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Agenda

◮ Poset, Lattice, and Data Flow Frameworks: Review

◮ Connecting Tarski Lemma with Data Flow Analysis

◮ Solutions of Data Flow Analysis constraints



Knaster-Tarski Fixed Point Theorem

◮ Let f be a monotonic function on a complete lattice
(S,

∧
,
∨
). Define

◮ red(f ) = {v | v ∈ S, f (v) ≤ v}, pre fix-points
◮ ext(f ) = {v | v ∈ S, f (v) ≥ v}, post fix-points
◮ fix(f ) = {v | v ∈ S, f (v) = v}, fix-points

Then,
◮

∧
red(f ) ∈ fix(f ). Further,

∧
red(f ) =

∧
fix(f )

◮
∨

ext(f ) ∈ fix(f ). Further,
∨

ext(f ) =
∧

fix(f )
◮ fix(f ) is a complete lattice



Application of Fixed Point Theorem

◮ f : S → S is a monotonic function

◮ (S,
∧
) is a finite height semilattice

◮ ⊤ is the top element of (S,
∧
)

◮ Notation: f 0(x) = x , f i+1(x) = f (f i(x)), ∀i ≥ 0

◮ The greatest fixed point of f is

f k (⊤), where f k+1(⊤) = f k (⊤)



Fixed Point Algorithm

// monotonic function f on a meet semilattice

x := ⊤;
while (x 6= f(x)) x := f(x);

return x;
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Resemblance to Iterative Algorithm (Forward)

OUT[Entry ] = InfoEntry;

for (other blocks B) OUT[B] = ⊤;
while (changes to any OUT) {

for (each block B) {

IN(B) =
∧

P∈PRED(B) OUT(P);

OUT(B) = fB(IN(B));
}

}
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Iterative Algorithm

◮ fB(X ) = X − KILL(B) ∪ GEN(B)

◮ Backward:
◮ Swap IN and OUT everywhere
◮ Replace Entry by Exit
◮ Replace predecessors by successors

◮ In other words: just “invert” the flow graph!!
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Solutions

◮ IDEAL solution = meet over all executable paths from

entry to a point (ignore unrealizable paths)

◮ MOP = meet over all paths from entry to a given point, of

the transfer function along that path applied to InfoEntry .

◮ MFP (maximal fixedpoint) = result of iterative algorithm.
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Maximum Fixedpoint

◮ Fixedpoint = solution to the equations used in the

iteration:

IN(B) =
∧

P∈PRED(B)

OUT(P)

OUT(B) = fB(IN(B))

◮ Maximum Fixedpoint = any other solution is ≤ the result if

the iterative algorithm (MFP)

◮ ≤: carries less information.
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MOP and IDEAL

◮ All solutions are really meets of the result of starting with

InfoEntry and following some set of paths to the point in

question.

◮ If we don’t include at least the IDEAL paths, we have an

error.

◮ But try not to include too many more.

◮ Less “ignorance,” but we “know too much.”
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MOP Versus IDEAL

◮ Any solution that is ≤ IDEAL accounts for all executable
paths (and maybe more paths)
◮ and is therefore conservative (safe)
◮ even if not accurate.
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MFP vs MOP

◮ If MFP ≤ MOP?
◮ If so, then MFP ≤ MOP ≤ IDEAL, therefore MFP is safe.

◮ Yes, but . . .

◮ Requires two assumptions about the framework:
◮ “Monotonicity.”
◮ Finite height

no infinite chains . . . < x2 < x1 < x < . . .
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MFP vs MOP

◮ Intuition: If we computed the MOP directly, we would

compose functions along all paths, then take a big meet.

◮ But the MFP (iterative algorithm) alternates compositions

and meets arbitrarily.
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Good News

◮ The frameworks we’ve studied so far are all monotone.
◮ Easy proof for functions in Gen-Kill form.

◮ And they have finite height.
◮ Only a finite number of defs, variables, etc. in any program.
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Two Paths to B that Meet Early

Entry

OUT = x

OUT = y

IN = x
∧

y B

f (x
∧

y)

f (x)
∧

f (y)f

f (x)

f (y)

◮ MOP considers paths independently and combines at the

last possible moment.

◮ In MFP, Values x and y get combined too soon.

◮ Since f (x
∧

y) ≤ f (x)
∧

f (y), it is as we added non-existent

paths.
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Distributive Frameworks

◮ Distributivity:

f (x
∧

y) = f (x)
∧

f (y)

◮ Stronger than Monotonicity
◮ Distributivity ⇒ Monotonicity
◮ But the reverse is not true



Even More Good News!

◮ The 4 example frameworks are distributive.



Even More Good News!

◮ The 4 example frameworks are distributive.

◮ If a framework is distributive, then combining paths early
doesn’t hurt.



Even More Good News!

◮ The 4 example frameworks are distributive.

◮ If a framework is distributive, then combining paths early
doesn’t hurt.
◮ MOP = MFP.



Even More Good News!

◮ The 4 example frameworks are distributive.

◮ If a framework is distributive, then combining paths early
doesn’t hurt.
◮ MOP = MFP.
◮ That is, the iterative algorithm computes a solution that

takes into account all and only the physical paths.


