Agenda

CS738: Advanced Compiler Optimizations

 Constant PropagationAmey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Constant Propagation

- CP: Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"
- Using data flow analysis to identify "constant expressions" in a program
- Identify similarity/differences with bit-vector data flow analyses discussed earlier
- Other properties of constant propagation

DF Framework for CP

- Domain
- For a single variable v of type τ, all possible constants of type τ
- Semilattice
- What is Λ ?
- What is T ?
- What is \perp ?

Special Values for CP

- NAC: not a constant
- If variable is inferred not to be a constant
- Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value, ...
- Undef. No definition of the variable is seen yet - nothing known!

NAC vs Undef

- NAC \Rightarrow too many definitions seen for a variable v to declare v is NOT a constant
- Undef \Rightarrow too few definitions seen to declare anything about the variable
- \top is Undef, \perp is NAC

CP Meet \wedge

- Recall the requirement

$$
\begin{aligned}
& \top \bigwedge x=x \\
& \perp \bigwedge x=\perp
\end{aligned}
$$

Undef $\wedge c=c$
$N A C \wedge c=N A C$
$c_{1} \wedge c_{2}=N A C$ when $c_{1} \neq c_{2}$
$c \wedge c=c$

CP Semilattice for an integer variable

- Infinite domain, but finite height

CP Semilattice

- Previous figure was semilattice for one variable of one type
- CP Semilattice = Product of such lattices for all variables (of all types)
- Each semilattice has a finite height

Computing GEN

- Informal representation

Statement	GEN
$x=c / /$ const	$\{x \rightarrow c\}$
$x=y+z$	if $\left\{y \rightarrow c_{1}, z \rightarrow c_{2}\right\}$ in IN then $\left\{x \rightarrow c_{1}+c_{2}\right\}$ else if $\{y \rightarrow N A C\}$ in IN then $\{x \rightarrow N A C\}$ else if $\{z \rightarrow N A C\}$ in IN then $\{x \rightarrow N A C\}$ else $\{x \rightarrow$ Undef $\}$
$\begin{gathered} x=\begin{array}{c} \text { complicated } \\ \text { expr } \end{array} \\ \hline \end{gathered}$	$\{x \rightarrow N A C\}$

- Fix z to be one of Undef, $c_{2}, N A C$
- Vary y over Undef, c_{1}, NAC
- Confirm that x does not "increase"
- Do this for all z choices.
- Similarly, fix y and vary z.

Nondistributivity of CP

- All paths:
- $B_{0} \rightarrow B_{1} \rightarrow B_{3}$
- $B_{0} \rightarrow B_{2} \rightarrow B_{3}$
- Value of z is 5 along both the paths.
- MOP value for z is 5 .
- MFP value for z is NAC. (Exercise)
- MFP value \neq MOP value (MFP < MOP)

