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Why Pointer Analysis?

◮ Static analysis of pointers & references

S1. . . .

S2. q = p;
S3. do {
S4. q = q.next ;
S5. } while (. . .)
S6. p.data = r1;
S7. q.data = q.data + r2;
S8. p.data = r1;
S9. r3 = p.data + r2;
S10. . . .

p

q

m1 m2 m3 mk
p next next

q
q

q

HeapStack

Superimposition of memory graphs after do-while loop

p and q are definitely not aliases statement S6 onwards.

Statement S8 is redundant.
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HeapStack

Superimposition of memory graphs after while loop

p and q may be aliases statement S6 onwards.

Statement S8 is not redundant.
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Why Pointer Analysis?

x = &a;

a = 5; *x = 15;

c = a + 1;

Reaching definitions analysis

Which defs

of a reach

here?
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Flow Sensitivity in Data Flow Analysis

◮ Flow Insensitive Analysis
◮ Order of execution: Statements are assumed to execute in

any order
◮ As a result, all the program points in a procedure receive

identical data flow information.
◮ “Summary” for the procedure
◮ Safe approximation of flow-sensitive point-specific

information for any point, for any given execution order

◮ A statement can not “override” information computed by
another statement

◮ NO Kill component in the flow function
◮ If statement s kills some data flow information, there is an

alternate path that excludes s
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Examples of Flow Insensitive Analyses

◮ Type checking, Type inferencing
◮ Compute/Verify type of a variable/expression

◮ Address taken analysis
◮ Which variables have their addresses taken?
◮ A very simple form of pointer analysis

◮ Side effects analysis
◮ Does a procedure modify address / global variable /

reference parameter / . . . ?
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ENTRY

b0 b1 b2 b3 b4 b5

EXIT

Allows arbitrary compositions of flow functions in any order ⇒
Flow insensitivity



Realizing Flow Insensitivity

b0

b1

b2 b3

b4

b5

ENTRY

b0 b1 b2 b3 b4 b5

EXIT

In practice, dependent constraints are collected in a global

repository in one pass and solved independently
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Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis

x = &a x = a

x points-to a x and a are aliases

x → a x ≡ a

Reflexive? No Yes

Symmetric? No Yes

Transitive? No Must alias: Yes,

May alias: No
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# Constraint
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◮ Subset based analysis

◮ Plhs ⊇ Prhs

Program Constraints Points-to Graph
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# Constraint

1 Pa ⊇ {b}
2 Pc ⊇ Pa

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 Pb ⊇ Pa

a

c

b

d

e



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint

1 Pa ⊇ {b}

a b



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

a

c

b



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}

a

c

b

d



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}

a

c

b

d

e



Steensgaard’s Flow Insensitive Points-to Analysis

◮ Equality based analysis: Plhs ≡ Prhs

◮ Only one Points-to successor at any time, merge

(potential) multiple successors

Program Constraints Points-to Graph

1 a = &b

2 c = a

3 a = &d 4 a = &e

5 b = a

# Constraint

1 Pa ⊇ {b}
2 MERGE(Pc ,Pa)

3 Pa ⊇ {d}
4 Pa ⊇ {e}
5 MERGE(Pb,Pa)

a

c

b

d

e



Steensgaard’s Flow Insensitive Points-to Analysis
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Comparing Anderson’s and Steensgaard’s Analyses

Program Subset based Equality based

Points-to Graph Points-to Graph

a = &b

c = a

a = &d a = &e

b = a

a

c

b

d

e

a

c

b

d

e
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Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

a b

b = &c;

a b c

d = &e;

a b c

d e

a = &d;

Subset based Equality based

a

b c

d e

a b,d c,e



Pointer Indirection Constraints

Stmt Subset based Equality based

a = *b Pa ⊇ Pc , ∀c ∈ Pb MERGE(Pa,Pc), ∀c ∈ Pb

*a = b Pc ⊇ Pb, ∀c ∈ Pa MERGE(Pb,Pc), ∀c ∈ Pa



Must Points-to Analysis

1 x = &a;

2 3

4

◮ x definitely points-to a at various points in the program

◮ x
D
→ a
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2 x = &b; 3

4

◮ At OUT of 2, x definitely points-to b

◮ At OUT of 3, x definitely points-to a

◮ At IN of 4, x possibly points-to a (or b)

◮ x
P
→ {a,b}
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Must Alias Analysis

1 x = a;

2 3

4 y = a;

◮ x and a always refer to same memory location

◮ x
D

≡ a

◮ x , y and a refer to same location at OUT of 4.

◮ x
D

≡ y
D

≡ a
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May Alias Analysis

1 x = a;

2 x = b; 3

4

◮ At OUT of 2, x and b are must aliases

◮ At OUT of 3, x and a are must aliases

◮ At IN of 4, x can possibly be aliased with either a (or b)
◮ (x ,a), (x ,b)

◮ If we say: (x , a, b), Is it Precise? Safe?
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◮ Makes sense only for Flow Sensitive analysis

◮ Why?

◮ Must analysis ⇒ Flow sensitive analysis

◮ Flow insensitive analysis ⇒ May analysis

◮ Why?
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Updating Information: When Can We Kill?

◮ Never if flow insensitive analysis

◮ For flow sensitive

1 x = &a;

2
y = &b;

w = &c;

3 z = &x ; 4 z = &y ;

5
∗z = NULL;

∗w = NULL;

◮ x , y may or may not get modified in 5: Weak update

◮ c definitely gets modified in 5: Strong update

◮ Must information is killed by Strong and Weak updates

◮ May information is killed only by Strong updates
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Flow Functions for Points-to Analysis

◮ Basic statements for pointer manipulation
◮ x = y
◮ x = &y
◮ x = *y
◮ *x = y

◮ Other statements can be rewritten in terms of above
◮ *x = *y ⇒ t = *y, *x = t
◮ x = NULL ⇒ treat NULL as a special variable

◮ OUT = IN − kill ∪ gen
◮ with a twist!
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Flow Function: *x = y

Maygen = {p → p′ | x → p ∈ MayIN , y → p′ ∈ MayIN}

Maykill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MustIN} Strong update!!

Mustgen = {p → p′ | x → p ∈ MustIN , y → p′ ∈ MustIN}

Mustkill =
⋃

p′∈Vars

{p → p′ | x → p ∈ MayIN} Weak update!!
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Summarizing Flow Functions

◮ May Points-To analysis
◮ A points-to pair should be removed only if it must be

removed along all paths
◮ ⇒ should remove only strong updates
◮ ⇒ should kill using Must Points-To information

◮ Must Points-To analysis
◮ A points-to pair should be removed if it can be removed

along some path
◮ ⇒ should remove all weak updates
◮ ⇒ should kill using May Points-To information

◮ Must Points-To ⊆ May Points-To



Safe Approximations for May and Must Points-to

◮ A pointer variable

May Must

Points-to points to every possible

location

points to nothing

Alias aliased to every other

pointer variable

only to itself
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Non-Distributivity of Points-to Analysis

May Information Must Information

1

2 x = &z 3 y = &w

4 ∗x = y

1 x = a;

2
b = &c

c = &d
3

b = &e

e = &d

4 a = ∗b

z → w is spurious a → d is missing


