CS738: Advanced Compiler Optimizations

Pointer Analysis

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Why Pointer Analysis?

> Static analysis of pointers & references

S, ...

S2. q=p

S83. do{

S4. q = q.next;

S5. }while(...)

S6. p.data=r1;

S7. q.data= q.data+ r2;
S8. p.data=r1;

S9. r3=p.data+r2;
S10.

. N N \
: N \ \
z v \ \

Stack Heap

Superimposition of memory graphs after do-while loop

p and q are definitely not aliases statement S6 onwards.

Statement S8 is redundant.

Why Pointer Analysis?

> Static analysis of pointers & references

S1.

S2. q=p;

S3. while(...){

S4. q = q.next;

S5, }

S6. p.data=r1;

S7. q.data= q.data+ r2;
S8. p.data=r1;

S9. r3=p.data+rz;
S10.

§ I
:\:—“~\:__q—\‘\\ RN
q\\ q N AN \\
: \ \ \ \
: \ \ \)
: 4 \4

Stack: Heap

Superimposition of memory graphs after while loop

p and g may be aliases statement S6 onwards.

Statement S8 is not redundant.

Why Pointer Analysis?

Reaching definitions analysis

Why Pointer Analysis?

Which defs

: of a reach
here?

Reaching definitions analysis

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

» Order of execution: Determined by the semantics of
language

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

» Order of execution: Determined by the semantics of
language

» Point-specific information computed at each program point
within a procedure

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

» Order of execution: Determined by the semantics of
language

» Point-specific information computed at each program point
within a procedure

» A statement can “override” information computed by a
previous statement

Flow Sensitivity in Data Flow Analysis

» Flow Sensitive Analysis

» Order of execution: Determined by the semantics of
language

» Point-specific information computed at each program point
within a procedure

» A statement can “override” information computed by a
previous statement

» Kill component in the flow function

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order

» As aresult, all the program points in a procedure receive
identical data flow information.

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis
» Order of execution: Statements are assumed to execute in
any order

» As aresult, all the program points in a procedure receive
identical data flow information.

> “Summary” for the procedure

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order
» As aresult, all the program points in a procedure receive
identical data flow information.
> “Summary” for the procedure
> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order
» As aresult, all the program points in a procedure receive
identical data flow information.
> “Summary” for the procedure
> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order
» A statement can not “override” information computed by
another statement

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order
» As aresult, all the program points in a procedure receive
identical data flow information.
> “Summary” for the procedure
> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order
» A statement can not “override” information computed by
another statement

» NO Kill component in the flow function

Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order
» As aresult, all the program points in a procedure receive
identical data flow information.
> “Summary” for the procedure
> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order
» A statement can not “override” information computed by
another statement
» NO Kill component in the flow function
> |f statement s kills some data flow information, there is an
alternate path that excludes s

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression
> Address taken analysis

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing

» Compute/Verify type of a variable/expression
> Address taken analysis

» Which variables have their addresses taken?

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression
> Address taken analysis

» Which variables have their addresses taken?
» A very simple form of pointer analysis

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression
> Address taken analysis

» Which variables have their addresses taken?
» A very simple form of pointer analysis

» Side effects analysis

Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression
> Address taken analysis

» Which variables have their addresses taken?
» A very simple form of pointer analysis

» Side effects analysis

» Does a procedure modify address / global variable /
reference parameter /... ?

Realizing Flow Insensitivity

Realizing Flow Insensitivity

Realizing Flow Insensitivity

Allows arbitrary compositions of flow functions in any order =
Flow insensitivity

Realizing Flow Insensitivity

In practice, dependent constraints are collected in a global
repository in one pass and solved independently

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

X =&a X=a
X points-to a x and a are aliases

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =8&a X=a
X points-to a x and a are aliases

X—a X=a

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a

Reflexive?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a

Reflexive? No Yes

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes

Symmetric?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes

Symmetric? No Yes

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes
Symmetric? No Yes

Transitive?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes
Symmetric? No Yes

Transitive? No

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes
Symmetric? No Yes
Transitive? No Must alias: Yes,

May alias: No

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

Program Constraints Points-to Graph

1la=&b

2lc=a

| Constraint

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs
Program Constraints Points-to Graph
1la=8&b
2lc=a
| Constraint
3a=&d]

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> Pihs 2 Prs
Program Constraints Points-to Graph
i[a= &b]
ac=2 Constraint @ @
Pa 2 {b}
3a=&d]

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs
Program Constraints Points-to Graph
1la=8&b
2lc=a
| Constraint @
1| Ps2{b} \
fazad] 2| Pe2 P (»)

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis
> P/hs 2 Prhs

Program Constraints Points-to Graph
i[a= &b]
Ac=2 # | Constraint @
1] Py 2 {b} A
ofa=id IS
©

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs

Program Constraints Points-to Graph

1la=&b

2lc=a
| Constraint @
1| Ps2{b} \

Ja-2d AVoEss
— 3| P;2{d}

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs

Program Constraints Points-to Graph

1la=8&b

2lc=a
| Constraint @
1| Ps2{b} \

J[a=ad] 2|e2f ®
— 3| P2 {d}

4| P,D{e} @/
5 Pb) Pa

5lb = a]

Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs
Program Constraints Points-to Graph
1la=8&b
flo=2 # | Constraint
onstrain
1| Ps2{b} e\ o
2| P2 P
{a=ad slesa S8
4| P2 {e} o
3 Pb) Pa
5lb = a]

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=&b

2lc=a # | Constraint

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=&b
2lc=a # | Constraint @ @

1] Pa2{b}

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=8&b
2lc=a # | Constraint @
1 PZ’ZS{?}'" N
/
©

2 | MERGE(Ps, Py) @

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph
1la=_&b
2c=a # | Constraint @\
1| Pa2 {b}
2 | MERGE(P;, Py)
3| P22 {d} /

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=&b

Constraint @

2lc=a #
1] P2 {b} N
2 | MERGE(P,, Pa)
3| P,2{d}
4| P.> (e} e

©

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=&b

Constraint @
P.2 (b} N
MERGE(Pg, Pz)

P2 2 {d}

P22 {6'} ©/
MERGE(Py, P2)

O WN = H

Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph
1la=_&b
2lc=a # | Constraint
1| Pa2 {b}
2 | MERGE(P,, P.)
3| P22 {d}
4| P;D{e}
5 | MERGE(P,, Pa)

Comparing Anderson’s and Steensgaard’s Analyses

Program Subset based Equality based
Points-to Graph Points-to Graph

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

@ —®—0

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

d = &e;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

%@—*@*@
@ —O—@
D—@©

d

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

= &e: @

@ —O—@
D—@

a = &d;

d

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;

%@—*@*@
@ —O—@
D—@©

d

a = &d;

@

Subset based

OnO
On0,

Equality based

()~

Pointer Indirection Constraints

| Subset based

|

Equality based

|

PaQPC,VCEPb

MERGE(P3, P¢), Ve € Py

P:. D Py, Ve € P,

MERGE(Pp, P¢), Ve € P,

Must Points-to Analysis

> x definitely points-to a at various points in the program
» xS a

May Points-to Analysis

» At OUT of 2, x definitely points-to b

» At OUT of 3, x definitely points-to a

> At IN of 4, x possibly points-to a (or b)
» x Saxsb

May Points-to Analysis

» At OUT of 2, x definitely points-to b

> At OUT of 3, x definitely points-to a

» At IN of 4, x possibly points-to a (or b)
> x5 {a b}

Must Alias Analysis

» x and a always refer to same memory location
D
> x=a

Must Alias Analysis

» x and a always refer to same memory location
> X = a

» x,y and a refer to same location at OUT of 4.
> X = y Za

May Alias Analysis

> At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
> At IN of 4, x can possibly be aliased with either a (or b)
> x=a,x=b

May Alias Analysis

> At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
> At IN of 4, x can possibly be aliased with either a (or b)
> (x,a),(x,b)

May Alias Analysis

> At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
> At IN of 4, x can possibly be aliased with either a (or b)
> (x,a),(x,b)

» If we say: (x, a, b), Is it Precise?

May Alias Analysis

> At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
> At IN of 4, x can possibly be aliased with either a (or b)
> (x,a),(x,b)

» If we say: (x, a, b), Is it Precise? Safe?

Must Pointer Analysis

» Makes sense only for Flow Sensitive analysis

Must Pointer Analysis

» Makes sense only for Flow Sensitive analysis
» Why?

Must Pointer Analysis

» Makes sense only for Flow Sensitive analysis
» Why?
» Must analysis = Flow sensitive analysis

Must Pointer Analysis

» Makes sense only for Flow Sensitive analysis
» Why?

» Must analysis = Flow sensitive analysis

» Flow insensitive analysis = May analysis

Must Pointer Analysis

» Makes sense only for Flow Sensitive analysis
» Why?

» Must analysis = Flow sensitive analysis

» Flow insensitive analysis = May analysis

» Why?

Updating Information: When Can We Kill?

» Never if flow insensitive analysis

Updating Information: When Can We Kill?

. 1-x = &a,
» Never if flow insensitive analysis F

» For flow sensitive y = &b;
w = &c;

3|z:&x;| 4|z:&y;|

xZ = NULL;
xw = NULL,

[6)]

Updating Information: When Can We Kill?

. . 1-x = &a;
» Never if flow insensitive analysis F

» For flow sensitive y = &b;
w = &c;

3|z:&x;| 4|z:&y;|

xZ = NULL;
xw = NULL,

[6)]

> x, y may or may not get modified in 5: Weak update

Updating Information: When Can We Kill?

» Never if flow insensitive analysis
» For flow sensitive

(=

2 y = &b;

w = &c;

3|z:&x;| 4|z:&y;|

[6)]

xZz = NULL;
xw = NULL,

> x, y may or may not get modified in 5: Weak update
» c definitely gets modified in 5: Strong update

Updating Information: When Can We Kill?

.) 1-x = &a;
Never if flow insensitive analysis F

| 2
» For flow sensitive y = &b;
w = &c;
3z = &x;] 4|z:&y;|
5 xZz = NULL;
xw = NULL,

> x, y may or may not get modified in 5: Weak update
c definitely gets modified in 5: Strong update
Must information is killed by Strong and Weak updates

vy

Updating Information: When Can We Kill?

.) 1-x = &a;
Never if flow insensitive analysis F

>
» For flow sensitive y = &b
w = &c;
3|z:&x;| 4|z:&y;|
5 xZ = NULL,
«w = NULL,
> x, y may or may not get modified in 5: Weak update
» c definitely gets modified in 5: Strong update
» Must information is killed by Strong and Weak updates
» May information is killed only by Strong updates

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X = &y

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X =&y
> x="y

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X =&y
> x="y
> *x=y

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> x =&y
> X = *y
> *x = y
» Other statements can be rewritten in terms of above

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> x =&y
> X = *y
> *x = y
» Other statements can be rewritten in terms of above
> x="y=1="y, "x =t

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> x =&y
> x="y
> *X = y
» Other statements can be rewritten in terms of above
> x="y=1="y, "x =t
» x = NULL = treat NULL as a special variable

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X = &y
> x="y
> ¥ = y
» Other statements can be rewritten in terms of above
> x="y=1="y, "x =t
» x = NULL = treat NULL as a special variable
» OUT = IN — KillU gen

Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X =&y
> x="y
> *X = y
» Other statements can be rewritten in terms of above
> x="y=1="y, "x =t
» x = NULL = treat NULL as a special variable
» OUT = IN — KillU gen
» with a twist!

Flow Function: x =y

MaYQen = {Xx—=>ply—peMayy}
Mayy = |J {x—p}

p€e Vars

Flow Function: x =y

MaYQen = {Xx—=>ply—peMayy}
Mayy = |J {x—p}

p€e Vars

Mustgen = {x = p|y — p < Musty}
Musty = U {x = p}

pe Vars

Flow Function: x = &y

MaYQen = {x—y}
Mayy = |J {x—p}

p€e Vars

Flow Function: x = &y

MaYQen = {x—y}
Mayy = |J {x—p}

p€e Vars

Mustiy = U {x = p}

pe Vars

Flow Function: x ="y

Mayge, = {x = p|y—p €May,andp — pe Mayy}
Mayy = |J {x—p}

p€e Vars

Flow Function: x ="y

May,, = {x—p|y—p €Mayyandp — pecMayy}

Mayy = |J {x—p}
p€e Vars
Mustgen = {x = p|y — p € Musty and p’ — p € Musty}
Mustyy = U {x = p}

pe Vars

Flow Function: *x =y

MaYQen = {p—=p | x—=peMayy,y—p €Mayy}
May, = |J {p— P |x— peMusty}

p’' € Vars

Flow Function: *x =y

MaYQen = {p—=p | x—=peMayy,y—p €Mayy}
May, = |J {p— P |x— peMusty}

p’' € Vars

Mustgen = {p—p'|x — p e Musty,y — p' € Musty}

Mustiy = | {p—p' | x— peMayy}

p’ € Vars

Flow Function: *x =y

Mayse, = {p—p |x—pecMayy,y—p cMayy}

May, = |J {p— P |x— peMusty}_ Strong update!!

p’' € Vars

Mustgen = {p—p' | x — p e Musty,y — p' € Musty}

Mustsy = U {p—p | x — peMayy} Weak update!!

p’€Vars

Summarizing Flow Functions

» May Points-To analysis

Summarizing Flow Functions

» May Points-To analysis

> A points-to pair should be removed only if it must be
removed along all paths

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

» Must Points-To analysis

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information
» Must Points-To analysis

> A points-to pair should be removed if it can be removed
along some path

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

» Must Points-To analysis

> A points-to pair should be removed if it can be removed
along some path
» = should remove all weak updates

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information
» Must Points-To analysis
> A points-to pair should be removed if it can be removed
along some path
» = should remove all weak updates
» = should kill using May Points-To information

Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

» Must Points-To analysis

> A points-to pair should be removed if it can be removed
along some path

» = should remove all weak updates

» = should kill using May Points-To information

» Must Points-To C May Points-To

Safe Approximations for May and Must Points-to

» A pointer variable

] | May | Must \
Points-to | points to every possible | points to nothing
location
Alias aliased to every other | only to itself

pointer variable

Non-Distributivity of Points-to Analysis

May Information

Must Information

=z

b=&c
c=&d

b=&e
e=24&d

Non-Distributivity of Points-to Analysis

May Information

2 x = &z| 3y =2&w
dhxx =y

Z — w is spurious

Must Information

=z

b=&c
c=&d

b=&e
e=24&d

Non-Distributivity of Points-to Analysis

May Information

2 x = &z| 3y =2&w
dhxx =y

Z — w is spurious

Must Information

=z

b=&c
c=&d

b=&e
e=24&d

4 a==xb

a — d is missing

