
CS738: Advanced Compiler Optimizations

Static Single Assignment (SSA)

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

◮ SSA Form
◮ Constructing SSA form
◮ Properties and Applications

SSA Form

◮ Developed by Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Kenneth Zadeck,
◮ in 1980s while at IBM.

◮ Static Single Assignment – A variable is assigned only
once in program text
◮ May be assigned multiple times if program is executed

What is SSA Form?

◮ An Intermediate Representation
◮ Sparse representation

◮ Definitions sites are directly associated with use sites
◮ Advantage

◮ Directly access points where relevant data flow information
is available



SSA IR

◮ In SSA Form
◮ Each variable has exactly one definition
⇒ A use of a variable is reached by exactly one definition

◮ Control flow like traditional programs
◮ Some magic is needed at join nodes

Example

i = 0;
...
i = i + 1;
...
j = i * 5;
...

SSA⇒
i1 = 0;
...
i2 = i1 + 1;
...
j1 = i2 * 5;
...

SSA Example

i = ...;
j = ...;
if (i < 20)

i = i + j;
else

j = j + 2;
print i, j;

i = . . . ;
j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA Example

i = . . . ;
j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;
j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);
j3 = φ(j1, j2);

print i3, j3;



SSA Example

i = ...;
j = ...;
if (i < 20)

i = i + j;
else

j = j + 2;

print i, j;

SSA⇒

i1 = ...;
j1 = ...;
if (i1 < 20)

i2 = i1 + j1;
else

j2 = j1 + 2;
i3 = φ(i2, i1);
j3 = φ(j1, j2);
print i3, j3;

The magic: φ function

◮ φ is used for selection
◮ One out of multiple values at join nodes

◮ Not every join node needs a φ
◮ Needed only if multiple definitions reach the node

◮ Examples?

But. . . What is φ?

◮ What does φ operation mean in a machine code?
◮ φ is a conceptual entity
◮ Statically equivalent to choosing one of the arguments

“non-deterministicly”
◮ No direct translation to machine code

◮ typically mimicked using “copy” in predecessors
◮ Inefficient
◮ Practically, the inefficiency is compensated by dead code

elimination and register allocation passes

Properties of φ

◮ Placed only at the entry of a join node
◮ Multiple φ-functions could be placed

◮ for multiple variables
◮ all such φ functions execute concurrently

◮ n-ary φ function at n-way join node
◮ gets the value of i-th argument if control enters through i-th

edge
◮ Ordering of φ arguments according to the edge ordering is

important



SSA Example (revisit)

i = . . . ;
j = . . . ;

if (i < 20)

i = i + j; j = j + 2;

print i, j;

SSA⇒

i1 = . . . ;
j1 = . . . ;

if (i1 < 20)

i2 = i1 + j1; j2 = j1 + 2;

i3 = φ(i2, i1);
j3 = φ(j1, j2);

print i3, j3;

Construction of SSA Form

Assumptions

◮ Only scalar variables
◮ Structures, pointers, arrays could be handled
◮ Refer to publications

Dominators

◮ Nodes x and y in flow graph
◮ x dominates y if every path from Entry to y goes through

x
◮ x dom y
◮ partial order?

◮ x strictly dominates y if x dom y and x 6= y
◮ x sdom y



Computing Dominators

◮ Equation

DOM(n) = {n} ∪


 ⋂

m∈PRED(n)

DOM(m)


 ,

∀n ∈ N

◮ Initial Conditions:

DOM(nEntry ) = {nEntry}
DOM(n) = N, ∀n ∈ N − {nEntry}

where N is the set of all nodes, nEntry is the node
corresponding to the Entry block.

◮ Note that efficient methods exist for computing dominators

Immediate Dominators and Dominator Tree

◮ x is immediate dominator of y if x is the closest strict
dominator of y
◮ unique, if it exists
◮ denoted idom[y ]

◮ Dominator Tree
◮ A tree showing all immediate dominator relationships

Dominator Tree Example

B0

B1

B2 B3

B4 B5

B6

B7

B0

B1

B2 B3

B4 B5

B6

B7

Dominance Frontier: DF

◮ Dominance Frontier of x is set of all nodes y s.t.
◮ x dominates a predecessor of y AND
◮ x does not strictly dominate y

◮ Denoted DF(x)
◮ Why do you think DF(x) is important for any x?

◮ Think about the information originated in x .



Computing DF

◮ PARENT(x) denotes parent of node x in the dominator
tree.

◮ CHILDERN(x) denotes children of node x in the dominator
tree.

◮ PRED and SUCC from CFG.

DF(x) = DFlocal(x) ∪


 ⋃

z∈CHILDERN(x)

DFup(z)




DFlocal(x) = {y ∈ SUCC(x) | idom[y ] 6= x}
DFup(z) = {y ∈ DF(z) | idom[y ] 6= PARENT(z)}

Iterated Dominance Frontier

◮ Transitive closure of Dominance frontiers on a set of nodes
◮ Let S be a set of nodes

DF(S) =
⋃

x∈S

DF(x)

DF1(S) = DF(S)

DFi+1(S) = DF(S ∪ DFi(S))

◮ DF+(S) is the fixed point of DFi computation.

Minimal SSA Form Construction

◮ Compute DF+ set for each flow graph node
◮ Place trivial φ-functions for each variable in the node

◮ trivial φ-function at n-ary join: x = φ(

n-times︷ ︸︸ ︷
x , x , . . . , x)

◮ Rename variables
◮ Why DF+? Why not only DF?

Inserting φ-functions

foreach variable v {
S = Entry ∪ {Bn | v defined in Bn}
Compute DF+(S)
foreach n in DF+(S) {

insert φ-function for v at the start of Bn
}

}



Renaming Variables (Pseudo Code)

◮ Rename from the Entry node recursively
◮ For each variable x , maintain a rename stack of x 7→ xversion

mapping
◮ For node n

◮ For each assignment (x = . . .) in n
◮ If non-φ assignment, rename any use of x with the Top

mapping of x from the rename stack
◮ Push the mapping x 7→ xi on the rename stack
◮ Replace lhs of the assignment by xi
◮ i = i + 1

◮ For the successors of n
◮ Rename φ operands through SUCC edge index

◮ Recursively rename all child nodes in the dominator tree
◮ For each assignment (x = . . .) in n

◮ Pop x 7→ . . . from the rename stack


