Reference Book

CS738: Advanced Compiler Optimizations

Simply Typed Lambda Calculus

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur Department of CSE, IIT Kanpur

Simple Types over Bool

```
T :=
- Types
    Bool - Boolean Type
    T->T - Function Type
```

type constructor \rightarrow is right-associative, i.e., $T_{1} \rightarrow T_{2} \rightarrow T_{3}$
stands for $T_{1} \rightarrow\left(T_{2} \rightarrow T_{3}\right)$

Types and Programming Languages by Benjamin C. Pierce

Examples

For each of the type below, write a function (in your favorite programming language) that has the required type:

- Bool \rightarrow Bool
\rightarrow Bool $\rightarrow \mathrm{Bool} \rightarrow$ Bool
- (Bool \rightarrow Bool) \rightarrow Bool
- (Bool \rightarrow Bool) \rightarrow Bool \rightarrow Bool
- (Bool \rightarrow Bool \rightarrow Bool) \rightarrow Bool
- (Bool \rightarrow Bool \rightarrow Bool) \rightarrow Bool
- ((Bool \rightarrow Bool $) \rightarrow$ Bool $) \rightarrow$ Bool

The Abstract Syntax

Evaluation

Recap: The Set of Values
v :=

- values
$\lambda x: T . \mathrm{t}$ - Abstraction Value
| true - value true
| false - value false

The Typing Relation

- A Typing Context or Type Environment, Γ, is a sequence of variables with their types
- $\Gamma, x: T$ denotes extending Γ with a new variable x having type T
- The name x is assumed to be distinct from any existing names in Γ

The Typing Relation

$$
\begin{gather*}
\frac{\Gamma, x: T_{1} \vdash \mathrm{t}_{2}: T_{2}}{\Gamma \vdash \lambda x: T_{1} \cdot \mathrm{t}_{2}: T_{1} \rightarrow T_{2}} \tag{T-ABS}\\
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \tag{T-VAR}\\
\frac{\Gamma \vdash \mathrm{t}_{1}: T_{1} \rightarrow T_{2} \quad \Gamma \vdash \mathrm{t}_{2}: T_{1}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: T_{2}}
\end{gather*}
$$

(T-APP)

Exercises

- For each of the term t below, find context Γ and type T such that

$$
\Gamma \vdash t: T
$$

- t is $\lambda x . x$
- t is $((x z)(y z))$
- t is $\lambda y . x$
- t is $x x$

Inversion of the Typing Relation

- If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.
- If $\Gamma \vdash \lambda x: T_{1} . \mathrm{t}_{2}: R$, then $R=T_{1} \rightarrow R_{2}$ for some R_{2} with $\Gamma, x: T_{1} \vdash \mathrm{t}_{2}: R_{2}$.
- If $\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: R$, then $\exists T_{1}$ s.t. $\Gamma \vdash \mathrm{t}_{1}: T_{1} \rightarrow R$ and $\Gamma \vdash \mathrm{t}_{2}: T_{1}$.
- If $\Gamma \vdash$ true : R, then $R=$ Bool.
- If $\Gamma \vdash$ false : R, then $R=$ Bool.
- If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then
- $\Gamma \vdash t_{1}$: Bool
- $\Gamma \vdash \mathrm{t}_{2}: R$
- $\Gamma \vdash \mathrm{t}_{3}: R$

Uniqueness of Types

- In a given type context Γ, A term t, such that the free variables of t are in Γ, has at most one type.
- If t is typeable, then its type is unique.
- Moreover, there is just one derivation of this typing built from the inference rules.

Some Properties

- Permutation: If $\Gamma \vdash \mathrm{t}: T$ and Δ is a permutation of Γ, then
$\Delta \vdash \mathrm{t}$: T
- The derivation with Δ has the same depth as the derivation with Γ.
- Weakening: If $\Gamma \vdash \mathrm{t}: T$ and $x \notin$ domain($\Gamma)$, then
$\Gamma, x: S \vdash \mathrm{t}: T$.
- The derivation with $\Gamma, x: S$ has the same depth as the derivation with Γ.

Progress: A well-typed term is not stuck.

- If $\vdash \mathrm{t}: T$, then t is either a value or there exists some t^{\prime} such that $\mathrm{t} \rightarrow \mathrm{t}^{\prime}$.

