CS738: Advanced Compiler Optimizations

Static Single Assignment (SSA)

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

- SSA Form
- Constructing SSA form
- Properties and Applications

SSA Form

- Developed by Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,

SSA Form

- Developed by Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
- in 1980s while at IBM.

SSA Form

- Developed by Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
- in 1980s while at IBM.
- Static Single Assignment - A variable is assigned only once in program text

SSA Form

- Developed by Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
- in 1980s while at IBM.
- Static Single Assignment - A variable is assigned only once in program text
- May be assigned multiple times if program is executed

What is SSA Form?

- An Intermediate Representation

What is SSA Form?

- An Intermediate Representation
- Sparse representation

What is SSA Form?

- An Intermediate Representation
- Sparse representation
- Definitions sites are directly associated with use sites

What is SSA Form?

- An Intermediate Representation
- Sparse representation
- Definitions sites are directly associated with use sites
- Advantage

What is SSA Form?

- An Intermediate Representation
- Sparse representation
- Definitions sites are directly associated with use sites
- Advantage
- Directly access points where relevant data flow information is available

SSA IR

- In SSA Form

SSA IR

- In SSA Form
- Each variable has exactly one definition

SSA IR

- In SSA Form
- Each variable has exactly one definition
$\Rightarrow A$ use of a variable is reached by exactly one definition

SSA IR

- In SSA Form
- Each variable has exactly one definition
\Rightarrow A use of a variable is reached by exactly one definition
- Control flow like traditional programs

SSA IR

- In SSA Form
- Each variable has exactly one definition
\Rightarrow A use of a variable is reached by exactly one definition
- Control flow like traditional programs
- Some magic is needed at join nodes

Example

$$
\begin{aligned}
& \hline i=0 ; \\
& \cdots \\
& i=i+1 ; \\
& \cdots=i \\
& j=i \\
& \ldots .
\end{aligned}
$$

Example

i $=0$;		i1 $=0$;
$i=1+1 ;$	$\xrightarrow{\text { SSA }}$	i2 = i1 + 1;
j = i * 5;		j1 = i2 * 5;

SSA Example

SSA Example

i $=$		i1 $=$
= . . ;		j1 = ...;
if (i<20)		if (il < 20)
i $=1+j ;$	$\stackrel{\text { SSA }}{ }$	i2 = i1 + j1;
else	\Rightarrow	else
j = j + 2;		j2 = j1 + 2;
		i3 $=\phi(i 2, ~ i 1) ; ~$
		j3 = $\phi(j 1, ~ j 2) ;$
print i, j;		print i3, j3;

The magic: ϕ function

- ϕ is used for selection

The magic: ϕ function

- ϕ is used for selection
- One out of multiple values at join nodes

The magic: ϕ function

- ϕ is used for selection
- One out of multiple values at join nodes
- Not every join node needs a ϕ

The magic: ϕ function

- ϕ is used for selection
- One out of multiple values at join nodes
- Not every join node needs a ϕ
- Needed only if multiple definitions reach the node

The magic: ϕ function

- ϕ is used for selection
- One out of multiple values at join nodes
- Not every join node needs a ϕ
- Needed only if multiple definitions reach the node
- Examples?

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity
- Statically equivalent to choosing one of the arguments "non-deterministicly"

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity
- Statically equivalent to choosing one of the arguments "non-deterministicly"
- No direct translation to machine code

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity
- Statically equivalent to choosing one of the arguments "non-deterministicly"
- No direct translation to machine code
- typically mimicked using "copy" in predecessors

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity
- Statically equivalent to choosing one of the arguments "non-deterministicly"
- No direct translation to machine code
- typically mimicked using "copy" in predecessors
- Inefficient

But. . . What is ϕ ?

- What does ϕ operation mean in a machine code?
- ϕ is a conceptual entity
- Statically equivalent to choosing one of the arguments "non-deterministicly"
- No direct translation to machine code
- typically mimicked using "copy" in predecessors
- Inefficient
- Practically, the inefficiency is compensated by dead code elimination and register allocation passes

Properties of ϕ

- Placed only at the entry of a join node

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed
- for multiple variables

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed
- for multiple variables
- all such ϕ functions execute concurrently

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed
- for multiple variables
- all such ϕ functions execute concurrently
- n-ary ϕ function at n-way join node

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed
- for multiple variables
- all such ϕ functions execute concurrently
- n-ary ϕ function at n-way join node
- gets the value of i-th argument if control enters through i-th edge

Properties of ϕ

- Placed only at the entry of a join node
- Multiple ϕ-functions could be placed
- for multiple variables
- all such ϕ functions execute concurrently
- n-ary ϕ function at n-way join node
- gets the value of i-th argument if control enters through i-th edge
- Ordering of ϕ arguments according to the edge ordering is important

SSA Example (revisit)

Construction of SSA Form

Assumptions

- Only scalar variables

Assumptions

- Only scalar variables
- Structures, pointers, arrays could be handled

Assumptions

- Only scalar variables
- Structures, pointers, arrays could be handled
- Refer to publications

Dominators

- Nodes x and y in flow graph

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from Entry to y goes through x

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from Entry to y goes through x
- $x \operatorname{dom} y$

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from Entry to y goes through x
- $x \operatorname{dom} y$
- partial order?

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from Entry to y goes through x
- $x \operatorname{dom} y$
- partial order?
- x strictly dominates y if x dom y and $x \neq y$

Dominators

- Nodes x and y in flow graph
- x dominates y if every path from Entry to y goes through x
- $x \operatorname{dom} y$
- partial order?
- x strictly dominates y if x dom y and $x \neq y$
- x sdom y

Computing Dominators

- Equation

$$
\operatorname{DOM}(n)=\{n\} \cup\left(\bigcap_{m \in \operatorname{PRED}(n)} \operatorname{DOM}(m)\right),
$$

Computing Dominators

- Equation

$$
\operatorname{DOM}(n)=\{n\} \cup\left(\bigcap_{m \in \operatorname{PRED}(n)} \operatorname{DOM}(m)\right),
$$

- Initial Conditions:

$$
\begin{aligned}
\operatorname{DOM}\left(n_{E n t r y}\right) & =\left\{n_{\text {Entry }}\right\} \\
\operatorname{DOM}(n) & =N, \forall n \in N-\left\{n_{\text {Entry }}\right\}
\end{aligned}
$$

where N is the set of all nodes, $n_{\text {Entry }}$ is the node corresponding to the Entry block.

Computing Dominators

- Equation

$$
\operatorname{DOM}(n)=\{n\} \cup\left(\bigcap_{m \in \operatorname{PRED}(n)} \operatorname{DOM}(m)\right)
$$

- Initial Conditions:

$$
\begin{aligned}
\operatorname{DOM}\left(n_{E n t r y}\right) & =\left\{n_{\text {Entry }}\right\} \\
\operatorname{DOM}(n) & =N, \forall n \in N-\left\{n_{\text {Entry }}\right\}
\end{aligned}
$$

where N is the set of all nodes, $n_{\text {Entry }}$ is the node corresponding to the Entry block.

- Note that efficient methods exist for computing dominators

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the closest strict dominator of y

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the closest strict dominator of y
- unique, if it exists

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the closest strict dominator of y
- unique, if it exists
- denoted idom[y]

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the closest strict dominator of y
- unique, if it exists
- denoted idom[y]
- Dominator Tree

Immediate Dominators and Dominator Tree

- x is immediate dominator of y if x is the closest strict dominator of y
- unique, if it exists
- denoted idom[y]
- Dominator Tree
- A tree showing all immediate dominator relationships

Dominator Tree Example

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.
- x dominates a predecessor of y AND

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.
- x dominates a predecessor of y AND
- x does not strictly dominate y

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.
- x dominates a predecessor of y AND
- x does not strictly dominate y
- Denoted DF (x)

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.
- x dominates a predecessor of y AND
- x does not strictly dominate y
- Denoted DF (x)
- Why do you think $\operatorname{DF}(x)$ is important for any x ?

Dominance Frontier: DF

- Dominance Frontier of x is set of all nodes y s.t.
- x dominates a predecessor of y AND
- x does not strictly dominate y
- Denoted DF (x)
- Why do you think $\operatorname{DF}(x)$ is important for any x ?
- Think about the information originated in x.

Computing DF

- PARENT (x) denotes parent of node x in the dominator tree.
- CHILDERN (x) denotes children of node x in the dominator tree.
- PRED and SUCC from CFG.

$$
\operatorname{DF}(x)=\operatorname{DF}_{\text {local }}(x) \cup\left(\bigcup_{z \in \operatorname{CHILDERN}(x)} \operatorname{DF}_{\text {up }}(z)\right)
$$

Computing DF

- PARENT (x) denotes parent of node x in the dominator tree.
- CHILDERN (x) denotes children of node x in the dominator tree.
- PRED and SUCC from CFG.

$$
\begin{aligned}
\operatorname{DF}(x) & =\operatorname{DF}_{\text {local }}(x) \cup\left(\bigcup_{z \in \operatorname{CHILDERN}(x)} \operatorname{DF}_{\text {up }}(z)\right) \\
\operatorname{DF}_{\text {local }}(x) & =\{y \in \operatorname{SUCC}(x) \mid \operatorname{idom}[y] \neq x\}
\end{aligned}
$$

Computing DF

- PARENT (x) denotes parent of node x in the dominator tree.
- CHILDERN (x) denotes children of node x in the dominator tree.
- PRED and SUCC from CFG.

$$
\begin{aligned}
\operatorname{DF}(x) & =\operatorname{DF}_{\text {local }}(x) \cup\left(\bigcup_{z \in \operatorname{CHILDERN}(x)} \operatorname{DF}_{\text {up }}(z)\right) \\
\operatorname{DF}_{\text {local }}(x) & =\{y \in \operatorname{SUCC}(x) \mid \operatorname{idom}[y] \neq x\} \\
\operatorname{DF}_{\text {up }}(z) & =\{y \in \operatorname{DF}(z) \mid \operatorname{idom}[y] \neq \operatorname{PARENT}(z)\}
\end{aligned}
$$

Iterated Dominance Frontier

- Transitive closure of Dominance frontiers on a set of nodes

Iterated Dominance Frontier

- Transitive closure of Dominance frontiers on a set of nodes
- Let S be a set of nodes

$$
\operatorname{DF}(S)=\bigcup_{x \in S} \operatorname{DF}(x)
$$

Iterated Dominance Frontier

- Transitive closure of Dominance frontiers on a set of nodes
- Let S be a set of nodes

$$
\operatorname{DF}(S)=\bigcup_{x \in S} \operatorname{DF}(x)
$$

Iterated Dominance Frontier

- Transitive closure of Dominance frontiers on a set of nodes
- Let S be a set of nodes

$$
\begin{aligned}
\operatorname{DF}(S) & =\bigcup_{x \in S} \operatorname{DF}(x) \\
\operatorname{DF}^{1}(S) & =\operatorname{DF}(S) \\
\operatorname{DF}^{i+1}(S) & =\operatorname{DF}\left(S \cup \operatorname{DF}^{i}(S)\right)
\end{aligned}
$$

- $\mathrm{DF}^{+}(S)$ is the fixed point of DF^{i} computation.

Minimal SSA Form Construction

- Compute DF^{+}set for each flow graph node

Minimal SSA Form Construction

- Compute DF^{+}set for each flow graph node
- Place trivial ϕ-functions for each variable in the node

Minimal SSA Form Construction

- Compute DF^{+}set for each flow graph node
- Place trivial ϕ-functions for each variable in the node
- trivial ϕ-function at n-ary join: $x=\phi(\overbrace{x, x, \ldots, x}^{n \text {-times }})$

Minimal SSA Form Construction

- Compute DF^{+}set for each flow graph node
- Place trivial ϕ-functions for each variable in the node
n-times
- trivial ϕ-function at n-ary join: $x=\phi(\overbrace{x, x, \ldots, x})$
- Rename variables

Minimal SSA Form Construction

- Compute DF^{+}set for each flow graph node
- Place trivial ϕ-functions for each variable in the node
- trivial ϕ-function at n-ary join: $x=\phi(\overbrace{x, x, \ldots, x}^{n \text {-times }})$
- Rename variables
- Why DF ${ }^{+}$? Why not only DF?

Inserting ϕ-functions
foreach variable \boldsymbol{v} \{

Inserting ϕ-functions

foreach variable v \{ $S=$ Entry $\cup\left\{B_{n} \mid v\right.$ defined in $\left.B_{n}\right\}$

Inserting ϕ-functions

foreach variable v \{
$S=$ Entry $\cup\left\{B_{n} \mid v\right.$ defined in $\left.B_{n}\right\}$
Compute $\mathrm{DF}^{+}(S)$

Inserting ϕ-functions

foreach variable v \{
$S=$ Entry $\cup\left\{B_{n} \mid v\right.$ defined in $\left.B_{n}\right\}$
Compute $\mathrm{DF}^{+}(S)$
foreach n in $\mathrm{DF}^{+}(S)$ \{

Inserting ϕ-functions

```
foreach variable v {
    S=Entry \cup{Bn}|v\mathrm{ defined in }\mp@subsup{B}{n}{}
    Compute DF }\mp@subsup{}{}{+
    foreach n in DF+}(S) 
        insert }\phi\mathrm{ -function for v at the start of }\mp@subsup{B}{n}{
    }
}
```


Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment $(x=\ldots)$ in n

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace Ihs of the assignment by x_{i}

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace Ihs of the assignment by x_{i}
- $i=i+1$

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace Ihs of the assignment by x_{i}
- $i=i+1$
- For the successors of n

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment ($x=\ldots$) in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace Ihs of the assignment by x_{i}
- $i=i+1$
- For the successors of n
- Rename ϕ operands through SUCC edge index

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto x_{\text {version }}$ mapping
- For node n
- For each assignment $(x=\ldots)$ in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace lhs of the assignment by x_{i}
- $i=i+1$
- For the successors of n
- Rename ϕ operands through SUCC edge index
- Recursively rename all child nodes in the dominator tree

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto X_{\text {version }}$ mapping
- For node n
- For each assignment $(x=\ldots)$ in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace lhs of the assignment by x_{i}
- $i=i+1$
- For the successors of n
- Rename ϕ operands through SUCC edge index
- Recursively rename all child nodes in the dominator tree
- For each assignment $(x=\ldots)$ in n

Renaming Variables (Pseudo Code)

- Rename from the Entry node recursively
- For each variable x, maintain a rename stack of $x \mapsto X_{\text {version }}$ mapping
- For node n
- For each assignment $(x=\ldots)$ in n
- If non- ϕ assignment, rename any use of x with the Top mapping of x from the rename stack
- Push the mapping $x \mapsto x_{i}$ on the rename stack
- Replace lhs of the assignment by x_{i}
- $i=i+1$
- For the successors of n
- Rename ϕ operands through SUCC edge index
- Recursively rename all child nodes in the dominator tree
- For each assignment $(x=\ldots)$ in n
- Pop $x \mapsto \ldots$ from the rename stack

