CS738: Advanced Compiler Optimizations

Simply Typed Lambda Calculus

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

Simple Types over Bool

$$T$$
 := $-$ Types Bool $-$ Boolean Type $T \rightarrow T$ $-$ Function Type

type constructor \rightarrow is right-associative, i.e., $T_1 \rightarrow T_2 \rightarrow T_3$ stands for $T_1 \rightarrow (T_2 \rightarrow T_3)$

Examples

For each of the type below, write a function (in your favorite programming language) that has the required type:

- $\blacktriangleright \ \mathsf{Bool} \to \mathsf{Bool}$
- ▶ Bool → Bool → Bool
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool} \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ (\mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}$
- $\blacktriangleright \ ((\mathsf{Bool} \to \mathsf{Bool}) \to \mathsf{Bool}) \to \mathsf{Bool}$

The Abstract Syntax

Recap: The Set of Values

Simply Typed λ -terms with conditions and Booleans

$$v := -values$$
 $\lambda x : T. t - Abstraction Value$
 $true - value true$
 $false - value false$

Evaluation

$$\frac{\mathsf{t_1} \to \mathsf{t_1'}}{\mathsf{t_1} \; \mathsf{t_2} \to \mathsf{t_1'} \; \mathsf{t_2}} \tag{E-APP1}$$

$$\frac{t_2 \rightarrow t_2'}{v \ t_2 \rightarrow v \ t_2'} \tag{E-App2}$$

$$(\lambda x: T_1. t_1)v_2 \rightarrow [x \mapsto v_2]t_1$$
 (E-APPABS)

The Typing Relation

- ► A *Typing Context* or *Type Environment*, Γ, is a sequence of variables with their types
- $ightharpoonup \Gamma$, x: T denotes extending Γ with a new variable x having type T
 - The name x is assumed to be distinct from any existing names in Γ

The Typing Relation

$$\frac{\Gamma, x: T_1 \vdash \mathsf{t}_2: T_2}{\Gamma \vdash \lambda x: T_1. \, \mathsf{t}_2: T_1 \to T_2} \tag{T-Abs}$$

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T}\tag{T-VAR}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathcal{T}_1 \to \mathcal{T}_2 \qquad \Gamma \vdash \mathsf{t}_2 : \mathcal{T}_1}{\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 : \mathcal{T}_2} \tag{T-APP}$$

Inversion of the Typing Relation

- ▶ If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- ▶ If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- ▶ If $\Gamma \vdash t_1 \ t_2 : R$, then $\exists T_1 \ s.t. \ \Gamma \vdash t_1 : T_1 \rightarrow R$ and $\Gamma \vdash t_2 : T_1$.
- ▶ If $\Gamma \vdash \text{true} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{false} : R$, then R = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then
 - ightharpoonup $\Gamma \vdash t_1 : Bool$
 - ightharpoonup $\Gamma \vdash \mathsf{t}_2 : R$
 - ightharpoonup $\Gamma \vdash \mathsf{t}_3 : R$

Exercises

For each of the term t below, find context Γ and type T such that

$$\Gamma \vdash \mathsf{t} : T$$

- ightharpoonup t is λx . x
- ▶ t is ((x z) (y z))
- ightharpoonup t is λy . x
- ightharpoonup t is x x

Uniqueness of Types

- In a given type context Γ, A term t, such that the free variables of t are in Γ, has at most one type.
- ▶ If t is typeable, then its type is unique.
- ► Moreover, there is just one derivation of this typing built from the inference rules.

Some Properties

- ▶ **Permutation:** If $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$.
 - The derivation with Δ has the same depth as the derivation with Γ.
- ▶ Weakening: If $\Gamma \vdash t : T$ and $x \notin domain(\Gamma)$, then $\Gamma, x : S \vdash t : T$.
 - The derivation with Γ , x : S has the same depth as the derivation with Γ .

Progress

- ▶ **Progress:** A well-typed term is not stuck.
 - ▶ If \vdash t : T, then t is either a value or there exists some t' such that t \rightarrow t'.

Preservation

- ▶ Preservation of Types under Substitution: If $\Gamma, x : S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
- ▶ **Preservation:** If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.
 - ▶ If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.