1 Background

We give a basic overview of the mathematical background required for this
course.

1.1 Set Theory

We introduce some concepts from naive set theory (as opposed to axiomatic
set theory). The first part covers the basic definitions of set theory, and
is covered by any basic course in discrete mathematics. The second part
covers some results regarding the cardinality of sets, and is necessary for the
arguments that you will encounter in this course.

Set Theory - Basic definitions

A set is informally defined as a collection of objects. The concept of a set in
this setting is not precisely defined. If x is a member of the set A, we say x
belongs to A, and write x € A. If, every element of a set A belongs to a set
B, we say that A is a subset of B, written as A C B. If both A C B and
B C A, we say that A and B are equal, written as A = B.

The operations on sets that we typically consider are the following.

1. Union: If A and B are sets, their union, written A U B is defined as

AUB={x|z € Aorz € B}

2. Intersection: If A and B are sets, their intersection, written as AN B,
is defined as
ANB={z |z € Aand z € B}.

3. Relative Complement: If A and B are sets, then the complement of B
relative to A, written as A\ B, is defined as

A\B={z:2z € Aand = ¢ B}.
If we have the notion of a universal set, denoted U, the superset of all sets
in the domain of interest, then it is possible to define the following notion.

5. Absolute Complement: If A is a set, the absolute complement of A,
written A€ is defined as U \ A.

Theorem 1.1.1 (De Morgan’s Laws). The following hold for arbitrary sets
A and B.

(AN B) = A°U B°.
and

(AUB)‘ = A°N B°.

We have the notion of a power set, which is the collection of all subsets
of a set.

6. Power Set: If A is a set, then there is a set, called the power set of A,
written P(A) (or, as 24), is the set of all subsets of A. In symbols,

P(A)={B| B C A}.

The next operation that we define is the Cartesian product of sets. For
this, we have to first define what an ordered pair of two objects is. A

sequence of elements
abcd

where we say that the first element is a, the second b, the third ¢ and
the fourth d, in the specified order is actually a function f : {0,1,2,3} —
{a, b, c,d} specified by

f(0) =a, f(1) =0b,f(2) = ¢, f(3) = d.

Since we have not defined functions yet, we cannot use this approach to
define an ordered pair as a collection (a,b) with the first element being a
and the second being b. We proceed as follows.

Definition 1.1.2. The ordered pair of aq and ag with first coordinate aq
and the second coordinate ag, written (a1, ag) is defined by

(a1,a2) = {{a1}, {a1,a2}}.

Though this might appear strange at first, we have succeeded in defining
an ordered pair of arbitrary elements without appealing either to the concept
of an index (or a number) or a mapping from an index to an element. The
first coordinate can now be specified using only the set operations thus, as
the unique element of !

(| A={a}n{ar, a2}

A€(a,b)

!Thanks to Pervez Khan for correcting some errors in a previous version of the defini-
tion.

The second co-ordinate may be defined as the unique element of

N A —{a}
A€(ab)\{ar}]

This strategy may be extended to define the ordered tuples of arbitrar-
ily many elements. With this definition, it is now possible to define the
Cartesian Product of sets.

7. Cartesian Product: If A and B are two sets, their cartesian product
of A with B, written A x B, is defined as:

Ax B={(a,b) |a€ Aandbec B}

A relation between two sets A and B is just a subset of the cartesian
product A x B. A is called the domain of the relation, and B its range.

Definition 1.1.3. A function f from A to B, written f : A — B, is a
relation from A to B with the restriction that for every element a in A,
there is exactly one ordered pair (a,b) € f. A is called the domain of f and
B its range. For any ordered pair (a,b) € f, we say that b is the image of
a under f, written f(a). The preimage of b € B under f is the set of all
elements a € A such that f(a) = b.

Example 1.1.4. If A = {a,b,c,d} and B = {1,2,3,4}, and f = {(a,1), (b,1),(¢,3),(d,4)},
then f(a) =1, f(b) =1, and f~1(1) = {a, b}.

We can restate the restriction of f as saying that every element in A has
exactly one image in B.

We specify the following classes of functions for later discussion.

A function f : A — B is said to be injective, or one-to-one if, the
elements of A have distinct images in B. In symbols,

Vai,az € A f(a1) = f(az) implies a1 = as.

The function f is said to be surjective, or onto if every element in B has a
pre-image. In symbols,

Vbe Bdac A f(a)=0.

If f is both one-to-one and onto, then f is said to be bijective.

Cardinality

We now discuss questions of cardinality, which will be used to compare the
sizes of sets. For any finite set, we can define the cardinality as the number
of elements in it. Suppose A and B are finite sets. It is easy to show that
if A and B have equal cardinality, then there is a bijection f: A — B, . If
the cardinality of A is at most that of B, then there is a one-to-one function
f A — B. If the cardinality of B is at most that of A, then there is an
onto function f: A — B.

When we consider infinite sets, however, this approach falters. We have
no way of distinguishing among the cardinalities of infinite sets if we use this
concept. We also run into seeming paradoxes: Galileo posed the question,
“Which set is bigger - the set of even numbers or the set of numbers?”
Obviously, the set of even numbers is a strict subset of the set of numbers.
But, if we multiply a natural number with 2, then we get a unique even
number, thus there is a bijection between these two sets. This example shows
the puzzling nature of infinite sets — they can be isomorphic to strict subsets
of themselves. A way to resolve the questions of cardinality consistently is
to take the reverse approach of our initial approach to the cardinality of
finite sets: Say, for example, that cardinality of A is less than or equal to
that of B if there is a one-to-one function f : A — B. We elaborate this
approach, and study the properties of cardinalities of infinite sets, and delve
into some famous examples.

This treatment follows Halmos. If there is a injection f : A — B, then
we say that A is dominated by B, and write A < B.

This suggests the idea that A and B are equivalent (not equal sets),
written A ~ B if there is a bijection from f : A — B. In the case of
comparison operators between numbers m and n, we know that if m < n
and n < m, then m = n. Can we define a notion that if A < B and A 2 B,
then A ~ B?

This is a very difficult theorem in set theory, known as the Cantor-
Schréder-Bernstein Theorem.

Theorem 1.1.5 (Cantor-Schréder-Bernstein). Let A and B be two arbitrary
sets. If there is a one-to-one function f : A — B and a one-to-one function
g: B — A, then there is a bijection h: A — B.

We omit the proof, and go into the discussion of countability of sets. An
infinite set is one, where, even if we remove any finite number of elements,
there are still elements left. Removing an element is a process of assigning a
natural number index to some particular element of the set - the only thing

we forbid is repetition, since no element can be removed multiple times.
This gives us the following definition of an infinite set.

Definition 1.1.6. A set A is infinite if N < A.

This gives us an idea of the “smallest” kind of infinite sets. If an infinite
set A <N, then A ~ N. We call such sets countably infinite sets. Count-
ably infinite sets have the same “cardinality” as N. It is customary to call
countable any set that is either finite, or is countably infinite.

Definition 1.1.7. A set A is said to be countable if there is an onto function
f:N— A

The set of natural numbers N is an obvious example of such a set. The
set of even numbers is also a countably infinite set. We show that the set of
rational numbers (usually written as Q), is also countable, in the following
sequence of theorems.

First, we show that if we take a finite union of countable sets, the result-
ing set is countable.

Theorem 1.1.8. If Ag, A1,...,A,_1 are pairwise disjoint countable sets,
then their union is also countable.

Proof. Since each A;, i = 0 to n — 1, is countable, there are functions
fi : N — A; which are onto. We construct a function g : N — Ug‘;olAi to
show that the union of these sets is countable.

Let g(i) = fi mod n(i/n) where / denotes integer division.

If each f; : N — A; is onto, we can see that g : N — U’ 4; is also onto.
For, the k'™ element in the m'" set will be g(k * n +m) (We start counting
from 0). O

Intuitively, if we let all A;s be countably infinite, we can explain as
follows: ¢ enumerates the elements of the union in the form of a two-
dimensional array: there are exactly n columns, the column ¢ enumerating
the elements of A;. g goes row-by-row, enumerating the first elements of all
the A;s first, then the second elements and so on. In this manner, since each
A; is countable, we can count all the elements in the union.

Theorem 1.1.9. A union of countably many finite sets is countable.

Intuitively, since each A; is finite, we can enumerate the elements of Ag
until they are exhausted, and then start enumerating the elements of A;

and so on. ? In this way, there is a finite index at which any given element
of a given set will be enumerated.

Proof. Consider
A=A
i=0

where each A; is a finite set. Then, if we construct an onto function g : N —
A, it will prove that A is countable.

Let |A;| denote the number of elements in A;. Since each A; is finite,
there is a bijection f; : A; — {0,1,...,]A;] — 1}. Since

[Aol, [Ao| + [Axl, [Ao| + [Ar] +[Ag], ...
is an increasing sequence, for any j, there is a least index n such that
J < [Ao| + [Ar] + -+ + |An].

Then
9(7) = fn (G — [[Ao| + [A1| + -+ + | An—1]]) -

To show that g is onto, we have to show that for any arbitrary ¢, and m
such that 0 < m < |A;|, there is some index j such that g(j) = f;(m). This
follows routinely from the definition of g. O

The above theorem is one of the most useful tools in proving the count-
ability of sets - when we have to prove that some class of sets is countable,
what we have to do essentially is to rethink of the same class as a countable
union of finite sets. A brilliant example is the following theorem.

With this, we now can show that the set of non-negative rational numbers
is countable. We will actually show something more, that Nx N is countable.
Since every non-negative rational number can be represented as a ratio %
where p is nonnegative and ¢ # 0, what we prove amounts to proving that
a bigger set is countable.

Theorem 1.1.10. The cross-product of two countable sets is countable.

The proof uses a technique which is sometimes picturesquely called
“dovetailing”. The idea can be paraphrased as follows. Consider a rectan-
gular lattice where the “x-axis” corresponds to the elements of a countable
set A and the “y-axis” corresponds to a countable set B. (Figure 1).

2This could not be done in the previous theorem because each A; was infinite, so we
would never have been done enumerating Ao at a finite time.

Figure 1: Illustration of dovetailing

Proof. There are onto functions g : N — A and h : N — B which are given.
We define an onto function f : N — A x B that enumerates ordered pairs in
in A x B in the following manner. First, (g(0),(0)) is enumerated. In the
next pass, we enumerate (g(1),h(0)), (g(0),(1)). In the following pass, we
enumerate (g(2), h(0)), (g(1), h(1)) and (9(0), h(2)).

Thus in pass ¢, we enumerate pairs (g(i), k(7)) such that i + 7 = ¢. This
enables us to distinguish among different passes. Within the same pass, we
can distinguish among the pairs

(9(i +4), 1(0)), (9(i+j —1),h(1)), ..., (9(0), h(i + j))

by their second co-ordinates. Thus there are ¢+ j + 1 elements in pass i + j.

Let a pair (g(i), h(j)) be given. Then it will be enumerated in pass i+ j.
Let us denote i+ by ¢. The total number of elements in passes 0,1,...,c¢—1
is equal to

c—1
Tle—1]=Y (i+1) = C(C; Y.
=1

Now, in pass ¢, the pair (g(i), h(j)) will be enumerated in position j.
Thus, the onto function f: N — A x B we define is

F(Tli+ 35— 1] +75) = (9(2), h(5))-
O

However, there are sets of higher cardinalities. We prove a particular
case of the general theorem. This proof follows what is usually called a
“diagonalization” argument. (Please don’t confuse this with “dovetailing”!)

Theorem 1.1.11. There is no bijection f: N — P(N).

Proof. Suppose there is a bijection f : N — P(N). Define the following set.

S={i:i¢ f(i)}

Then, we prove that there is no j such that f(j) = S, thus contradicting
that every subset of N has been enumerated by f. For, if we consider whether
j is present in S, we find that if j is in the set f(j), then it is not in S.
Conversely, if j is not in the set f(j), then it is in S. Thus S differs from
the set f(j) in at least one element, hence cannot be the same as f(j).

Since this is true for any j, S is not in the image of f. O

We briefly describe the characteristic function of a set of numbers. Let
S be a set of numbers. The characteristic function xgs : N — {0,1} is the
function defined by xg(i) =1 if i € S and xgs(i) = 0 otherwise. Intuitively,
this can be seen as a “bit-map” of S. Every set of numbers has a unique
characteristic function.

The cardinality of the power set of natural numbers is the same as the
cardinality of the real numbers in [0,1) (the unit interval with all numbers
r where 0 <r < 1).

To see this, we use the binary representation of the real numbers. A
set of numbers can be represented by its characteristic sequence byb1bs . ..
where b; = 1 if s; is present in the set and b; = 0 otherwise. Let us define
a mapping from such a sequence to the number » >, b;_1/ 2¢. This defines
an onto function from P(N) to [0,1), the cardinality of [0,1) is at most as
much as P(N).

To see that the cardinality of [0,1) is at least that of P(N), we define an
onto function from [0,1) to P(N).

It is natural to consider the mapping defined by the binary representation
of reals in the interval. However, wee cannot use the binary representation
of real numbers in the unit interval for this purpose, since dyadic rationals,
that is, rationals of the form /2™, have two binary representations. For
example, 0.5 has the representations 0.1000... and 0.0111.... If we pick
one representation, and define ¢(0.5) = 1000. .., where the binary sequence
is the characterestic sequence of a set, then we do not have an onto function
— The set defined by 0111... does not have an inverse image.

To solve this issue, we adopt the ternary notation of the reals in the
interval. We define an onto function from [0,1) to P(N) as follows. If
a ternary expansion of a number does not have the digit 2, that is, the
number can be written in the form ;% t;_1/3" where each t; 1 is 0 or 1,

then its image is the set represented by the characteristic sequence tgtits. ...
There are numbers in the interval with infinitely many 2s in their ternary
expansion - the image of such numbers is defined to be N, merely so that
we have a total function from [0, 1) to P(N). Since this function is onto, we
can conclude that the cardinality of [0,1) is at least that of P(N).3

1.2 Computability Theory

In this part, we will briefly cover notions of computability. We will first
define a Turing machine which accepts/decides a language, and then define
the notion of a computable function.

Definition 1.2.1. A one-way infinite, 2-tape Turing Machine is an 8-tuple
(Q: 27 F7 B7 57 q0, qa, QT) where

e () is the set of states of the Turing machine.

e 3 is the finite set of input alphabet symbols.

I" is the finite set of tape alphabet symbols, 3 C I'. Here, ¥ a strict
subset.

e B is a reserved tape alphabet symbol called the blank, not part of the
input alphabet. (B eI —X.)

§:(Q—{qa,ar}) xI? = Q xI? x {L, R}?

is the transition function of the Turing machine.

qo € @ is the initial state of the Turing machine.

qa € @ is the accept state.

gr € @ is the reject state.

A configuration of the Turing machine consists of the state, the contents
of the 2 tapes, and the position of the tape heads. An input string w is said
to be accepted by a Turing machine if, the computation of M with initial
configuration having w on the first tape and both heads at the left end of
w, terminates in g,. The machine is said to reject the string if the Turing
machine terminates in g,. (There is of course, the possibility that the Turing
Machine may not terminate its execution.)

3Thanks to Arpita Korwar and Rohit Gurjar for pointing this out.

A language L is a set of strings. Recall that a Turing machine is said
to accept a language L if every string x in the language is accepted by the
Turing Machine in the above sense, and no other string is accepted. If a
string is not in the language, then it might either be rejected by the Turing
machine, or it may cause the Turing machine to run forever.

Definition 1.2.2. A language is said to be acceptable if there is a Turing
machine which accepts it.

Definition 1.2.3. A language L is said to be decidable if both L and L¢
are acceptable.

Equivalently, we may define a decidable language L as follows. There
is a Turing machine which accepts every string in the language, and rejects
every other string. (HW 1A)

It is possible to define a Turing machine that computes a function from
strings to strings. Then we will proceed to define a computably enumerable
language.

Definition 1.2.4. A one-way infinite, 2-tape Turing Machine is said to
compute f : X* — X* if the machine, presented with the input string = in
the initial configuration, terminates in state g, with f(x)B on the second
tape whenever f(x) is defined, and runs forever if f(z) 7.

A function f is said to be partial computable if there is a Turing machine
which computes f in the above sense. A partial computable function f is
called total computable if there is a Turing machine computing f that halts
on all inputs.

To define functions which operate on numbers, it is necessary to pick
a representation of numbers. The standard enumeration of strings is the
enumeration

A, 0,00,01,10,11,000,...

- that is, the enumeration which lists all strings of a shorter length before any
longer string, and within any length, lists strings in lexicographic order. For
any number 4, let s; denote the it string in this sequence. Then s : N — ¥* is
a bijection between numbers and strings, and can be used as a representation
of numbers.

(There is an easy closed form formula for s, that is, given a number
n > 0, find s,. Convert n+ 1 to binary, and strip the leading 1 in the binary
representation. This will give s,,. (Please verify!))

10

Definition 1.2.5. A function f : N — N is partial computable if there is a
partial computable function h : 3* — 3* such that for every number n > 0

f(n) = 3_1h(sn).

It is now routine to define unary partial computable functions which
map any given countably infinite domain to any countably infinite range.
We will use the following function to represent a pair of strings.

Definition 1.2.6. The bit-doubling function

bd: ¥* — ¥~
is defined by
bd(A) = A
bd(z0) = bd(z)00
bd(z1) = bd(x)11

The bit doubling function of x is a string in which every bit in x is
doubled. For example, the bd(0010) = 00 00 11 00.

Definition 1.2.7. The pairing function
() : X" x X - ¥
is defined by
(x,y) = bd(z)01bd(y)01
where = and y are strings.

We observe that the number of times “01” occurs in any encoding, is
exactly 2, and all valid encodings end in 01.

Lemma 1.2.8. The pairing function is a prefix code - that is, the encoding
of a pair cannot be the prefix of the encoding of another pair.

Proof. Suppose

bd(z)01bd(y)01w

is the encoding of some pair. Since the number of times “01” can occur
in the encoding is 2, “01” is forbidden from w. However, the suffix of the
encoding 0lw should end in “01”. These conditions together imply that
w=A.

Thus, the encoding of a pair cannot be the prefix of another pair. O

11

For ease of description, it is preferrable to have a high-level description
of Turing Machines so that we do not have to give detailed programs for
doing elementary operations every time we specify a Turing machine. For
this, the common approach is to use a high-level language, and prove that
every elementary operation, as well as every programming construct like
loops, can be simulated by a Turing machine. Once we do this, it follows
that every program we write in the high level language corresponds to a
Turing Machine. We will assume that programs written in an ALGOL-like
language can be computed using Turing machines. We will describe our
programs using this toy language.

Now, we can make the following analogy:

partial computable: total computable :: acceptable : decidable.

We will explore this analogy. For this, we need to now define Turing
machines which enumerates a language. This is the computable analogue
of an onto function f : N — L with which we defined countability of L.
Intuitively, Turing machine that enumerates L will “keep printing” the ele-
ments of L one after another. However, we would like every Turing machine
outputting a string to halt in a finite time, so we model the machine such
that for a given n, it will output the n'" element in the enumeration.

Definition 1.2.9. A language L is said to be computably enumerable if it
is either finite, or there is a total computable bijection f: N — L.

Note that, L can be the empty language.

Theorem 1.2.10. A language is computably enumerable if and only if it is
acceptable.

Proof. We first prove that if a language is computably enumerable, then
it is acceptable. If a language is finite, then it is acceptable by a Turing
Machine which hardcodes the strings in the language in a finite lookup
table, and accepts exactly those strings. Suppose a computably enumerable
language L is infinite. Then there is a computable bijection f : N — L.
We describe a Turing machine that accepts L as follows. (This is not the
formal description, but merely the pseudo-code description of the Turing
Machine. There is a Turing Machine which corresponds to this, using the
Church-Turing thesis.)

1. input x.
2. Initialize integer i to O.
3. while true do

12

4. if f(i) == x then

5. accept x, halt.

6. else increment i to i+1.
7. endif

8. done

The above machine accepts and halts all z in L, and it does not accept
any other string. Hence L is Turing acceptable.

Conversely, we assume that L is an acceptable language. If L is finite,
then by definition, L is computably enumerable. Assume that L is infinite.
There is a Turing machine M, that, given any input = accepts if and only if
z € L.

Given an input ¢ > 0, we will dovetail the execution of M on A,0,1,...
until ¢ strings have been accepted and output the last string that has been
accepted.

We describe the pseudo-code as follows.

1. input number i.
2. Initialize Set and oldSet to (; and m to 0.
3. while [Set| < i do
if s, is of the form (z,s,) do
Run M(x) for n steps.
if M(zx) has accepted then
oldSet := Set.
Set := Set U{xz}.
endif
10. endif
11. Increment m.
12. end while
13. Output oldSet — Set.

© 0N o

Since L is infinite, we know that this algorithm will enable us to output
distinct elements in L for every number ¢, so M computes a one-to-one
function. Also, every x € L is accepted in some finite number of steps N,
so the dovetailing will output when m < (x, sy). O

There is also a characterization of decidable languages in this manner.

13

Theorem 1.2.11. A language is decidable if and only if it is computably
enumerable in increasing order. That is, a language L is decidable if and
only if it is finite or there is a total computable bijection f : N — L such
that for all numbers n,

fln) < fln+1).

Proof. If L is finite, then it is decidable. Suppose L is not finite, and there
is a bijection f : N — L and for all n,

fn) < f(n+1).

Then, we can build a Turing Machine which decides L in the following
manner.

input x.

Initialize 7 to 0.

whilef(i) < = do
Increment ¢ by 1.

end while

if f(i) == z then
Accept x and halt.

else reject x and halt.

NSO W

Conversely, suppose L is decidable. If L is finite, then it is computably
enumerable by definition. If L is infinite, then there is a total computable
bijection f : N — L that enumerates L in increasing order. In particu-
lar; there is a total computable bijection f that enumerates L, hence L is
computably enumerable. O

It is now easy to prove the following theorem, which we use later in the
course.

Theorem 1.2.12. FEvery infinite computably enumerable set contains an
infinite decidable subset.

Proof. O
We use the following fact from computability theory.

Theorem 1.2.13. There is a universal Turing machine.

14

Theorem 1.2.14. (Kleene’s normal form theorem) There is a 3-ary partial
computable function C' and a 1-ary partial computable function U such that
any 1-ary partial recursive function can be expressed as

f.(n) = U(uz[Cle,n, =) = 0).
Here, puz denotes the least z such that.

Theorem 1.2.15. There is a partial computable function that is not total
computable.

Proof. We define the following partial computable function f: N — N as
f.(n) = U(uzC(n,n,) = 0]) + 1.

So f(n) = fu(n)+1 when the value of f,,(n) is defined, and is undefined
otherwise. f(n) is a partial computable function by construction. But f is
not a total computable function:

Suppose f is total computable. Then there is an index e in the com-
putable enumeration of partial computable functions such that f. = f. This
would imply that f(e) = fe(e) +1 > f(e), which is a contradiction. O

15

