
CS738: Advanced Compiler Optimizations

SSAPRE: SSA based Partial
Redundancy Elimination

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

PRE without SSA

◮ Based on well known DF analyses
◮ Availability
◮ Anticipability
◮ Partial Availability
◮ Partial Anticipability

◮ Identifies partially redundant computations, make them
totally redundant by inserting new computations

◮ Remove totally redundant computations (CSE)

PRE without SSA

◮ Iterative data flow analysis
◮ Operates on control flow graph
◮ Computes global and local versions of data flow

information

SSAPRE

◮ Information flow along SSA edges
◮ No distinction between global and local information



SSAPRE: Challenge

◮ SSA form defined for variables
◮ How to identify potentially redundant expressions

◮ Expressions having different variable versions as operands

a1 + b1 a2 = · · ·

a3 = φ(a1,a2)

a3 + b1

◮ Here a1 + b1 is same as a3 + b1 when control follows the
left branch. Lexically different, but computationally identical

SSAPRE: Key Idea

◮ Redundancy Class Variables (RCVs)
◮ variable (say h) to represent computation of an expression

(say E)
◮ Computation of expression could represent either a def or

a use
◮ definition of E ⇒ store into h
◮ use of E ⇒ load from h

◮ PRE on SSA form of RCVs (h) to remove redundancies
◮ Final program will be in SSA form

SSAPRE: Preparations

◮ Split all the critical edges in the flow graph
◮ Edge from a node with more than one successor to a node

with more than one predecessor
◮ WHY is this important?

◮ Single pass to identify identical expressions
◮ Ignoring the version number of the operands
◮ In the earlier example, a3 +b1 and a1 +b1 could be identical

SSAPRE Steps

◮ Six step algorithm
1. Φ-insertion
2. Renaming
3. Down-safety computation
4. WillBeAvail computation
5. Finalization
6. Code Motion



Running Example

a1 = · · ·

a2 = φ(a4, a1)

a2 + b1
a3=· · ·

a4=φ(a2, a3)
a4 + b1

EXIT

Φ-insertion

◮ Φ for an expression E is required where two potentially
different values of an expression merge

◮ At iterated dominance frontiers of occurrences of E
◮ At each block having a φ for some argument of E

◮ Potential change in the expression’s value

Φ-insertion

a1 = · · ·

Φ(· · · )
a2=φ(a4, a1)

a2 + b1
a3=· · ·

Φ(· · · )
a4=φ(a2, a3)

a4 + b1

EXIT

Rename

◮ Similar to SSA variable renaming
◮ Stack of every expression is maintained
◮ Three kinds of occurrences of E

◮ Real occurrences (present in original program)
◮ Results of Φ operators inserted
◮ Operands of inserted Φ

◮ After renaming
◮ Identical SSA instances of h represent identical values of E
◮ A control flow path with two different instances of h has to

cross either an assignment to an operand of E or a Φ of h



Rename Algorithm

◮ Runs with variable renaming
◮ When an E is encountered

◮ if E is result of Φ, assign a new version to h and push it on
E stack

◮ if E is the real occurrence
◮ for each operand, compare the version of operand with the

top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, assign a new version to h and push it on E

stack
◮ if E is operand of Φ, in the corresponding predecessor

block
◮ for each operand of E , compare the version of operand with

the top of the rename stack for operand
◮ If all match, h gets same version as the top of E stack
◮ If any mismatch, replace E by ⊥ in the operand push it on E

stack (WHY?)

Rename

a1 = · · ·

h1=Φ(h2,⊥)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT

Down-safety

◮ Down-safety is same as very-busy (anticipability) property
of expressions
◮ Do not want to introduce new computation of E

◮ We only need to compute down-safety for inserted
Φ-operators

◮ A Φ computation is NOT down-safe if
◮ there is a path to EXIT from Φ along which the result of Φ

is
◮ either not used
◮ used only as an operand of another Φ that itself is NOT

down-safe
◮ HasRealUse: Real occurrence of an expression

Down-safety (ds = · · · )
a1 = · · ·

h1=Φ(h2,⊥) : [ds = 1]
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥) : [ds = 1]
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT



WillBeAvail

◮ The set of Φs where the expression must be available in
any computationally optimal placement

◮ Computation of two forward properties:
◮ CanBeAvail : Φs for which E is either available or

anticipable or both
◮ Later : Φs beyond which insertion can not be postponed

without introducing new redundancy

WillBeAvail = CanBeAvail ∧ ¬Later

CanBeAvail

◮ Initialized to true for all Φs
◮ Boundary Φs:

◮ Not Down-safe, and
◮ At least one argument is ⊥

◮ Set false for boundary Φs
◮ Propagate false value along the chain of def-use to other

Φs
◮ exclude edges along which HasRealUse is true

Later

◮ Determines latest (final) insertion points
◮ Initialize Later to true wherever CanBeAvail is true,

otherwise false
◮ Assign false for Φs with at least one operand with

HasRealUse flag true
◮ Propagate false value forward to other Φs
◮ Later ⇒ Φs that are CanBeAvail, but do not reach any real

occurrence of E

Insertion Points

◮ Insertions are done for Φ operands
◮ Along the corresponding predecessor edges
◮ Insertion done along i th predecessor of Φ if Insert is true,

i.e.
◮ WillBeAvail(Φ) == true; AND
◮ Argi is ⊥; OR

◮ (HasRealUse(Argi ) == false), AND
◮ Argi is defined by Φ′ with WillBeAvail(Φ′) == false



Finalize

◮ Transforms the program with RCVs into a valid SSA form
◮ For every real occurrence of E , decide whether it is a def

or a use
◮ For every Φ with WillBeAvail being true, insert E along

incoming edges with Insert being true
◮ For each Φ for E

◮ If WillBeAvail is true, it is replaced by SSA temporary with
appropriate version (hx )

◮ If WillBeAvail is false, it is not part of SSA form, and is
removed

Finalize: AvailDef

◮ AvailDef: Table to mark def of expression occurrences
◮ Computed for each class (say hx ) of E
◮ Preorder traversal of dominator tree

AvailDef Computation

◮ Initialize: AvailDef[x ] = ⊥ ∀x (all classes of all expressions)
◮ During course of traversal, process occurrence x of E

◮ Φ occurrence:
◮ If WillBeAvail is false, ignore.
◮ Otherwise AvailDef[x ] = this Φ (we must be visiting x for first

time) – WHY?
◮ Real occurrence:

◮ If AvailDef[x ] is ⊥, mark this occurrence as def
◮ Else, if AvailDef[x ] does not dominate this occurrence, mark

this occurrence as def
◮ Else, mark this occurrence as use of AvailDef[x ]

◮ Φ operand (processed in predecessor block P)
◮ If WillBeAvail of Φ is false, ignore.
◮ Else, if Insert is true for the operand, insert computation of E

in block P, set it as a def, mark this occurrence as use of
inserted.

◮ Else (Insert is false), mark this occurrence as use of
AvailDef[x ]

Finalize

a1 = · · ·

h1=Φ(h2,⊥)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·

h2=Φ(h1,⊥)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT

⇒

a1=· · ·
h3=· · ·

h1=Φ(h2, h3)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·
h4=· · ·

h2=Φ(h1, h4)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT



Code Motion

◮ For real def occurrence of E , compute E in a new version
of temporary t

◮ For real use occurrence of E , replace E by current version
of t

◮ For inserted occurrence of E , compute E in a new version
of temporary t

◮ For a Φ occurrence, insert appropriate φ for t

Code Motion

a1=· · ·
h3=· · ·

h1=Φ(h2, h3)
a2=φ(a4, a1)

a2 + b1 : [h1]
a3=· · ·
h4=· · ·

h2=Φ(h1, h4)
a4=φ(a2, a3)

a4 + b1 : [h2]

EXIT

⇒

a1=· · ·
t1=a1 + b1

t2=φ(t4, t1)
a2=φ(a4, a1)

t2
a3=· · ·
t3=a3 + b1

t4=φ(t2, t3)
a4=φ(a2, a3)

t4

EXIT


