
CS738: Advanced Compiler Optimizations

Flow Graph Theory

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Agenda

◮ Speeding up DFA

◮ Depth of a flow graph

◮ Natural Loops



Acknowledgement

Rest of the slides based on the material at

http://infolab.stanford.edu/~ullman/dragon/w06/

w06.html

http://infolab.stanford.edu/~ullman/dragon/w06/
w06.html


Speeding up DFA

◮ Proper ordering of nodes of a flow graph speeds up the

iterative algorithms: depth-first ordering.



Speeding up DFA

◮ Proper ordering of nodes of a flow graph speeds up the

iterative algorithms: depth-first ordering.

◮ “Normal” flow graphs have a surprising property —

reducibility — that simplifies several matters.



Speeding up DFA

◮ Proper ordering of nodes of a flow graph speeds up the

iterative algorithms: depth-first ordering.

◮ “Normal” flow graphs have a surprising property —

reducibility — that simplifies several matters.

◮ Outcome: few iterations “normally” needed.



Depth-First Search

◮ Start at entry.



Depth-First Search

◮ Start at entry.

◮ If you can follow an edge to an unvisited node, do so.



Depth-First Search

◮ Start at entry.

◮ If you can follow an edge to an unvisited node, do so.

◮ If not, backtrack to your parent (node from which you were

visited).



Depth-First Spanning Tree (DFST)

◮ Root = Entry.



Depth-First Spanning Tree (DFST)

◮ Root = Entry.

◮ Tree edges are the edges along which we first visit the

node at the head.



DFST Example

1

2

3

4

5



DFST Example

1

2

3

4

5



DFST Example

1

2

3

4

5



DFST Example

1

2

3

4

5



DFST Example

1

2

3

4

5



Depth-First Node Order

◮ The reverse of the order in which a DFS retreats from the

nodes.



Depth-First Node Order

◮ The reverse of the order in which a DFS retreats from the

nodes.

◮ Alternatively, reverse of postorder traversal of the tree.



DF Order Example

1

4

5

2

3



Four Kind of Edges

1. Tree edges.



Four Kind of Edges

1. Tree edges.

2. Forward edges: node to proper descendant.



Four Kind of Edges

1. Tree edges.

2. Forward edges: node to proper descendant.

3. Retreating edges: node to ancestor.



Four Kind of Edges

1. Tree edges.

2. Forward edges: node to proper descendant.

3. Retreating edges: node to ancestor.

4. Cross edges: between two node, neither of which is an

ancestor of the other.



A Little Magic

◮ Of these edges, only retreating edges go from high to low

in DF order.



A Little Magic

◮ Of these edges, only retreating edges go from high to low

in DF order.

◮ Most surprising: all cross edges go right to left in the
DFST.



A Little Magic

◮ Of these edges, only retreating edges go from high to low

in DF order.

◮ Most surprising: all cross edges go right to left in the
DFST.
◮ Assuming we add children of any node from the left.



Example: Non-Tree Edges

1

4

5

2

3



Example: Non-Tree Edges

1

4

5

2

3

Retreating



Example: Non-Tree Edges

1

4

5

2

3

Retreating

Forward



Example: Non-Tree Edges

1

4

5

2

3

Retreating

Forward

Cross



Roadmap

◮ “Normal” flow graphs are “reducible.”



Roadmap

◮ “Normal” flow graphs are “reducible.”

◮ “Dominators” needed to explain reducibility.



Roadmap

◮ “Normal” flow graphs are “reducible.”

◮ “Dominators” needed to explain reducibility.

◮ In reducible flow graphs, loops are well defined, retreating

edges are unique (and called “back” edges).



Roadmap

◮ “Normal” flow graphs are “reducible.”

◮ “Dominators” needed to explain reducibility.

◮ In reducible flow graphs, loops are well defined, retreating

edges are unique (and called “back” edges).

◮ Leads to relationship between DF order and efficient

iterative algorithm.



Dominators

◮ Node d dominates node n if every path from the Entry to

n goes through d .



Dominators

◮ Node d dominates node n if every path from the Entry to

n goes through d .

◮ [Exercise] A forward-intersection iterative algorithm for

finding dominators.



Dominators

◮ Node d dominates node n if every path from the Entry to

n goes through d .

◮ [Exercise] A forward-intersection iterative algorithm for

finding dominators.

◮ Quick observations:



Dominators

◮ Node d dominates node n if every path from the Entry to

n goes through d .

◮ [Exercise] A forward-intersection iterative algorithm for

finding dominators.

◮ Quick observations:
◮ Every node dominates itself.



Dominators

◮ Node d dominates node n if every path from the Entry to

n goes through d .

◮ [Exercise] A forward-intersection iterative algorithm for

finding dominators.

◮ Quick observations:
◮ Every node dominates itself.
◮ The entry dominates every node.



Example: Dominators

1

4

5

2

3

Node Dominators

1

2

3

4

5



Example: Dominators

1

4

5

2

3

Node Dominators

1 1

2

3

4

5



Example: Dominators

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3

4

5



Example: Dominators

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4

5



Example: Dominators

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5



Example: Dominators

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5 1, 5



Common Dominator Cases

◮ The test of a while loop dominates all blocks in the loop

body.



Common Dominator Cases

◮ The test of a while loop dominates all blocks in the loop

body.

◮ The test of an if-then-else dominates all blocks in either

branch.



Back Edges

◮ An edge is a back edge if its head dominates its tail.



Back Edges

◮ An edge is a back edge if its head dominates its tail.

◮ Theorem: Every back edge is a retreating edge in every
DFST of every flow graph.



Back Edges

◮ An edge is a back edge if its head dominates its tail.

◮ Theorem: Every back edge is a retreating edge in every
DFST of every flow graph.
◮ Proof? Discuss/Exercise



Back Edges

◮ An edge is a back edge if its head dominates its tail.

◮ Theorem: Every back edge is a retreating edge in every
DFST of every flow graph.
◮ Proof? Discuss/Exercise
◮ Converse almost always true, but not always.



Example: Back Edges

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5 1, 5



Example: Back Edges

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5 1, 5



Reducible Flow Graphs

◮ A flow graph is reducible if every retreating edge in any

DFST for that flow graph is a back edge.



Reducible Flow Graphs

◮ A flow graph is reducible if every retreating edge in any

DFST for that flow graph is a back edge.

◮ Testing reducibility: Take any DFST for the flow graph,

remove the back edges, and check that the result is

acyclic.



Example: Remove Back Edges

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5 1, 5



Example: Remove Back Edges

1

4

5

2

3

Node Dominators

1 1

2 1, 2

3 1, 2, 3

4 1, 4

5 1, 5

Remaining graph is acyclic.



Why Reducibility?

◮ Folk theorem: All flow graphs in practice are reducible.

◮ Fact: If you use only while-loops, for-loops, repeat-loops,

if-then(-else), break, and continue, then your flow graph is

reducible.



Example: Nonreducible Graph

A

B C



Example: Nonreducible Graph

A

B C

In any DFST, one of these

edges will be a retreating

edge.



Example: Nonreducible Graph

A

B C

In any DFST, one of these

edges will be a retreating

edge.

A

B

C



Example: Nonreducible Graph

A

B C

In any DFST, one of these

edges will be a retreating

edge.

A

B

C

A

C

B



Why Care About Back/Retreating Edges?

◮ Proper ordering of nodes during iterative algorithm assures

number of passes limited by the number of “nested” back

edges.



Why Care About Back/Retreating Edges?

◮ Proper ordering of nodes during iterative algorithm assures

number of passes limited by the number of “nested” back

edges.

◮ Depth of nested loops upper-bounds the number of nested

back edges.



DF Order and Retreating Edges

◮ Suppose that for a RD analysis, we visit nodes during each

iteration in DF order.



DF Order and Retreating Edges

◮ Suppose that for a RD analysis, we visit nodes during each

iteration in DF order.

◮ The fact that a definition d reaches a block will propagate

in one pass along any increasing sequence of blocks.



DF Order and Retreating Edges

◮ Suppose that for a RD analysis, we visit nodes during each

iteration in DF order.

◮ The fact that a definition d reaches a block will propagate

in one pass along any increasing sequence of blocks.

◮ When d arrives along a retreating edge, it is too late to

propagate d from OUT to IN.



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d

d

d

d



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d

d

d

dd



Example: DF Order

1

4

5

2

3

Node 2 generates definition d.

Other nodes “empty” w.r.t. d.

Does d reach node 4?

d

d

d

d

d

d

d

dd

d



Depth of a Flow Graph

◮ The depth of a flow graph is the greatest number of

retreating edges along any acyclic path.



Depth of a Flow Graph

◮ The depth of a flow graph is the greatest number of

retreating edges along any acyclic path.

◮ For RD, if we use DF order to visit nodes, we converge in
depth+2 passes.



Depth of a Flow Graph

◮ The depth of a flow graph is the greatest number of

retreating edges along any acyclic path.

◮ For RD, if we use DF order to visit nodes, we converge in
depth+2 passes.
◮ Depth+1 passes to follow that number of increasing

segments.



Depth of a Flow Graph

◮ The depth of a flow graph is the greatest number of

retreating edges along any acyclic path.

◮ For RD, if we use DF order to visit nodes, we converge in
depth+2 passes.
◮ Depth+1 passes to follow that number of increasing

segments.
◮ 1 more pass to realize we converged.



Example: Depth = 2



Example: Depth = 2

increasing



Example: Depth = 2

increasing

retreating



Example: Depth = 2

increasing

retreating

increasing



Example: Depth = 2

increasing

retreating

increasing

retreating



Example: Depth = 2

increasing

retreating

increasing

retreating

increasing



Similarly . . .

◮ AE also works in depth+2 passes.



Similarly . . .

◮ AE also works in depth+2 passes.
◮ Unavailability propagates along retreat-free node

sequences in one pass.



Similarly . . .

◮ AE also works in depth+2 passes.
◮ Unavailability propagates along retreat-free node

sequences in one pass.

◮ So does LV if we use reverse of DF order.



Similarly . . .

◮ AE also works in depth+2 passes.
◮ Unavailability propagates along retreat-free node

sequences in one pass.

◮ So does LV if we use reverse of DF order.
◮ A use propagates backward along paths that do not use a

retreating edge in one pass.



In General . . .

◮ The depth+2 bound works for any monotone bit-vector
framework, as long as information only needs to propagate
along acyclic paths.
◮ Example: if a definition reaches a point, it does so along an

acyclic path.



Why Depth+2 is Good?

◮ Normal control-flow constructs produce reducible flow
graphs with the number of back edges at most the nesting
depth of loops.
◮ Nesting depth tends to be small.



Example: Nested Loops

3 nested while loops.



Example: Nested Loops

3 nested while loops.

depth = 3.



Example: Nested Loops

3 nested while loops.

depth = 3.

3 nested do-while loops.



Example: Nested Loops

3 nested while loops.

depth = 3.

3 nested do-while loops.

depth = 1.



Natural Loops

◮ The natural loop of a back edge a → b is {b} plus the set

of nodes that can reach a without going through b.



Natural Loops

◮ The natural loop of a back edge a → b is {b} plus the set

of nodes that can reach a without going through b.

◮ Theorem: two natural loops are either disjoint, identical, or

nested.



Natural Loops

◮ The natural loop of a back edge a → b is {b} plus the set

of nodes that can reach a without going through b.

◮ Theorem: two natural loops are either disjoint, identical, or

nested.

◮ Proof: Discuss/Exercise



Example: Natural Loops

1

4

5

2

3

1

4

5

2

3



Example: Natural Loops

1

4

5

2

3

1

4

5

2

3

Natural loop 3 → 2



Example: Natural Loops

1

4

5

2

3

1

4

5

2

3

Natural loop 3 → 2

Natural loop 5 → 1



Reading Assignment

◮ New Dragon Book (Aho, Lam, Sethi, Ullman)
◮ Chapter 9


