
CS738: Advanced Compiler Optimizations

Interprocedural Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Interprocedural Analysis: WHY?

Is a ∗ b available at IN of n1?

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T



Challenges

◮ Infeasible paths



Challenges

◮ Infeasible paths

◮ Recursion



Challenges

◮ Infeasible paths

◮ Recursion

◮ Function pointers and virtual functions



Challenges

◮ Infeasible paths

◮ Recursion

◮ Function pointers and virtual functions

◮ Dynamic functions (functional programs)



Infeasible Paths

How to avoid data flowing along invalid paths?

r1 → c1 → r2 → b2 → c2 → r2 → e2 → n1

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T



Recursion

How to handle Infinite paths?

. . . → r2 → c2 → r2 → c2 → r2 . . .

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T



Function Variables

◮ Target of a function can not be determined statically



Function Variables

◮ Target of a function can not be determined statically

◮ Function Pointers (including virtual functions)

double (*fun)(double arg);

...

if (cond)

fun = sqrt;

else

fun = fabs;

...

fun(x);



Function Variables

◮ Target of a function can not be determined statically

◮ Function Pointers (including virtual functions)

double (*fun)(double arg);

...

if (cond)

fun = sqrt;

else

fun = fabs;

...

fun(x);

◮ Dynamically created functions (in functional languages)



Function Variables

◮ Target of a function can not be determined statically

◮ Function Pointers (including virtual functions)

double (*fun)(double arg);

...

if (cond)

fun = sqrt;

else

fun = fabs;

...

fun(x);

◮ Dynamically created functions (in functional languages)

◮ No static control flow graph!



Two Approaches

◮ Functional approach



Two Approaches

◮ Functional approach
◮ procedures as structured blocks



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state

◮ Call-strings approach



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state

◮ Call-strings approach
◮ single flow graph for whole program



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state

◮ Call-strings approach
◮ single flow graph for whole program
◮ value of interest tagged with the history of unfinished

procedure calls



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state

◮ Call-strings approach
◮ single flow graph for whole program
◮ value of interest tagged with the history of unfinished

procedure calls



Two Approaches

◮ Functional approach
◮ procedures as structured blocks
◮ input-output relation (functions) for each block
◮ function used at call site to compute the effect of procedure

on program state

◮ Call-strings approach
◮ single flow graph for whole program
◮ value of interest tagged with the history of unfinished

procedure calls

M. Sharir, and A. Pnueli. Two Approaches to Inter-Procedural Data-Flow Analysis.

In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications.

Prentice-Hall, 1981.



Notations and Terminology



Control Flow Graph

One per procedure

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T



Control Flow Graph for Procedure p

◮ Single instruction basic blocks



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep

◮ Unique entry block, denoted rp (root block)



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep

◮ Unique entry block, denoted rp (root block)

◮ Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep

◮ Unique entry block, denoted rp (root block)

◮ Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n

◮ Path: (n1, n2, . . . , nk )



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep

◮ Unique entry block, denoted rp (root block)

◮ Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n

◮ Path: (n1, n2, . . . , nk )
◮ (ni ,ni+1) ∈ Edge set for 1 ≤ i < k



Control Flow Graph for Procedure p

◮ Single instruction basic blocks

◮ Unique exit block, denoted ep

◮ Unique entry block, denoted rp (root block)

◮ Edge (m, n) if direct control transfer from (the end of) block

m to (the start of) block n

◮ Path: (n1, n2, . . . , nk )
◮ (ni ,ni+1) ∈ Edge set for 1 ≤ i < k
◮ pathG(m,n): Set of all path in graph G = (N,E) leading

from m to n



Assumptions

◮ Parameterless procedures, to ignore the problems of



Assumptions

◮ Parameterless procedures, to ignore the problems of
◮ aliasing



Assumptions

◮ Parameterless procedures, to ignore the problems of
◮ aliasing
◮ recursion stack for formal parameters



Assumptions

◮ Parameterless procedures, to ignore the problems of
◮ aliasing
◮ recursion stack for formal parameters

◮ No procedure variables (pointers, virtual functions etc.)



Data Flow Framework

◮ (L,F ): data flow framework



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω

◮ F : space of propagation functions



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω

◮ F : space of propagation functions
◮ Closed under composition and meet



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω

◮ F : space of propagation functions
◮ Closed under composition and meet
◮ Contains idL(x) = x and fΩ(x) = Ω



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω

◮ F : space of propagation functions
◮ Closed under composition and meet
◮ Contains idL(x) = x and fΩ(x) = Ω

◮ f(m,n) ∈ F represents propagation function for edge (m, n)
of control flow graph G = (N,E)



Data Flow Framework

◮ (L,F ): data flow framework

◮ L: a meet-semilattice
◮ Largest element Ω

◮ F : space of propagation functions
◮ Closed under composition and meet
◮ Contains idL(x) = x and fΩ(x) = Ω

◮ f(m,n) ∈ F represents propagation function for edge (m, n)
of control flow graph G = (N,E)
◮ Change of DF values from the start of m, through m, to the

start of n



Data Flow Equations

xr = BoundaryInfo

xn =
∧

(m,n)∈E

f(m,n)(xm) n ∈ N − r

◮ MFP solution, approximation of MOP

yn =
∧

{fp(BoundaryInfo) : p ∈ pathG(r , n)} n ∈ N



Functional Approach

to

Interprocedural Analysis



Functional Approach

◮ Procedures treated as structures of blocks



Functional Approach

◮ Procedures treated as structures of blocks

◮ Computes relationship between DF value at entry node

and related data at any internal node of procedure



Functional Approach

◮ Procedures treated as structures of blocks

◮ Computes relationship between DF value at entry node

and related data at any internal node of procedure

◮ At call site, DF value propagated directly using the

computed relation



Interprocedural Flow Graph

First Representation:

G =
⋃

{Gp : p is a procedure in program}

Gp = (Np,Ep, rp)

Np = set of all basic block of p

rp = root block of p

Ep = set of edges of p

= E0
p ∪ E1

p

(m, n) ∈ E0
p ⇔ direct control transfer from m to n

(m, n) ∈ E1
p ⇔ m is a call block, and n immediately follows m



Interprocedural Flow Graph: 1st Representation

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

E0
main

E1
main

E0
main

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

FE0
p

E0
p

E1
p

E0
p

TE0
p



Interprocedural Flow Graph

Second representation

G∗ = (N∗
,E∗

, r1)

r1 = root block of main

N∗ =
⋃

p

Np

E∗ = E0 ∪ E1

E0 =
⋃

p

E0
p

(m, n) ∈ E1 ⇔ (m, n) is either a call edge

or a return edge



Interprocedural Flow Graph

◮ Call edge (m, n):



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):
◮ m is an exit block of p



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):
◮ m is an exit block of p
◮ n is a block immediately following a call to p



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):
◮ m is an exit block of p
◮ n is a block immediately following a call to p

◮ Call edge (m, rp) corresponds to return edge (eq, n)



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):
◮ m is an exit block of p
◮ n is a block immediately following a call to p

◮ Call edge (m, rp) corresponds to return edge (eq, n)
◮ if p = q and



Interprocedural Flow Graph

◮ Call edge (m, n):
◮ m is a call block, say calling p
◮ n is root block of p

◮ Return edge (m, n):
◮ m is an exit block of p
◮ n is a block immediately following a call to p

◮ Call edge (m, rp) corresponds to return edge (eq, n)
◮ if p = q and
◮ (m,n) ∈ E1

s for some procedure s



Interprocedural Flow Graph: 2nd Representation

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

E0

E0

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

FE0

E0

E0

TE0

E1

E1

E1
E1



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges

◮ Not all paths in G∗ are feasible



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges

◮ Not all paths in G∗ are feasible
◮ do not represent potentially valid execution paths



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges

◮ Not all paths in G∗ are feasible
◮ do not represent potentially valid execution paths

◮ IVP(r1, n): set of all interprocedurally valid paths from r1 to

n



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges

◮ Not all paths in G∗ are feasible
◮ do not represent potentially valid execution paths

◮ IVP(r1, n): set of all interprocedurally valid paths from r1 to

n

◮ Path q ∈ pathG∗(r1, n) is in IVP(r1, n)



Interprocedurally Valid Paths

◮ G∗ ignores the special nature of call and return edges

◮ Not all paths in G∗ are feasible
◮ do not represent potentially valid execution paths

◮ IVP(r1, n): set of all interprocedurally valid paths from r1 to

n

◮ Path q ∈ pathG∗(r1, n) is in IVP(r1, n)
◮ iff sequence of all E1 edges in q (denoted q1)is proper



Proper sequence

◮ q1 without any return edge is proper



Proper sequence

◮ q1 without any return edge is proper

◮ let q1[i] be the first return edge in q1. q1 is proper if



Proper sequence

◮ q1 without any return edge is proper

◮ let q1[i] be the first return edge in q1. q1 is proper if
◮ i > 1; and



Proper sequence

◮ q1 without any return edge is proper

◮ let q1[i] be the first return edge in q1. q1 is proper if
◮ i > 1; and
◮ q1[i − 1] is call edge corresponding to q1[i]; and



Proper sequence

◮ q1 without any return edge is proper

◮ let q1[i] be the first return edge in q1. q1 is proper if
◮ i > 1; and
◮ q1[i − 1] is call edge corresponding to q1[i]; and
◮ q′

1 obtained from deleting q1[i − 1] and q1[i] from q1 is

proper



Interprocedurally Valid Complete Paths

◮ IVP0(rp, n) for procedure p and node n ∈ Np



Interprocedurally Valid Complete Paths

◮ IVP0(rp, n) for procedure p and node n ∈ Np

◮ set of all interprocedurally valid paths q in G∗ from rp to n
s.t.



Interprocedurally Valid Complete Paths

◮ IVP0(rp, n) for procedure p and node n ∈ Np

◮ set of all interprocedurally valid paths q in G∗ from rp to n
s.t.
◮ Each call edge has corresponding return edge in q

restricted to E1



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T



IVPs

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r1 → c1 → r2 → c2 → r2 → e2 → n2 → e2 → n1 → e1



IVPs

main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r1 → c1 → r2 → c2 → r2 → e2 → n2 → e2 → n1 → e1 ∈ IVP(r1, e1)



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r1 → c1 → r2 → c2 → r2 → e2 → n1 → e1



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r1 → c1 → r2 → c2 → r2 → e2 → n1 → e1 6∈ IVP(r1, e1)



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r2 → c2 → r2 → e2 → n2



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r2 → c2 → r2 → e2 → n2 ∈ IVP0(r2, n2)



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r2 → c2 → r2 → c2 → e2 → n2



IVPs
main p

r1
read a, b

r = a ∗ b

c1 call p

n1
t = a ∗ b

print t

e1 EXIT

r2 if (a == 0)

b2 a = a − 1

c2 call p

n2 t = a ∗ b

e2 return

F

T

r2 → c2 → r2 → c2 → e2 → n2 6∈ IVP0(r2, n2)



Path Decomposition

q ∈ IVP(rmain, n)

⇔

q = q1 ‖ (c1, rp2
) ‖ q2 ‖ · · · ‖ (cj−1, rpj

) ‖ qj

where for each i < j , qi ∈ IVP0(rpi
, ci) and qj ∈ IVP0(rpj

, n)


