

α -renaming

- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, λx.x x y is equivalent to λu.u u y
 - But it is not same as $\lambda x.x x w$
 - Can not change free variables!

β -reduction (Execution Semantics)

- ► if an abstraction λx.t₁ is applied to a term t₂ then the result of the application is
 - the body of the abstraction t₁ with all free occurrences of the formal parameter x replaced with t₂.
- ► For example,

$$(\lambda f \lambda x.f(f x)) g \stackrel{\beta}{\longrightarrow} \lambda x.g(g x)$$

Caution

- During β-reduction, make sure a free variable is not captured inadvertently.
- ► The following reduction is WRONG

$$(\lambda x \lambda y.x)(\lambda x.y) \xrightarrow{\beta} \lambda y.\lambda x.y$$

• Use α -renaming to avoid variable capture

$$(\lambda x \lambda y. x)(\lambda x. y) \xrightarrow{\alpha} (\lambda u \lambda v. u)(\lambda x. y) \xrightarrow{\beta} \lambda v. \lambda x. y$$

Exercise

- Apply β -reduction as far as possible
- 1. $(\lambda x \ y \ z. \ x \ z \ (y \ z)) (\lambda x \ y. \ x) (\lambda y. y)$
- $2. (\lambda x. x x)(\lambda x. x x)$
- 3. $(\lambda x \ y \ z. \ x \ z \ (y \ z)) \ (\lambda x \ y. \ x) \ ((\lambda x. \ x \ x)(\lambda x. \ x \ x))$

Church-Rosser Theorem

• Multiple ways to apply β -reduction

However, if two different reduction sequences terminate

Leftmost, outermost reduction will find the normal form if it

then they always terminate in the same term

Also called the Diamond Property

Some may not terminate

exists

Programming in λ Calculus

- Where is the other stuff?
- Constants?
 - Numbers
 - Booleans
- Complex Types?
 - Lists
 - Arrays
- Don't we need data?

Abstractions act as functions as well as data!

Numbers: Church Numerals

- We need a "Zero"
 - "Absence of item"
- And something to count
 - "Presence of item"
- Intuition: Whiteboard and Marker
 - Blank board represents Zero
 - Each mark by marker represents a count.
 - However, other pairs of objects will work as well
- Lets translate this intuition into λ-expressions

Numbers

- ► Zero = *\lambda m w*. *w*
 - No mark on the whiteboard
- One = $\lambda m w. m w$
 - One mark on the whiteboard
- Two = $\lambda m w. m (m w)$
- ▶.
- What about operations?
 - add, multiply, subtract, divide, ...?

Operations on Numbers	More Operations
 succ = λx m w. m (x m w) Verify: succ N = N + 1 add = λx y m w. x m (y m w) Verify: add M N = M + N mult = λx y m w. x (y m) w Verify: mult M N = M * N 	 pred = λx m w. x (λg h. h (g m))(λu. w)(λu. u) Verify: pred N = N - 1 nminus = λx y. y pred x Verify: nminus M N = max(0, M - N) – natural subtraction
Church Booleans	Operations on Booleans
 True and False Intuition: Selection of one out of two (complementary) choices True = λx y. x False = λx y. y Predicate: isZero = λx. x (λu.False) True 	 Logical operations and = λp q. p q p or = λp q. p p q not = λp t f.p f t The conditional operator if if c e_t e_f reduces to e_t if c is True, and to e_f if c is False if = λc e_t e_f. (c e_t e_f)

More	We are missing something!!
 More such types can be found at https://en.wikipedia.org/wiki/Church_encoding It is fun to come up with your own definitions for constants and operations over different types or to develop understanding for existing definitions. 	 The machinery described so far does not allow us to define Recursive functions Factorial, Fibonacci, There is no concept of "named" functions So no way to refer to a function "recursively"! Fix-point computation comes to rescue
Fix-point and Y-combinator	Recursion Example: Factorial
 A fix-point of a function <i>f</i> is a value <i>p</i> such that <i>f p = p</i> Assume existence of a magic expression, called <i>Y</i>-combinator, that when applied to a λ-expression, gives its fixed point	fact = $\lambda n.$ if (isZero n) One (mult n (fact (pred n))) = $(\lambda f n.$ if (isZero n) One (mult n (f (pred n)))) fact fact = g fact • fact is a fixed point of the function $g = (\lambda f n.$ if (isZero n)One (mult n (f (pred n)))) • Using Y-combinator,
	fact = Y g

