and let us assume that
it can be computed by the Turing Machine sN . Therefore, there is a constant c such that

CF (x+ h) ≤ 2|h|+ |px|+ c ≈ 2|h|+ C(x) + c.

Similarly, let px+h be the shortest program for x + h. There is a function G : (〈a, b〉) = max{ψ(b) − a, 0}
which obtains x from the tuple 〈h, px+h. We obtain

C(x)− C(x+ h) ≤ 2|h|+ c.

2.4 Incompressible Strings

When we prove an upper bound, we would like to know whether the bound proved is tight - that is, are there
instances of the problem where the inequality is actually an equality? We prove that the upper bound on plain
Kolmogorov Complexity is indeed tight - in fact, most strings have very high complexity.

Lemma 2.4.1. The number of strings of length n with complexity at most n− c is at most 2n−c.

Proof. The number of programs of length at most n− c is at most 2n−c. So the number of strings produced by
such programs is at most 2n−c.

A similar counting argument gives us:

Lemma 2.4.2. Let c be a number. For each fixed y, every finite set A of cardinality m has at least m(1−2−c)+1
elements with C(x|y) > logm− c.

This is what we call “abundance of randomness”.
The above lemmas don’t give us the result that there are strings with complexity greater than their length -

it seems entirely possible that all strings have complexity at most equal to their length. However, this is not true.
The following argument is not merely a counting argument, it uses some properties of programming languages.

Lemma 2.4.3. For every large enough n, there is a string of length n with complexity greater than n.

Proof. Let n be large enough that both the following programs are shorter than n.

———————-————————————————–
1. Print x 1.for i=1to 1do ;done
———————-2. Print x.

————————————————

Both the programs print x. Hence, there are at most 2n−1 strings produced by programs of length n. Thus,
there is a string of length n with its shortest program longer than n bits.
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2.5 Problems with plain Kolmogorov Complexity

Even though this concept is useful, there are some nice properties which we would like a complexity notion to
have, but are absent from Kolmogorov Complexity.

1. C is not subadditive: Suppose we have are given Turing machine descriptions px and py of the strings x
and y, respectively. What can we say about the length of description of their concatenation xy? Intuition would
tell us that the description of the concatenation would not be too much longer than the sum of the lengths of
the descriptions of x and y. However, there is no constant c such that

C(x, y) ≤ C(x) + C(y) + c.

To see this, we first consider an example encoding of the pair (px, py), with the constraint that it must be
possible to parse out px and py uniquely from the encoding. The encoding bd(px)01py obeys this property, and
it is possible for a universal Turing machine to first execute px, and copy its output to the output tape, and then
output the result of py. However, the length of this program is now 2|px|+ |py|.

However, we have to show that in general, there is no encoding scheme with the property that it causes at
most an additive constant more than the sums of the complexities of x and y. This is HW 2c.

2. C is non-monotone over prefixes: It would be nice if C(x) ≤ C(xy). However, this is not always true!
To see this, let the complexity of “0” be a constant, say χ. Consider two strings sm and sn, where sm < sn,

and sm is an incompressible string with complexity at least logm > (2χ)2 2 and sn be the first string beyond sm
which has Kolmogorov complexity at most (logm)/2. Such strings do exist. 3

We consider the string formed by repeating 0 for sm times, and the string formed by repeating 0 for sn times.
Then we can give the loose estimates C(0sm) ≥ logm and C(0sn) ≤ (logm)/2 + 2M + c for some constant c.

To see the first inequality we show that, given a program to compute 0sn , it is easy to compute sm. Let P be
a shortest program that prints 0sn , and ψ(P ) = 0sn - that is, ψ is a computable function capable of “executing”
P . Then the following program prints sm:

—————————
1. Set s to ψ(P ).
2. Print length(s).
—————————

The second inequality is because, there is a following program.
—————————

1. for i = 1 to ψ(pm) do
2. print 0.
3. Increment i by 1.
4. done

2This ensures (logm)/2 > 2χ.
3If it did not, x 7→ (log x)/2 would be a total computable lower bound for C.
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—————————-
and the length of this program is at most (logm)/2 + 4L+ |ψ|+ 3.
3. Comparison with Shannon Entropy The notion of Kolmogorov Complexity and that of Shannon entropy

have both been defined to capture the notion of information content in a string, and they are the same up to a
logarithmic factor in the length of any string. It would be more pleasant if complexity analogues of the classical
information theoretic content is satisfied up to additive constants.
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