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Why Pointer Analysis?

> Static analysis of pointers & references

S, ...

S2. q=p

S83. do{

S4. q = q.next;

S5.  }while(...)

S6. p.data=r1;

S7. q.data= q.data+ r2;
S8. p.data=r1;

S9. r3=p.data+r2;
S10.
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Stack Heap

Superimposition of memory graphs after do-while loop

p and q are definitely not aliases statement S6 onwards.

Statement S8 is redundant.




Why Pointer Analysis?

> Static analysis of pointers & references

S1.

S2. q=p;

S3.  while(...){

S4. q = q.next;

S5, }

S6. p.data=r1;

S7. q.data= q.data+ r2;
S8. p.data=r1;

S9. r3=p.data+rz;
S10.
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Stack: Heap

Superimposition of memory graphs after while loop

p and g may be aliases statement S6 onwards.

Statement S8 is not redundant.
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Reaching definitions analysis
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Flow Sensitivity in Data Flow Analysis

» Flow Insensitive Analysis

» Order of execution: Statements are assumed to execute in
any order
» As aresult, all the program points in a procedure receive
identical data flow information.
> “Summary” for the procedure
> Safe approximation of flow-sensitive point-specific
information for any point, for any given execution order
» A statement can not “override” information computed by
another statement
» NO Kill component in the flow function
> |f statement s kills some data flow information, there is an
alternate path that excludes s
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Examples of Flow Insensitive Analyses

» Type checking, Type inferencing
» Compute/Verify type of a variable/expression
> Address taken analysis

» Which variables have their addresses taken?
» A very simple form of pointer analysis

» Side effects analysis

» Does a procedure modify address / global variable /
reference parameter /... ?
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Realizing Flow Insensitivity

Allows arbitrary compositions of flow functions in any order =
Flow insensitivity



Realizing Flow Insensitivity

In practice, dependent constraints are collected in a global
repository in one pass and solved independently
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Alias Analysis vs. Points-to Analysis

Points-to Analysis Alias Analysis
X =&a X=a
X points-to a x and a are aliases
X—a X=a
Reflexive? No Yes
Symmetric? No Yes
Transitive? No Must alias: Yes,

May alias: No
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Andersen’s Flow Insensitive Points-to Analysis

» Subset based analysis

> P/hs 2 Prhs
Program Constraints Points-to Graph
1la=8&b
flo=2 # | Constraint
onstrain
1| Ps2{b} e\ o
2| P2 P
{a=ad slesa S8
4| P2 {e} o
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Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph
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Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph

1la=&b

Constraint @
P.2 (b} N
MERGE(Pg, Pz)
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Steensgaard’s Flow Insensitive Points-to Analysis

» Equality based analysis: Pjs = Prys

» Only one Points-to successor at any time, merge
(potential) multiple successors

Program Constraints Points-to Graph
1la=_&b
2lc=a # | Constraint
1| Pa2 {b}
2 | MERGE(P,, P.)
3| P22 {d}
4| P;D{e}
5 | MERGE(P,, Pa)




Comparing Anderson’s and Steensgaard’s Analyses

Program Subset based  Equality based
Points-to Graph Points-to Graph
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Comparing Anderson’s and Steensgaard’s Analyses

a = &b;
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Comparing Anderson’s and Steensgaard’s Analyses

a = &b;

@—®

b = &c;
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a = &d;

@

Subset based

OnO
On0,

Equality based
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Pointer Indirection Constraints

| Subset based

|

Equality based

|

PaQPC,VCEPb

MERGE(P3, P¢), Ve € Py

P:. D Py, Ve € P,

MERGE(Pp, P¢), Ve € P,




Must Points-to Analysis

> x definitely points-to a at various points in the program
» xS a
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May Points-to Analysis

» At OUT of 2, x definitely points-to b

> At OUT of 3, x definitely points-to a

» At IN of 4, x possibly points-to a (or b)
> x5 {a b}
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Must Alias Analysis

» x and a always refer to same memory location
> X = a

» x,y and a refer to same location at OUT of 4.
> X = y Za
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May Alias Analysis

> At OUT of 2, x and b are must aliases

» At OUT of 3, x and a are must aliases
> At IN of 4, x can possibly be aliased with either a (or b)
> (x,a),(x,b)

» If we say: (x, a, b), Is it Precise? Safe?
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» Makes sense only for Flow Sensitive analysis
» Why?

» Must analysis = Flow sensitive analysis

» Flow insensitive analysis = May analysis

» Why?
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Updating Information: When Can We Kill?

. ) 1-x = &a;
Never if flow insensitive analysis F

| 2
» For flow sensitive y = &b;
w = &c;
3z = &x;] 4|z:&y;|
5 xZz = NULL;
xw = NULL,

> x, y may or may not get modified in 5: Weak update
c definitely gets modified in 5: Strong update
Must information is killed by Strong and Weak updates
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Updating Information: When Can We Kill?

. ) 1-x = &a;
Never if flow insensitive analysis F

>
» For flow sensitive y = &b
w = &c;
3|z:&x;| 4|z:&y;|
5 xZ = NULL,
«w = NULL,
> x, y may or may not get modified in 5: Weak update
» c definitely gets modified in 5: Strong update
» Must information is killed by Strong and Weak updates
» May information is killed only by Strong updates
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Flow Functions for Points-to Analysis

» Basic statements for pointer manipulation
» X = y
> X =&y
> x="y
> *X = y
» Other statements can be rewritten in terms of above
> x="y=1="y, "x =t
» x = NULL = treat NULL as a special variable
» OUT = IN — KillU gen
» with a twist!
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Flow Function: x ="y

May,, = {x—p|y—p €Mayyandp — pecMayy}

Mayy = |J {x—p}
p€e Vars
Mustgen = {x = p|y — p € Musty and p’ — p € Musty}
Mustyy = U {x = p}

pe Vars
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Flow Function: *x =y

MaYQen = {p—=p | x—=peMayy,y—p €Mayy}
May, = |J {p— P |x— peMusty}

p’' € Vars

Mustgen = {p—p'|x — p e Musty,y — p' € Musty}

Mustiy = | {p—p' | x— peMayy}

p’ € Vars



Flow Function: *x =y

Mayse, = {p—p |x—pecMayy,y—p cMayy}

May, = |J {p— P |x— peMusty}_ Strong update!!

p’' € Vars

Mustgen = {p—p' | x — p e Musty,y — p' € Musty}

Mustsy = U {p—p | x — peMayy} Weak update!!

p’€Vars
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Summarizing Flow Functions

» May Points-To analysis
> A points-to pair should be removed only if it must be
removed along all paths
» = should remove only strong updates
» = should kill using Must Points-To information

» Must Points-To analysis

> A points-to pair should be removed if it can be removed
along some path

» = should remove all weak updates

» = should kill using May Points-To information

» Must Points-To C May Points-To



Safe Approximations for May and Must Points-to

» A pointer variable

] | May | Must \
Points-to | points to every possible | points to nothing
location
Alias aliased to every other | only to itself

pointer variable




Non-Distributivity of Points-to Analysis

May Information

Must Information

=z

b=&c
c=&d

b=&e
e=24&d




Non-Distributivity of Points-to Analysis

May Information

2 x = &z| 3y =2&w
dhxx =y

Z — w is spurious

Must Information
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Non-Distributivity of Points-to Analysis

May Information

2 x = &z| 3y =2&w
dhxx =y

Z — w is spurious

Must Information

=z

b=&c
c=&d

b=&e
e=24&d

4 a==xb

a — d is missing




