
CS738: Advanced Compiler Optimizations

Sparse Conditional Constant
Propagation

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Sparse Simple Constant Propagation (SSC)

◮ Improved analysis time over Simple Constant Propagation



Sparse Simple Constant Propagation (SSC)

◮ Improved analysis time over Simple Constant Propagation

◮ Finds all simple constant



Sparse Simple Constant Propagation (SSC)

◮ Improved analysis time over Simple Constant Propagation

◮ Finds all simple constant
◮ Same class as Simple Constant Propagation



Motivating Example
Dashed edges denote SSA

def-use chains

ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false



Preparations for SSC Analysis

◮ Convert the program to SSA form



Preparations for SSC Analysis

◮ Convert the program to SSA form

◮ One statement per basic block



Preparations for SSC Analysis

◮ Convert the program to SSA form

◮ One statement per basic block

◮ Add connections called SSA edges



Preparations for SSC Analysis

◮ Convert the program to SSA form

◮ One statement per basic block

◮ Add connections called SSA edges
◮ Connect (unique) definition point of a variable to its use

points



Preparations for SSC Analysis

◮ Convert the program to SSA form

◮ One statement per basic block

◮ Add connections called SSA edges
◮ Connect (unique) definition point of a variable to its use

points
◮ Same as def-use chains



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign

the value (c) to variable on LHS



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

◮ If expression can not be evaluated at compile time, assign

⊥



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

◮ If expression can not be evaluated at compile time, assign

⊥

◮ Else (for expression contains variables) assign ⊤



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

◮ If expression can not be evaluated at compile time, assign

⊥

◮ Else (for expression contains variables) assign ⊤

◮ Initialize worklist WL with SSA edges whose def is not ⊤



SSC Algorithm: Initialization

◮ Evaluate expressions involving constants only and assign

the value (c) to variable on LHS

◮ If expression can not be evaluated at compile time, assign

⊥

◮ Else (for expression contains variables) assign ⊤

◮ Initialize worklist WL with SSA edges whose def is not ⊤

◮ Algorithm terminates when WL is empty



SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL



SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL

◮ Take meet of the value at def end and the use end of E for

the variable defined at def end



SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL

◮ Take meet of the value at def end and the use end of E for

the variable defined at def end

◮ If the meet value is different from use value, replace the

use by the meet



SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL

◮ Take meet of the value at def end and the use end of E for

the variable defined at def end

◮ If the meet value is different from use value, replace the

use by the meet

◮ Recompute the def d at the use end of E



SSC Algorithm: Iterative Actions

◮ Take an SSA edge E out of WL

◮ Take meet of the value at def end and the use end of E for

the variable defined at def end

◮ If the meet value is different from use value, replace the

use by the meet

◮ Recompute the def d at the use end of E

◮ If the recomputed value is lower than the stored value, add

all SSA edges originating at d



Meet for φ-function

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) = v1 ∧ v2 ∧ . . . ∧ vn



SSC Algorithm: Complexity

◮ Height of CP lattice = 2



SSC Algorithm: Complexity

◮ Height of CP lattice = 2

◮ Each SSA edge is examined at most twice, for each

lowering



SSC Algorithm: Complexity

◮ Height of CP lattice = 2

◮ Each SSA edge is examined at most twice, for each

lowering

◮ Theoretical size of SSA graph: O(V × E)



SSC Algorithm: Complexity

◮ Height of CP lattice = 2

◮ Each SSA edge is examined at most twice, for each

lowering

◮ Theoretical size of SSA graph: O(V × E)

◮ Practical size: linear in the program size



SSC: Practice Example ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false



SSC: Practice Example

What if we change “c1 = 4” to “c1 = 5”?



Sparse Conditional Constant Propagation (SCC)

◮ Constant Propagation with unreachable code elimination



Sparse Conditional Constant Propagation (SCC)

◮ Constant Propagation with unreachable code elimination

◮ Ignore definitions that reach a use via a non-executable

edge



SCC Algorithm: Key Idea

v = φ(v1, v2, . . . , vk )

⇒ ValueOf(v) =
∧

i∈ExecutablePath

vi

We ignore paths that are not “yet” marked executable



SCC Algorithm: Preparations

◮ Two Worklists



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges

◮ SSA Worklist (SWL)



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges

◮ SSA Worklist (SWL)
◮ Worklist of SSA graph edges



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges

◮ SSA Worklist (SWL)
◮ Worklist of SSA graph edges

◮ Execution Halts when both worklists are empty



SCC Algorithm: Preparations

◮ Two Worklists
◮ Flow Worklist (FWL)

◮ Worklist of flow graph edges

◮ SSA Worklist (SWL)
◮ Worklist of SSA graph edges

◮ Execution Halts when both worklists are empty

◮ Associate a flag, the ExecutableFlag, with every flow graph

edge to control the evaluation of φ-function in the

destination node



SCC Algorithm: Initialization

◮ Initialize FWL to contain edges leaving ENTRY node



SCC Algorithm: Initialization

◮ Initialize FWL to contain edges leaving ENTRY node

◮ Initialize SWL to empty



SCC Algorithm: Initialization

◮ Initialize FWL to contain edges leaving ENTRY node

◮ Initialize SWL to empty

◮ Each ExecutableFlag is false initially



SCC Algorithm: Initialization

◮ Initialize FWL to contain edges leaving ENTRY node

◮ Initialize SWL to empty

◮ Each ExecutableFlag is false initially

◮ Each value is ⊤ initially (Optimistic)



SCC Algorithm: Iterations

◮ Remove an item from either worklist



SCC Algorithm: Iterations

◮ Remove an item from either worklist

◮ process the item (described next)



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing

◮ Otherwise



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing

◮ Otherwise
◮ Mark the ExecutableFlag as true



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing

◮ Otherwise
◮ Mark the ExecutableFlag as true
◮ Visit-φ for all φ-functions in the destination



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing

◮ Otherwise
◮ Mark the ExecutableFlag as true
◮ Visit-φ for all φ-functions in the destination
◮ If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visited for the first time), then

VisitExpression for all expressions in dest



SCC Algorithm: Processing FWL Item

◮ Item is flow graph edge

◮ If ExecutableFlag is true, do nothing

◮ Otherwise
◮ Mark the ExecutableFlag as true
◮ Visit-φ for all φ-functions in the destination
◮ If only one of the ExecutableFlags of incoming flow graph

edges for dest is true (dest visited for the first time), then

VisitExpression for all expressions in dest
◮ If the dest contains only one outgoing flow graph edge, add

that edge to FWL



SCC Algorithm: Processing SWL Item

◮ Item is SSA edge



SCC Algorithm: Processing SWL Item

◮ Item is SSA edge

◮ If dest is a φ-function, Visit-φ



SCC Algorithm: Processing SWL Item

◮ Item is SSA edge

◮ If dest is a φ-function, Visit-φ

◮ If dest is an expression and any of ExecutableFlags for the

incoming flow graph edges of dest is true, perform

VisitExpression



SCC Algorithm: Visit-φ

v = φ(v1, v2, . . . , vk )

◮ If i th incoming edge’s ExecutableFlag is true,

vali = ValueOf(vi) else vali = ⊤



SCC Algorithm: Visit-φ

v = φ(v1, v2, . . . , vk )

◮ If i th incoming edge’s ExecutableFlag is true,

vali = ValueOf(vi) else vali = ⊤

◮ ValueOf(v) =
∧

i vali



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise
◮ If the expression is part of assignment, add all outgoing

SSA edges to SWL



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise
◮ If the expression is part of assignment, add all outgoing

SSA edges to SWL
◮ if the expression controls a conditional branch, then



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise
◮ If the expression is part of assignment, add all outgoing

SSA edges to SWL
◮ if the expression controls a conditional branch, then

◮ if the result is ⊥, add all outgoing flow edges to FWL



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise
◮ If the expression is part of assignment, add all outgoing

SSA edges to SWL
◮ if the expression controls a conditional branch, then

◮ if the result is ⊥, add all outgoing flow edges to FWL
◮ if the value is constant c, only the corresponding flow graph

edge is added to FWL



SCC Algorithm: VisitExpression

◮ Evaluate the expression using values of operands and

rules for operators

◮ If the result is same as old, nothing to do

◮ Otherwise
◮ If the expression is part of assignment, add all outgoing

SSA edges to SWL
◮ if the expression controls a conditional branch, then

◮ if the result is ⊥, add all outgoing flow edges to FWL
◮ if the value is constant c, only the corresponding flow graph

edge is added to FWL
◮ Value can not be ⊤ (why?)



SCC Algorithm: Complexity

◮ Each SSA edge is examined twice



SCC Algorithm: Complexity

◮ Each SSA edge is examined twice

◮ Flow graph nodes are visited once for every incoming edge



SCC Algorithm: Complexity

◮ Each SSA edge is examined twice

◮ Flow graph nodes are visited once for every incoming edge

◮ Complexity = O(# of SSA edges + # of flow graph edges)



SCC Algorithm: Correctness and Precision

◮ SCC is conservative



SCC Algorithm: Correctness and Precision

◮ SCC is conservative
◮ Never labels a variable value as a constant



SCC Algorithm: Correctness and Precision

◮ SCC is conservative
◮ Never labels a variable value as a constant

◮ SCC is at least as powerful as Conditional Constant
Propagation (CC)



SCC Algorithm: Correctness and Precision

◮ SCC is conservative
◮ Never labels a variable value as a constant

◮ SCC is at least as powerful as Conditional Constant
Propagation (CC)
◮ Finds all constants as CC does



SCC Algorithm: Correctness and Precision

◮ SCC is conservative
◮ Never labels a variable value as a constant

◮ SCC is at least as powerful as Conditional Constant
Propagation (CC)
◮ Finds all constants as CC does

◮ PROOFs: In paper Constant propagation with

conditional branches by Mark N. Wegman, F. Kenneth

Zadeck, ACM TOPLAS 1991.



Practice Example ENTRY

a = 2

b = 3

a < b

c1 = 4 c2 = 5

c3 = φ(c1, c2)

EXIT

true false


