
CS738: Advanced Compiler Optimizations

Pointer Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738

Why Pointer Analysis?

◮ Static analysis of pointers & references

S1. . . .

S2. q = p;
S3. do {
S4. q = q.next ;
S5. } while (. . .)
S6. p.data = r1;
S7. q.data = q.data + r2;
S8. p.data = r1;
S9. r3 = p.data + r2;
S10. . . .

p

q

m1 m2 m3 mk
p next next

q
q

q

HeapStack

Superimposition of memory graphs after do-while loop

p and q are definitely not aliases statement S6 onwards.

Statement S8 is redundant.

Why Pointer Analysis?

◮ Static analysis of pointers & references

S1. . . .

S2. q = p;
S3. while (. . .) {
S4. q = q.next ;
S5. }
S6. p.data = r1;
S7. q.data = q.data + r2;
S8. p.data = r1;
S9. r3 = p.data + r2;
S10. . . .

p

q

m1 m2 m3 mk
p next next

q
q

q

q

HeapStack

Superimposition of memory graphs after while loop

p and q may be aliases statement S6 onwards.

Statement S8 is not redundant.

Why Pointer Analysis?

x = &a;

a = 5; *x = 15;

c = a + 1;

Reaching definitions analysis

Why Pointer Analysis?

x = &a;

a = 5; *x = 15;

c = a + 1;

Reaching definitions analysis

Which defs

of a reach

here?

Flow Sensitivity in Data Flow Analysis

◮ Flow Sensitive Analysis

Flow Sensitivity in Data Flow Analysis

◮ Flow Sensitive Analysis
◮ Order of execution: Determined by the semantics of

language

Flow Sensitivity in Data Flow Analysis

◮ Flow Sensitive Analysis
◮ Order of execution: Determined by the semantics of

language
◮ Point-specific information computed at each program point

within a procedure

Flow Sensitivity in Data Flow Analysis

◮ Flow Sensitive Analysis
◮ Order of execution: Determined by the semantics of

language
◮ Point-specific information computed at each program point

within a procedure
◮ A statement can “override” information computed by a

previous statement

Flow Sensitivity in Data Flow Analysis

◮ Flow Sensitive Analysis
◮ Order of execution: Determined by the semantics of

language
◮ Point-specific information computed at each program point

within a procedure
◮ A statement can “override” information computed by a

previous statement
◮ Kill component in the flow function

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure
◮ Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure
◮ Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

◮ A statement can not “override” information computed by
another statement

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure
◮ Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

◮ A statement can not “override” information computed by
another statement

◮ NO Kill component in the flow function

Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure
◮ Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

◮ A statement can not “override” information computed by
another statement

◮ NO Kill component in the flow function
◮ If statement s kills some data flow information, there is an

alternate path that excludes s

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis
◮ Which variables have their addresses taken?

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis
◮ Which variables have their addresses taken?
◮ A very simple form of pointer analysis

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis
◮ Which variables have their addresses taken?
◮ A very simple form of pointer analysis

◮ Side effects analysis

Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis
◮ Which variables have their addresses taken?
◮ A very simple form of pointer analysis

◮ Side effects analysis
◮ Does a procedure modify address / global variable /

reference parameter / . . . ?

Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

ENTRY

b0 b1 b2 b3 b4 b5

EXIT

Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

ENTRY

b0 b1 b2 b3 b4 b5

EXIT

Allows arbitrary compositions of flow functions in any order ⇒
Flow insensitivity

Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

ENTRY

b0 b1 b2 b3 b4 b5

EXIT

In practice, dependent constraints are collected in a global

repository in one pass and solved independently

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Transitive?

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Transitive? No

Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Transitive? No Must alias: Yes,

May alias: No

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
a b

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

a

c

b

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}

a

c

b

d

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}

a

c

b

d

e

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

a

c

b

d

e
b

Andersen’s Flow Insensitive Points-to Analysis

◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

a

c

b

d

e

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}

a b

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

a

c

b

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}

a

c

b

d

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}

a

c

b

d

e

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 MERGE(Pb,Pa)

a

c

b

d

e

Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 MERGE(Pb,Pa)

a

c

b

d

e

Comparing Anderson’s and Steensgaard’s Analyses

Program Subset based Equality based

Points-to Graph Points-to Graph

a = &b

c = a

a = &d a = &e

b = a

a

c

b

d

e

a

c

b

d

e

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

a b c

d e

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

a b c

d e

a = &d;

Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

a b c

d e

a = &d;

Subset based Equality based

a

b c

d e

a b,d c,e

Pointer Indirection Constraints

Stmt Subset based Equality based

a = *b Pa ⊇ Pc , ∀c ∈ Pb MERGE(Pa,Pc), ∀c ∈ Pb

*a = b Pc ⊇ Pb, ∀c ∈ Pa MERGE(Pb,Pc), ∀c ∈ Pa

Must Points-to Analysis

1 x = &a;

2 3

4

◮ x definitely points-to a at various points in the program

◮ x
D
→ a

May Points-to Analysis

1 x = &a;

2 x = &b; 3

4

◮ At OUT of 2, x definitely points-to b

◮ At OUT of 3, x definitely points-to a

◮ At IN of 4, x possibly points-to a (or b)

◮ x
P
→ a, x

P
→ b

May Points-to Analysis

1 x = &a;

2 x = &b; 3

4

◮ At OUT of 2, x definitely points-to b

◮ At OUT of 3, x definitely points-to a

◮ At IN of 4, x possibly points-to a (or b)

◮ x
P
→ {a,b}

Must Alias Analysis

1 x = a;

2 3

4 y = a;

◮ x and a always refer to same memory location

◮ x
D

≡ a

Must Alias Analysis

1 x = a;

2 3

4 y = a;

◮ x and a always refer to same memory location

◮ x
D

≡ a

◮ x , y and a refer to same location at OUT of 4.

◮ x
D

≡ y
D

≡ a

May Alias Analysis

1 x = a;

2 x = b; 3

4

◮ At OUT of 2, x and b are must aliases

◮ At OUT of 3, x and a are must aliases

◮ At IN of 4, x can possibly be aliased with either a (or b)

◮ x
P

≡ a, x
P

≡ b

May Alias Analysis

1 x = a;

2 x = b; 3

4

◮ At OUT of 2, x and b are must aliases

◮ At OUT of 3, x and a are must aliases

◮ At IN of 4, x can possibly be aliased with either a (or b)
◮ (x ,a), (x ,b)

May Alias Analysis

1 x = a;

2 x = b; 3

4

◮ At OUT of 2, x and b are must aliases

◮ At OUT of 3, x and a are must aliases

◮ At IN of 4, x can possibly be aliased with either a (or b)
◮ (x ,a), (x ,b)

◮ If we say: (x , a, b), Is it Precise?

May Alias Analysis

1 x = a;

2 x = b; 3

4

◮ At OUT of 2, x and b are must aliases

◮ At OUT of 3, x and a are must aliases

◮ At IN of 4, x can possibly be aliased with either a (or b)
◮ (x ,a), (x ,b)

◮ If we say: (x , a, b), Is it Precise? Safe?

Must Pointer Analysis

◮ Makes sense only for Flow Sensitive analysis

Must Pointer Analysis

◮ Makes sense only for Flow Sensitive analysis

◮ Why?

Must Pointer Analysis

◮ Makes sense only for Flow Sensitive analysis

◮ Why?

◮ Must analysis ⇒ Flow sensitive analysis

Must Pointer Analysis

◮ Makes sense only for Flow Sensitive analysis

◮ Why?

◮ Must analysis ⇒ Flow sensitive analysis

◮ Flow insensitive analysis ⇒ May analysis

Must Pointer Analysis

◮ Makes sense only for Flow Sensitive analysis

◮ Why?

◮ Must analysis ⇒ Flow sensitive analysis

◮ Flow insensitive analysis ⇒ May analysis

◮ Why?

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

◮ x , y may or may not get modified in 5: Weak update

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

◮ x , y may or may not get modified in 5: Weak update

◮ c definitely gets modified in 5: Strong update

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

◮ x , y may or may not get modified in 5: Weak update

◮ c definitely gets modified in 5: Strong update

◮ Must information is killed by Strong and Weak updates

Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

◮ x , y may or may not get modified in 5: Weak update

◮ c definitely gets modified in 5: Strong update

◮ Must information is killed by Strong and Weak updates

◮ May information is killed only by Strong updates

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above
◮ *x = *y ⇒ t = *y, *x = t

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above
◮ *x = *y ⇒ t = *y, *x = t
◮ x = NULL ⇒ treat NULL as a special variable

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above
◮ *x = *y ⇒ t = *y, *x = t
◮ x = NULL ⇒ treat NULL as a special variable

◮ OUT = IN − kill ∪ gen

Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above
◮ *x = *y ⇒ t = *y, *x = t
◮ x = NULL ⇒ treat NULL as a special variable

◮ OUT = IN − kill ∪ gen
◮ with a twist!

Flow Function: x = y

Maygen = {x → p | y → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Flow Function: x = y

Maygen = {x → p | y → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Mustgen = {x → p | y → p ∈ MustIN}

Mustkill =
⋃

p∈Vars

{x → p}

Flow Function: x = &y

Maygen = {x → y}

Maykill =
⋃

p∈Vars

{x → p}

Flow Function: x = &y

Maygen = {x → y}

Maykill =
⋃

p∈Vars

{x → p}

Mustgen = {x → y}

Mustkill =
⋃

p∈Vars

{x → p}

Flow Function: x = *y

Maygen = {x → p | y → p′ ∈ MayIN and p′ → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Flow Function: x = *y

Maygen = {x → p | y → p′ ∈ MayIN and p′ → p ∈ MayIN}

Maykill =
⋃

p∈Vars

{x → p}

Mustgen = {x → p | y → p′ ∈ MustIN and p′ → p ∈ MustIN}

Mustkill =
⋃

p∈Vars

{x → p}

Flow Function: *x = y

Maygen = {p → p′ | x → p ∈ MayIN , y → p′ ∈ MayIN}

Maykill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MustIN}

Flow Function: *x = y

Maygen = {p → p′ | x → p ∈ MayIN , y → p′ ∈ MayIN}

Maykill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MustIN}

Mustgen = {p → p′ | x → p ∈ MustIN , y → p′ ∈ MustIN}

Mustkill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MayIN}

Flow Function: *x = y

Maygen = {p → p′ | x → p ∈ MayIN , y → p′ ∈ MayIN}

Maykill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MustIN} Strong update!!

Mustgen = {p → p′ | x → p ∈ MustIN , y → p′ ∈ MustIN}

Mustkill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MayIN} Weak update!!

Summarizing Flow Functions

◮ May Points-To analysis

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis
◮ A points-to pair should be removed if it can be removed

along some path

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis
◮ A points-to pair should be removed if it can be removed

along some path
◮ ⇒ should remove all weak updates

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis
◮ A points-to pair should be removed if it can be removed

along some path
◮ ⇒ should remove all weak updates
◮ ⇒ should kill using May Points-To information

Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis
◮ A points-to pair should be removed if it can be removed

along some path
◮ ⇒ should remove all weak updates
◮ ⇒ should kill using May Points-To information

◮ Must Points-To ⊆ May Points-To

Safe Approximations for May and Must Points-to

◮ A pointer variable

May Must

Points-to points to every possible

location

points to nothing

Alias aliased to every other

pointer variable

only to itself

Non-Distributivity of Points-to Analysis

May Information Must Information

1

2 x = &z 3 y = &w

4 ∗x = y

1 x = a;

2
b = &c

c = &d
3

b = &e

e = &d

4 a = ∗b

Non-Distributivity of Points-to Analysis

May Information Must Information

1

2 x = &z 3 y = &w

4 ∗x = y

1 x = a;

2
b = &c

c = &d
3

b = &e

e = &d

4 a = ∗b

z → w is spurious

Non-Distributivity of Points-to Analysis

May Information Must Information

1

2 x = &z 3 y = &w

4 ∗x = y

1 x = a;

2
b = &c

c = &d
3

b = &e

e = &d

4 a = ∗b

z → w is spurious a → d is missing

