Agenda
CS738: Advanced Compiler Optimizations

Foundations of Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice
(S, \wedge, \bigvee). Define
- red $(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points
- $\operatorname{fix}(f)=\{v \mid v \in S, f(v)=v\}$, fix-points Then,
- $\wedge \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\wedge \operatorname{red}(f)=\wedge \operatorname{fix}(f)$
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\bigvee \operatorname{ext}(f)=\wedge$ fix (f)
- fix (f) is a complete lattice
- Poset, Lattice, and Data Flow Frameworks: Review
- Connecting Tarski Lemma with Data Flow Analysis
- Solutions of Data Flow Analysis constraints

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function
- (S, \wedge) is a finite height semilattice
- T is the top element of (S, \wedge)
- Notation: $f^{0}(x)=x, f^{i+1}(x)=f\left(f^{i}(x)\right), \forall i \geq 0$
- The greatest fixed point of f is

$$
f^{k}(T), \text { where } f^{k+1}(T)=f^{k}(T)
$$

```
Fixed Point Algorithm
// monotonic function \(f\) on a meet semilattice
\(\mathrm{x}:=\mathrm{T}\);
while ( \(x \neq f(x)\) ) \(x:=f(x)\);
return \(x\);
```


Iterative Algorithm

- $f_{B}(X)=X-\mathrm{KILL}(B) \cup \operatorname{GEN}(B)$
- Backward:
- Swap IN and OUT everywhere
- Replace Entry by Exit
- Replace predecessors by successors
- In other words: just "invert" the flow graph!!

```
OUT[Entry] = InfoEntry;
for (other blocks B) OUT[B]= T;
while (changes to any OUT) {
    for (each block B) {
        IN(B)=\^\P\in\operatorname{PRED}(B)}\operatorname{OUT}(P)
        OUT(B)= f
    }
}
```


Acknowledgement

Rest of the slides based on the material at

http://infolab.stanford.edu/~ullman/dragon/w06/ w06.html

Solutions

- IDEAL solution = meet over all executable paths from entry to a point (ignore unrealizable paths)
- MOP = meet over all paths from entry to a given point, of the transfer function along that path applied to Info Entry.
- MFP (maximal fixedpoint) = result of iterative algorithm.

MOP and IDEAL

- All solutions are really meets of the result of starting with Info $_{\text {Entry }}$ and following some set of paths to the point in question.
- If we don't include at least the IDEAL paths, we have an error.
- But try not to include too many more.
- Less "ignorance," but we "know too much."

Maximum Fixedpoint

- Fixedpoint = solution to the equations used in the iteration:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigwedge_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=f_{B}(\operatorname{IN}(B))
\end{gathered}
$$

- Maximum Fixedpoint = any other solution is \leq the result if the iterative algorithm (MFP)
- \leq : carries less information.

MOP Versus IDEAL

- Any solution that is \leq IDEAL accounts for all executable paths (and maybe more paths)
- and is therefore conservative (safe)
- even if not accurate.

MFP vs MOP

- If MFP \leq MOP?
- If so, then MFP \leq MOP \leq IDEAL, therefore MFP is safe.
- Yes, but...
- Requires two assumptions about the framework:
- "Monotonicity."
- Finite height
no infinite chains $\ldots<x_{2}<x_{1}<x<\ldots$

MFP vs MOP

- Intuition: If we computed the MOP directly, we would compose functions along all paths, then take a big meet.
- But the MFP (iterative algorithm) alternates compositions and meets arbitrarily.

Good News

- The frameworks we've studied so far are all monotone.
- Easy proof for functions in Gen-Kill form.
- And they have finite height.
- Only a finite number of defs, variables, etc. in any program.

Two Paths to B that Meet Early

- MOP considers paths independently and combines at the last possible moment.
- In MFP, Values x and y get combined too soon.
- Since $f(x \wedge y) \leq f(x) \wedge f(y)$, it is as we added non-existent paths.
- Distributivity:

$$
f(x \bigwedge y)=f(x) \bigwedge f(y)
$$

- Stronger than Monotonicity
- Distributivity \Rightarrow Monotonicity
- But the reverse is not true
- The 4 example frameworks are distributive.
- If a framework is distributive, then combining paths early doesn't hurt.
- MOP = MFP.
- That is, the iterative algorithm computes a solution that takes into account all and only the physical paths.

