CS738: Advanced Compiler Optimizations

Flow Graph Theory

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

- Speeding up DFA
- Depth of a flow graph
- Natural Loops

Acknowledgement

Rest of the slides based on the material at
http://infolab.stanford.edu/~ullman/dragon/w06/
w0 6. html

Speeding up DFA

- Proper ordering of nodes of a flow graph speeds up the iterative algorithms: depth-first ordering.

Speeding up DFA

- Proper ordering of nodes of a flow graph speeds up the iterative algorithms: depth-first ordering.
- "Normal" flow graphs have a surprising property reducibility - that simplifies several matters.

Speeding up DFA

- Proper ordering of nodes of a flow graph speeds up the iterative algorithms: depth-first ordering.
- "Normal" flow graphs have a surprising property reducibility - that simplifies several matters.
- Outcome: few iterations "normally" needed.

Depth-First Search

- Start at entry.

Depth-First Search

- Start at entry.
- If you can follow an edge to an unvisited node, do so.

Depth-First Search

- Start at entry.
- If you can follow an edge to an unvisited node, do so.
- If not, backtrack to your parent (node from which you were visited).

Depth-First Spanning Tree (DFST)

- Root $=$ Entry.

Depth-First Spanning Tree (DFST)

- Root = Entry.
- Tree edges are the edges along which we first visit the node at the head.

DFST Example

Depth-First Node Order

- The reverse of the order in which a DFS retreats from the nodes.

Depth-First Node Order

- The reverse of the order in which a DFS retreats from the nodes.
- Alternatively, reverse of postorder traversal of the tree.

DF Order Example

Four Kind of Edges

1. Tree edges.

Four Kind of Edges

1. Tree edges.
2. Forward edges: node to proper descendant.

Four Kind of Edges

1. Tree edges.
2. Forward edges: node to proper descendant.
3. Retreating edges: node to ancestor.

Four Kind of Edges

1. Tree edges.
2. Forward edges: node to proper descendant.
3. Retreating edges: node to ancestor.
4. Cross edges: between two node, neither of which is an ancestor of the other.

A Little Magic

- Of these edges, only retreating edges go from high to low in DF order.

A Little Magic

- Of these edges, only retreating edges go from high to low in DF order.
- Most surprising: all cross edges go right to left in the DFST.

A Little Magic

- Of these edges, only retreating edges go from high to low in DF order.
- Most surprising: all cross edges go right to left in the DFST.
- Assuming we add children of any node from the left.

Example: Non-Tree Edges

Example: Non-Tree Edges

Example: Non-Tree Edges

Example: Non-Tree Edges

Roadmap

- "Normal" flow graphs are "reducible."

Roadmap

- "Normal" flow graphs are "reducible."
- "Dominators" needed to explain reducibility.

Roadmap

- "Normal" flow graphs are "reducible."
- "Dominators" needed to explain reducibility.
- In reducible flow graphs, loops are well defined, retreating edges are unique (and called "back" edges).

Roadmap

- "Normal" flow graphs are "reducible."
- "Dominators" needed to explain reducibility.
- In reducible flow graphs, loops are well defined, retreating edges are unique (and called "back" edges).
- Leads to relationship between DF order and efficient iterative algorithm.

Dominators

- Node d dominates node n if every path from the Entry to n goes through d.

Dominators

- Node d dominates node n if every path from the Entry to n goes through d.
- [Exercise] A forward-intersection iterative algorithm for finding dominators.

Dominators

- Node d dominates node n if every path from the Entry to n goes through d.
- [Exercise] A forward-intersection iterative algorithm for finding dominators.
- Quick observations:

Dominators

- Node d dominates node n if every path from the Entry to n goes through d.
- [Exercise] A forward-intersection iterative algorithm for finding dominators.
- Quick observations:
- Every node dominates itself.

Dominators

- Node d dominates node n if every path from the Entry to n goes through d.
- [Exercise] A forward-intersection iterative algorithm for finding dominators.
- Quick observations:
- Every node dominates itself.
- The entry dominates every node.

Example: Dominators

Common Dominator Cases

- The test of a while loop dominates all blocks in the loop body.

Common Dominator Cases

- The test of a while loop dominates all blocks in the loop body.
- The test of an if-then-else dominates all blocks in either branch.

Back Edges

- An edge is a back edge if its head dominates its tail.

Back Edges

- An edge is a back edge if its head dominates its tail.
- Theorem: Every back edge is a retreating edge in every DFST of every flow graph.

Back Edges

- An edge is a back edge if its head dominates its tail.
- Theorem: Every back edge is a retreating edge in every DFST of every flow graph.
- Proof? Discuss/Exercise

Back Edges

- An edge is a back edge if its head dominates its tail.
- Theorem: Every back edge is a retreating edge in every DFST of every flow graph.
- Proof? Discuss/Exercise
- Converse almost always true, but not always.

Example: Back Edges

Example: Back Edges

Reducible Flow Graphs

- A flow graph is reducible if every retreating edge in any DFST for that flow graph is a back edge.

Reducible Flow Graphs

- A flow graph is reducible if every retreating edge in any DFST for that flow graph is a back edge.
- Testing reducibility: Take any DFST for the flow graph, remove the back edges, and check that the result is acyclic.

Example: Remove Back Edges

Example: Remove Back Edges

Why Reducibility?

- Folk theorem: All flow graphs in practice are reducible.
- Fact: If you use only while-loops, for-loops, repeat-loops, if-then(-else), break, and continue, then your flow graph is reducible.

Example: Nonreducible Graph

Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.

Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.

Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.

Why Care About Back/Retreating Edges?

- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of "nested" back edges.

Why Care About Back/Retreating Edges?

- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of "nested" back edges.
- Depth of nested loops upper-bounds the number of nested back edges.

DF Order and Retreating Edges

- Suppose that for a RD analysis, we visit nodes during each iteration in DF order.

DF Order and Retreating Edges

- Suppose that for a RD analysis, we visit nodes during each iteration in DF order.
- The fact that a definition d reaches a block will propagate in one pass along any increasing sequence of blocks.

DF Order and Retreating Edges

- Suppose that for a RD analysis, we visit nodes during each iteration in DF order.
- The fact that a definition d reaches a block will propagate in one pass along any increasing sequence of blocks.
- When d arrives along a retreating edge, it is too late to propagate d from OUT to IN.

Example: DF Order

Node 2 generates definition d .

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.
Does d reach node 4?

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Example: DF Order

Node 2 generates definition d.
Other nodes "empty" w.r.t. d.

Depth of a Flow Graph

- The depth of a flow graph is the greatest number of retreating edges along any acyclic path.

Depth of a Flow Graph

- The depth of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.

Depth of a Flow Graph

- The depth of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.
- Depth+1 passes to follow that number of increasing segments.

Depth of a Flow Graph

- The depth of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.
- Depth+1 passes to follow that number of increasing segments.
- 1 more pass to realize we converged.

Example: Depth = 2

Example: Depth = 2

$\overrightarrow{\text { increasing }}$

Example: Depth = 2

retreating

increasing

Example: Depth = 2

retreating

$\xrightarrow[\text { increasing }]{\text { increasing }}$

Example: Depth = 2

Example: Depth = 2

Similarly ...

- AE also works in depth+2 passes.

Similarly ...

- AE also works in depth+2 passes.
- Unavailability propagates along retreat-free node sequences in one pass.

Similarly ...

- AE also works in depth+2 passes.
- Unavailability propagates along retreat-free node sequences in one pass.
- So does LV if we use reverse of DF order.

Similarly ...

- AE also works in depth+2 passes.
- Unavailability propagates along retreat-free node sequences in one pass.
- So does LV if we use reverse of DF order.
- A use propagates backward along paths that do not use a retreating edge in one pass.

In General ...

- The depth+2 bound works for any monotone bit-vector framework, as long as information only needs to propagate along acyclic paths.
- Example: if a definition reaches a point, it does so along an acyclic path.

Why Depth +2 is Good?

- Normal control-flow constructs produce reducible flow graphs with the number of back edges at most the nesting depth of loops.
- Nesting depth tends to be small.

Example: Nested Loops

3 nested while loops.

Example: Nested Loops

3 nested while loops. depth $=3$.

Example: Nested Loops

3 nested while loops.

3 nested do-while loops. depth $=3$.

Example: Nested Loops

3 nested while loops. depth $=3$.

3 nested do-while loops. depth $=1$.

Natural Loops

- The natural loop of a back edge $a \rightarrow b$ is $\{b\}$ plus the set of nodes that can reach a without going through b.

Natural Loops

- The natural loop of a back edge $a \rightarrow b$ is $\{b\}$ plus the set of nodes that can reach a without going through b.
- Theorem: two natural loops are either disjoint, identical, or nested.

Natural Loops

- The natural loop of a back edge $a \rightarrow b$ is $\{b\}$ plus the set of nodes that can reach a without going through b.
- Theorem: two natural loops are either disjoint, identical, or nested.
- Proof: Discuss/Exercise

Example: Natural Loops

Example: Natural Loops

Natural loop $3 \rightarrow 2$

Example: Natural Loops

Natural loop $5 \rightarrow 1$

Reading Assignment

- New Dragon Book (Aho, Lam, Sethi, Ullman)
- Chapter 9

