CS738: Advanced Compiler Optimizations

The Untyped Lambda Calculus

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

The Abstract Syntax

$\mathrm{t}:=x \quad$ - Variable

The Abstract Syntax

$\begin{array}{llr}\mathrm{t}:= & x & \text { - Variable } \\ & \mid \lambda x . \mathrm{t} & \text { - Abstraction }\end{array}$

The Abstract Syntax

$\begin{array}{rlr}\mathrm{t}:= & x & \text { - Variable } \\ & \mid \lambda x . \mathrm{t} & \text { - Abstraction } \\ & \mid \mathrm{tt} & \text { - Application }\end{array}$

The Abstract Syntax

$$
\begin{array}{rlr}
\mathrm{t}:= & x & \text { - Variable } \\
& \mid \lambda x . \mathrm{t} & \text { - Abstraction } \\
\mid \mathrm{tt} & \text { - Application }
\end{array}
$$

Parenthesis, (...), can be used for grouping and scoping.

Conventions

$-\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for $\lambda x .\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is

Conventions

- $\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for $\lambda x .\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is
- terminated by a) whose matching (occurs to the left of λ, OR

Conventions

- $\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for $\lambda x .\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is
- terminated by a) whose matching (occurs to the left of λ, OR
- terminated by the end of the term.

Conventions

- $\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for $\lambda x .\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is
- terminated by a) whose matching (occurs to the left of λ, OR
- terminated by the end of the term.
- Applications associate to the left: $t_{1} t_{2} t_{3}$ to be read as $\left(\mathrm{t}_{1} \mathrm{t}_{2}\right) \mathrm{t}_{3}$ and not as $\mathrm{t}_{1}\left(\mathrm{t}_{2} \mathrm{t}_{3}\right)$

Conventions

- $\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for $\lambda x .\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is
- terminated by a) whose matching (occurs to the left of λ, OR
- terminated by the end of the term.
- Applications associate to the left: $t_{1} t_{2} t_{3}$ to be read as $\left(\mathrm{t}_{1} \mathrm{t}_{2}\right) \mathrm{t}_{3}$ and not as $\mathrm{t}_{1}\left(\mathrm{t}_{2} \mathrm{t}_{3}\right)$
- $\lambda x y z . t$ is an abbreviation for $\lambda x \lambda y \lambda z$.t which in turn is abbreviation for $\lambda x .(\lambda y .(\lambda z . t))$.

α-renaming

- The name of a bound variable has no meaning except for its use to identify the bounding λ.

α-renaming

- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x . x x y$ is equivalent to $\lambda u . u u y$

α-renaming

- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x . x x y$ is equivalent to $\lambda u . u u y$
- But it is not same as $\lambda x . x x w$

α-renaming

- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x . x x y$ is equivalent to $\lambda u . u u y$
- But it is not same as $\lambda x . x x$ w
- Can not change free variables!

β-reduction (Execution Semantics)

- if an abstraction $\lambda x . t_{1}$ is applied to a term t_{2} then the result of the application is

β-reduction (Execution Semantics)

- if an abstraction $\lambda x . t_{1}$ is applied to a term t_{2} then the result of the application is
- the body of the abstraction t_{1} with all free occurrences of the formal parameter x replaced with t_{2}.

β-reduction (Execution Semantics)

- if an abstraction $\lambda x . t_{1}$ is applied to a term t_{2} then the result of the application is
- the body of the abstraction t_{1} with all free occurrences of the formal parameter x replaced with t_{2}.
- For example,

$$
(\lambda f \lambda x . f(f x)) g \xrightarrow{\beta} \lambda x . g(g x)
$$

Caution

- During β-reduction, make sure a free variable is not captured inadvertently.

Caution

- During β-reduction, make sure a free variable is not captured inadvertently.
- The following reduction is WRONG

$$
(\lambda x \lambda y \cdot x)(\lambda x \cdot y) \xrightarrow{\beta} \lambda y . \lambda x \cdot y
$$

Caution

- During β-reduction, make sure a free variable is not captured inadvertently.
- The following reduction is WRONG

$$
(\lambda x \lambda y \cdot x)(\lambda x \cdot y) \xrightarrow{\beta} \lambda y \cdot \lambda x \cdot y
$$

- Use α-renaming to avoid variable capture

$$
(\lambda x \lambda y \cdot x)(\lambda x \cdot y) \xrightarrow{\alpha}(\lambda u \lambda v \cdot u)(\lambda x \cdot y) \xrightarrow{\beta} \lambda v \cdot \lambda x \cdot y
$$

Exercise

- Apply β-reduction as far as possible

1. $(\lambda x y z . x z(y z))(\lambda x y . x)(\lambda y . y)$
2. $(\lambda x . x x)(\lambda x . x x)$
3. $(\lambda x y z . x z(y z))(\lambda x y . x)((\lambda x . x x)(\lambda x . x x))$

Church-Rosser Theorem

- Multiple ways to apply β-reduction

Church-Rosser Theorem

- Multiple ways to apply β-reduction
- Some may not terminate

Church-Rosser Theorem

- Multiple ways to apply β-reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term

Church-Rosser Theorem

- Multiple ways to apply β-reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term
- Also called the Diamond Property

Church-Rosser Theorem

- Multiple ways to apply β-reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term
- Also called the Diamond Property
- Leftmost, outermost reduction will find the normal form if it exists

Programming in λ Calculus

- Where is the other stuff?

Programming in λ Calculus

- Where is the other stuff?
- Constants?

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists
- Arrays

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists
- Arrays
- Don't we need data?

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists
- Arrays
- Don't we need data?

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists
- Arrays
- Don't we need data?

Abstractions act as functions as well as data!

Numbers: Church Numerals

- We need a "Zero"

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker
- Blank board represents Zero

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker
- Blank board represents Zero
- Each mark by marker represents a count.

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker
- Blank board represents Zero
- Each mark by marker represents a count.
- However, other pairs of objects will work as well

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker
- Blank board represents Zero
- Each mark by marker represents a count.
- However, other pairs of objects will work as well
- Lets translate this intuition into λ-expressions

Numbers

- Zero $=\lambda m w . w$

Numbers

- Zero = $\lambda m w . w$
- No mark on the whiteboard

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One $=\lambda m w . m w$

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard
- Two $=\lambda m w . m(m w)$

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard
- Two $=\lambda m w . m(m w)$

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard
- Two $=\lambda m w . m(m w)$
- What about operations?

Numbers

- Zero = $\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard
- Two $=\lambda m w . m(m w)$
- What about operations?
- add, multiply, subtract, divide, ... ?

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$
- Verify: $\operatorname{succ} \mathrm{N}=\mathrm{N}+1$

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$
- Verify: succ $\mathrm{N}=\mathrm{N}+1$
- add $=\lambda \times$ y $m w . x m(y m w)$

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$
- Verify: succ $\mathrm{N}=\mathrm{N}+1$
- add $=\lambda x$ y $m w . x m(y m w)$
- Verify: add $\mathrm{M} N=\mathrm{M}+\mathrm{N}$

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$
- Verify: succ $\mathrm{N}=\mathrm{N}+1$
- add $=\lambda x$ y $m w . x m(y m w)$
- Verify: add $\mathrm{M} \mathrm{N}=\mathrm{M}+\mathrm{N}$
- mult $=\lambda x$ y $m w . x(y m) w$

Operations on Numbers

- succ $=\lambda x m$ w. $m(x m w)$
- Verify: succ $\mathrm{N}=\mathrm{N}+1$
- add $=\lambda x$ y $m w . x m(y m w)$
- Verify: add $\mathrm{M} \mathrm{N}=\mathrm{M}+\mathrm{N}$
- mult $=\lambda x$ y $m w . x(y m) w$
- Verify: mult $\mathrm{M} \mathrm{N}=\mathrm{M}$ * N

More Operations

$-\operatorname{pred}=\lambda x m w . x(\lambda g h . h(g m))(\lambda u . w)(\lambda u . u)$

More Operations

$-\operatorname{pred}=\lambda x m w . x(\lambda g h . h(g m))(\lambda u . w)(\lambda u . u)$

- Verify: pred $\mathrm{N}=\mathrm{N}-1$

More Operations

$-\operatorname{pred}=\lambda x m w . x(\lambda g h . h(g m))(\lambda u . w)(\lambda u . u)$

- Verify: pred $\mathrm{N}=\mathrm{N}-1$
- nminus $=\lambda x y . y$ pred x

More Operations

$-\operatorname{pred}=\lambda x m w . x(\lambda g h . h(g m))(\lambda u . w)(\lambda u . u)$

- Verify: pred $\mathrm{N}=\mathrm{N}-1$
- nminus $=\lambda x y . y$ pred x
- Verify: nminus $\mathrm{M} \mathrm{N}=\max (0, \mathrm{M}-\mathrm{N})$ - natural subtraction

Church Booleans

- True and False

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True $=\lambda x y \cdot x$

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True $=\lambda x y \cdot x$
- False $=\lambda x y . y$

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True $=\lambda x y \cdot x$
- False $=\lambda x y . y$
- Predicate:

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True $=\lambda x y \cdot x$
- False $=\lambda x y . y$
- Predicate:
- isZero $=\lambda x . x(\lambda u$. False $)$ True

Operations on Booleans

- Logical operations

$$
\begin{aligned}
\text { and } & =\lambda p q \cdot p q p \\
\text { or } & =\lambda p q \cdot p p q \\
\text { not } & =\lambda p t \cdot p f t
\end{aligned}
$$

Operations on Booleans

- Logical operations

$$
\begin{aligned}
\text { and } & =\lambda p q \cdot p q p \\
\text { or } & =\lambda p q \cdot p p q \\
\text { not } & =\lambda p t \cdot p f t
\end{aligned}
$$

- The conditional operator if

$$
i f=\lambda c e_{t} e_{f} .\left(c e_{t} e_{f}\right)
$$

Operations on Booleans

- Logical operations

$$
\begin{aligned}
\text { and } & =\lambda p q \cdot p q p \\
\text { or } & =\lambda p q \cdot p p q \\
\text { not } & =\lambda p t f \cdot p f t
\end{aligned}
$$

- The conditional operator if
- if $c e_{t} e_{f}$ reduces to e_{t} if c is True, and to e_{f} if c is False

$$
\text { if }=\lambda c e_{t} e_{f} .\left(c e_{t} e_{f}\right)
$$

More...

- More such types can be found at https://en.wikipedia.org/wiki/Church_encoding

More...

- More such types can be found at https://en.wikipedia.org/wiki/Church_encoding
- It is fun to come up with your own definitions for constants and operations over different types

More...

- More such types can be found at https://en.wikipedia.org/wiki/Church_encoding
- It is fun to come up with your own definitions for constants and operations over different types
- or to develop understanding for existing definitions.

We are missing something!!

- The machinery described so far does not allow us to define Recursive functions
- Factorial, Fibonacci, ...
- There is no concept of "named" functions
- So no way to refer to a function "recursively"!
- Fix-point computation comes to rescue

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that $f p=p$

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that $f p=p$
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ-expression, gives its fixed point

$$
Y f=f(Y f)
$$

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that $f p=p$
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ-expression, gives its fixed point

$$
Y f=f(Y f)
$$

- Y-combinator gives us a way to apply a function recursively

Recursion Example: Factorial

$$
\begin{aligned}
\text { fact } & =\lambda n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(\text { fact }(\operatorname{pred} n))) \\
& =(\lambda f n . \text { if (isZero } n) \text { One }(\operatorname{mult} n(f(\operatorname{pred} n)))) \text { fact }
\end{aligned}
$$

Recursion Example: Factorial

$$
\begin{aligned}
\text { fact } & =\lambda n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(\text { fact }(\operatorname{pred} n))) \\
& =(\lambda f n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(f(\operatorname{pred} n)))) \text { fact } \\
\text { fact } & =g \text { fact }
\end{aligned}
$$

- fact is a fixed point of the function

$$
g=(\lambda f n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(f(\text { pred } n))))
$$

Recursion Example: Factorial

$$
\begin{aligned}
\text { fact } & =\lambda n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(\text { fact }(\text { pred } n))) \\
& =(\lambda f \text {. if (isZero } n) \text { One }(\operatorname{mult} n(f(\text { pred } n)))) \text { fact } \\
\text { fact } & =g \text { fact }
\end{aligned}
$$

- fact is a fixed point of the function

$$
g=(\lambda f n . \text { if }(\text { isZero } n) \text { One }(\text { mult } n(f(\text { pred } n))))
$$

- Using Y-combinator,

$$
\text { fact }=Y g
$$

Factorial: Verify

fact $2=(Y g) 2$

Factorial: Verify

$$
\text { fact } \begin{aligned}
2 & =(Y g) 2 \\
& =g(Y g) 2 \quad-\text { by definition of Y-combinator }
\end{aligned}
$$

Factorial: Verify

$$
\text { fact } \begin{aligned}
2 & =(Y g) 2 \\
& =g(Y g) 2-\text { by definition of Y-combinator } \\
& =(\lambda f n . \text { if }(\text { isZero } n) 1(\text { mult } n(f(\text { pred } n))))(Y g) 2
\end{aligned}
$$

Factorial: Verify

$$
\begin{aligned}
\text { fact } 2 & =(Y g) 2 \\
& =g(Y g) 2-\text { by definition of Y-combinator } \\
& =(\lambda f n . \text { if (isZero } n) 1(\text { mult } n(f(\text { pred } n))))(Y g) 2 \\
& =(\lambda n . \text { if (isZero } n) 1(\text { mult } n((Y g)(\text { pred } n)))) 2
\end{aligned}
$$

Factorial: Verify

$$
\begin{aligned}
\text { fact } 2 & =(Y g) 2 \\
& =g(Y g) 2-\text { by definition of Y-combinator } \\
& =(\lambda f n . \text { if (isZero } n) 1(\text { mult } n(f(\text { pred } n))))(Y g) 2 \\
& =(\lambda n . \text { if (isZero } n) 1(\text { mult } n((Y g)(\text { pred } n)))) 2 \\
& =\text { if (isZero 2) } 1(\text { mult } 2((Y g)(\text { pred2 })))
\end{aligned}
$$

Factorial: Verify

$$
\begin{aligned}
\text { fact } 2 & =(Y g) 2 \\
& =g(Y g) 2-\text { by definition of Y-combinator } \\
& =(\lambda f n . \text { if (isZero } n) 1(\text { mult } n(f(\text { pred } n))))(Y g) 2 \\
& =(\lambda n . \text { if (isZero } n) 1(\text { mult } n((Y g)(\text { pred } n)))) 2 \\
& =\text { if (isZero 2) } 1(\text { mult } 2((Y g)(\operatorname{pred} 2))) \\
& =(\text { mult } 2((Y g) 1))
\end{aligned}
$$

Factorial: Verify

```
fact2 = (Yg)2
    =g(Yg)2 - by definition of Y-combinator
    = (\lambdafn. if (isZero n) 1(mult n(f(pred n))))(Yg)2
    = (\lambdan. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
    = if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
    = (mult 2 ((Yg) 1))
    =(mult 2 (mult 1 (if (isZero 0) 1 (...))))
```


Factorial: Verify

```
fact2 = (Yg)2
    =g(Yg)2 - by definition of Y-combinator
    = (\lambdafn. if (isZero n) 1 (mult n(f(pred n)))) (Yg)2
    = (\lambdan. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
    = if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
    = (mult 2 ((Yg) 1))
    = (mult 2 (mult 1 (if (isZero 0) 1 (...))))
    =(mult 2(mult 1 1))
```


Factorial: Verify

```
fact2 = (Yg)2
    =g(Yg)2 - by definition of Y-combinator
    = (\lambdafn. if (isZero n) 1 (mult n(f(pred n)))) (Yg)2
    = (\lambdan. if (isZero n) 1 (mult n ((Y g) (pred n)))) 2
    = if (isZero 2) 1 (mult 2 ((Y g)(pred2)))
    = (mult 2 ((Yg) 1))
    = (mult 2 (mult 1 (if (isZero 0) 1 (...))))
    =(mult 2(mult 1 1))
    = 2
```


Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once-similar to one unfolding of recursive call

Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once-similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls

Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once-similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls

Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once-similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls
BUT, what about the existence of Y-combinator?

Y-combinators

- Many candidates exist

$$
Y_{1}=\lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

Y-combinators

- Many candidates exist

$$
Y_{1}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

$Y=\lambda a b c d e f g h i j k / m n o p q s t u v w x w z r . r($ thisisafixedpointcombinator)

Y-combinators

- Many candidates exist

$$
Y_{1}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

$Y=\lambda$ abcdefghijklmnopqstuvwxwzr.r(thisisafixedpointcombinator)

$$
Y_{\text {funny }}=\text { TTTTT TTTTT TTTTT TTTTT TTTTT } T
$$

Y-combinators

- Many candidates exist

$$
Y_{1}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

$Y=\lambda$ abcdefghijklmnopqstuvwxwzr.r(thisisafixedpointcombinator)

$$
Y_{\text {funny }}=\text { TTTTT TTTTT TTTTT TTTTT TTTTT T }
$$

- Verify that $(Y f)=f(Y f)$ for each

Summary

- A cursory look at λ-calculus

Summary

- A cursory look at λ-calculus
- Functions are data, and Data are functions!

Summary

- A cursory look at λ-calculus
- Functions are data, and Data are functions!
- Not covered but important to know: The power of λ calculus is equivalent to that of Turing Machine ("Church Turing Thesis")

