

Special Values for CP	NAC vs Undef
 NAC: not a constant If variable is inferred not to be a constant Multiple (different valued) defs, non-const defs, ass "un-interpreted" value, Undef: No definition of the variable is seen yet - not known! 	► Under ⇒ too rew definitions seen to declare anything about the variable
CP Meet ∧	CP Semilattice for an integer variable
• Recall the requirement $ \top \bigwedge x = x \\ \perp \bigwedge x = \bot $ Undef $\bigwedge c = c \\ NAC \bigwedge c = NAC \\ c_1 \land c_2 = NAC \text{ when } c_1 \neq c_2 \\ c \land c = c $	Undef

CP Semilattice

- Previous figure was semilattice for one variable of one type
- CP Semilattice = Product of such lattices for all variables (of all types)
- Each semilattice has a **finite** height

Monotonicity of CP

- Case analysis on transfer function f
- $NAC \le c \le Undef$
- x = c has constant transfer function.
- x = complicated expr also has constant transfer function
- See the next slide for x = y + z (and similar statements)

Computing GEN

Informal representation

Statement	GEN
x = c // const	$\{X \rightarrow C\}$
x = y + z	if $\{y \rightarrow c_1, z \rightarrow c_2\}$ in IN then $\{x \rightarrow c_1 + c_2\}$ else if $\{y \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else if $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else $\{x \rightarrow Undef\}$
$\overline{x = complicated}$ expr	$\{x \rightarrow NAC\}$

Monotonicity of CP: x = y + z

- ► Fix z to be one of Undef, c₂, NAC
- ► Vary y over Undef, c₁, NAC
- Confirm that x does not "increase"
- ▶ Do this for all *z* choices.
- Similarly, fix y and vary z.

Nondistributivity of CP

- ► All paths:
 - $\blacktriangleright B_0 \rightarrow B_1 \rightarrow B_3$
 - $\blacktriangleright B_0 \to B_2 \to B_3$
- Value of z is 5 along both the paths.
- MOP value for z is 5.
- MFP value for z is NAC. (Exercise)
- MFP value ≠ MOP value (MFP < MOP)