Reference Book

CS738: Advanced Compiler Optimizations

The Untyped Lambda Calculus

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

The Abstract Syntax

$\mathrm{t}:=$	x	- Variable
	$\mid \lambda x . \mathrm{t}$	- Abstraction
	$\mid \mathrm{tt}$	- Application

Parenthesis, (...), can be used for grouping and scoping.

Types and Programming Languages by Benjamin C. Pierce

Conventions

- $\lambda x . \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$ is an abbreviation for λx. $\left(\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\right)$, i.e., the scope of x is as far to the right as possible until it is
- terminated by a) whose matching (occurs to the left of λ, OR
- terminated by the end of the term.
- Applications associate to the left: $t_{1} t_{2} t_{3}$ to be read as $\left(\mathrm{t}_{1} \mathrm{t}_{2}\right) \mathrm{t}_{3}$ and not as $\mathrm{t}_{1}\left(\mathrm{t}_{2} \mathrm{t}_{3}\right)$
- $\lambda x y z . t$ is an abbreviation for $\lambda x \lambda y \lambda z$.t which in turn is abbreviation for λx.(λy.($\lambda z . \mathrm{t})$).
- The name of a bound variable has no meaning except for its use to identify the bounding λ.
- Renaming a λ variable, including all its bound occurrences, does not change the meaning of an expression. For example, $\lambda x . x x y$ is equivalent to $\lambda u . u u y$
- But it is not same as $\lambda x . x x w$
- Can not change free variables!

Caution

- During β-reduction, make sure a free variable is not captured inadvertently.
- The following reduction is WRONG

$$
(\lambda x \lambda y \cdot x)(\lambda x \cdot y) \xrightarrow{\beta} \lambda y \cdot \lambda x \cdot y
$$

- Use α-renaming to avoid variable capture

$$
(\lambda x \lambda y \cdot x)(\lambda x \cdot y) \xrightarrow{\alpha}(\lambda u \lambda v . u)(\lambda x . y) \xrightarrow{\beta} \lambda v . \lambda x \cdot y
$$

β-reduction (Execution Semantics)

- if an abstraction $\lambda x . t_{1}$ is applied to a term t_{2} then the result of the application is
- the body of the abstraction t_{1} with all free occurrences of the formal parameter x replaced with t_{2}.
- For example,

$$
(\lambda f \lambda x . f(f x)) g \xrightarrow{\beta} \lambda x . g(g x)
$$

Exercise

- Apply β-reduction as far as possible

1. $(\lambda x y z . x z(y z))(\lambda x y . x)(\lambda y \cdot y)$
2. $(\lambda x \cdot x x)(\lambda x \cdot x x)$
3. $(\lambda x y z . x z(y z))(\lambda x y . x)((\lambda x . x x)(\lambda x . x x))$

- Multiple ways to apply β-reduction
- Some may not terminate
- However, if two different reduction sequences terminate then they always terminate in the same term
- Also called the Diamond Property
- Leftmost, outermost reduction will find the normal form if it exists

Programming in λ Calculus

- Where is the other stuff?
- Constants?
- Numbers
- Booleans
- Complex Types?
- Lists
- Arrays
- Don't we need data?

Abstractions act as functions as well as data!

Numbers: Church Numerals

- We need a "Zero"
- "Absence of item"
- And something to count
- "Presence of item"
- Intuition: Whiteboard and Marker
- Blank board represents Zero
- Each mark by marker represents a count
- However, other pairs of objects will work as well
- Lets translate this intuition into λ-expressions

Numbers

- Zero $=\lambda m w . w$
- No mark on the whiteboard
- One = $\lambda m w . m w$
- One mark on the whiteboard
- Two = $\lambda m w . m(m w)$
- ...
- What about operations?
- add, multiply, subtract, divide, ...?

Operations on Numbers

- succ $=\lambda x m w . m(x m w)$
- Verify: $\operatorname{succ} \mathrm{N}=\mathrm{N}+1$
- $\operatorname{add}=\lambda x$ y $m w . x m(y m w)$
- Verify: add $\mathrm{M}=\mathrm{M}+\mathrm{N}$
- mult $=\lambda x$ y mw. $x(y m) w$
- Verify: mult $M N=M * N$

Church Booleans

- True and False
- Intuition: Selection of one out of two (complementary) choices
- True $=\lambda x y . x$
- False $=\lambda x y . y$
- Predicate:
- isZero $=\lambda x . x(\lambda u$.False) True

More Operations

- pred $=\lambda x m w . x(\lambda g h . h(g m))(\lambda u . w)(\lambda u \cdot u)$
- Verify: pred $\mathrm{N}=\mathrm{N}-1$
- nminus $=\lambda x y . y$ pred x
- Verify: nminus $\mathrm{M} N=\max (0, \mathrm{M}-\mathrm{N})$ - natural subtraction

Operations on Booleans

- Logical operations

$$
\begin{aligned}
\text { and } & =\lambda p q \cdot p q p \\
\text { or } & =\lambda p q \cdot p p q \\
\text { not } & =\lambda p t f \cdot p f t
\end{aligned}
$$

- The conditional operator if
- if $c e_{t} e_{f}$ reduces to e_{t} if c is True, and to e_{f} if c is False

$$
\text { if }=\lambda c e_{t} e_{f} .\left(c e_{t} e_{f}\right)
$$

More. .

- More such types can be found at
https://en.wikipedia.org/wiki/Church_encoding
- It is fun to come up with your own definitions for constants and operations over different types
- or to develop understanding for existing definitions.

Fix-point and Y-combinator

- A fix-point of a function f is a value p such that $f p=p$
- Assume existence of a magic expression, called Y-combinator, that when applied to a λ-expression, gives its fixed point

$$
Y f=f(Y f)
$$

- Y-combinator gives us a way to apply a function recursively

We are missing something!!

- The machinery described so far does not allow us to define Recursive functions
- Factorial, Fibonacci, ...
- There is no concept of "named" functions
- So no way to refer to a function "recursively"!
- Fix-point computation comes to rescue

Recursion Example: Factorial

```
fact = \lambdan. if (isZero n) One (mult n(fact (pred n)))
    = (\lambdaf n. if (isZero n) One (mult n(f(pred n)))) fact
fact = g fact
```

- fact is a fixed point of the function

$$
g=(\lambda f \text { n. if }(\text { isZero } n) \text { One }(\text { mult } n(f(\text { pred } n))))
$$

- Using Y-combinator,

$$
\text { fact }=Y g
$$

Factorial: Verify
fact $2=(Y g) 2$
$=g(Y g) 2$ - by definition of Y-combinator
$=(\lambda f n$. if $($ isZero $n) 1($ mult $n(f($ pred $n))))(Y g) 2$
$=(\lambda n$. if (isZero $n) 1($ mult $n((Y g)($ pred $n)))) 2$
$=i f($ isZero 2$) 1$ (mult $2((Y g)($ pred2 $)))$
$=($ mult $2((Y g) 1))$
$=($ mult $2($ mult $1($ if (isZero 0) $1(\ldots))))$
$=($ mult $2($ mult 11$))$
$=2$

Recursion and Y-combinator

- Y-combinator allows to unroll the body of loop once-similar to one unfolding of recursive call
- Sequence of Y-combinator applications allow complete unfolding of recursive calls
BUT, what about the existence of Y-combinator?

Y-combinators

- Many candidates exist

$$
Y_{1}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

$Y=\lambda$ abcdefghijk/mnopqstuvwxwzr.r(thisisafixedpointcombinator)

$$
Y_{\text {funny }}=\text { TTTTT TTTTT TTTTT TTTTT TTTTT T }
$$

- Verify that $(Y f)=f(Y f)$ for each

Summary

- A cursory look at λ-calculus
- Functions are data, and Data are functions!
- Not covered but important to know: The power of λ calculus is equivalent to that of Turing Machine ("Church Turing Thesis")

