CS738: Advanced Compiler Optimizations Foundations of Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Agenda

- We looked at 4 classic examples
- Today: Mathematical foundations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Categorized along several dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Categorized along several dimensions

the information they are designed to provide

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Categorized along several dimensions

the information they are designed to provide

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

the direction of flow

Categorized along several dimensions

the information they are designed to provide

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- the direction of flow
- confluence operator

Categorized along several dimensions

- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Categorized along several dimensions

- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by
 - the operator used for confluence or divergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Categorized along several dimensions

- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by
 - the operator used for confluence or divergence

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

data flows backward or forward

Confluence \rightarrow	U	\bigcap
Direction \downarrow		
Forward		
Backward		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Confluence \rightarrow	U	\bigcap
Direction \downarrow		
Forward	R D	
Backward		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Confluence \rightarrow	U	\bigcap
Direction \downarrow		
		Av E
Forward	עח	

Confluence \rightarrow	U	\bigcap
Direction \downarrow		
Forward	R D	Av E
Backward		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Confluence \rightarrow	U	\bigcap
Direction \downarrow		
Forward	R D	Av E
Backward	LV	VBE

Why Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values
 - Bounded, Finite
- Suitable meet operator
- Suitable flow functions
 - monotonic, closed under composition

But what is SUITABLE ?

Lattice Theory

S: a set

- S: a set
- \leq : a relation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Posets

- S: a set
- \leq : a relation
- (S, \leq) is a **poset** if for $x, y, z \in S$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Posets

- S: a set
- \leq : a relation
- (S, \leq) is a **poset** if for $x, y, z \in S$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• $x \le x$ (reflexive)

Posets

- S: a set
- \leq : a relation

$$(S, \leq)$$
 is a **poset** if for $x, y, z \in S$

- $x \le x$ (reflexive)
- $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetric)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Posets

- S: a set
- \leq : a relation
- (\mathcal{S},\leq) is a **poset** if for $x,y,z\in\mathcal{S}$
 - $x \le x$ (reflexive)
 - $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetric)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $x \le y$ and $y \le z \Rightarrow x \le z$ (transitive)

- Linear Ordering
- Poset where every pair of elements is comparable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Linear Ordering
- Poset where every pair of elements is comparable

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• $x_1 \leq x_2 \leq \ldots \leq x_k$ is a chain of length k

- Linear Ordering
- Poset where every pair of elements is comparable

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- $x_1 \leq x_2 \leq \ldots \leq x_k$ is a chain of length k
- We are interested in chains of finite length

Observation

Any finite nonempty subset of a poset has minimal and maximal elements

Observation

Any finite nonempty subset of a poset has minimal and maximal elements

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Any finite nonempty chain has unique minimum and maximum elements

Set S and meet \wedge

Set *S* and meet ∧
 x, *y*, *z* ∈ *S*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▶ Set S and meet \land

- ► *x*, *y*, *z* ∈ *S*
 - $x \wedge x = x$ (idempotent)
 - $x \wedge y = y \wedge x$ (commutative)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ► Set S and meet ∧
- ▶ x, y, z ∈ S
 - $x \wedge x = x$ (idempotent)
 - $x \wedge y = y \wedge x$ (commutative)
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▶ Set S and meet \land

- ► *x*, *y*, *z* ∈ *S*
 - $x \wedge x = x$ (idempotent)
 - $x \wedge y = y \wedge x$ (commutative)

•
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
 (associative)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Partial order for semilattice

- ▶ Set S and meet \land
- ▶ x, y, z ∈ S
 - $x \wedge x = x$ (idempotent)
 - $x \wedge y = y \wedge x$ (commutative)
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative)

(日)

Partial order for semilattice

•
$$x \leq y$$
 if and only if $x \wedge y = x$

Semilattice

- ► Set S and meet ∧
- ▶ x, y, z ∈ S
 - $x \wedge x = x$ (idempotent)
 - $x \wedge y = y \wedge x$ (commutative)
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (associative)
- Partial order for semilattice
 - $x \leq y$ if and only if $x \wedge y = x$
 - Reflexive, antisymmetric, transitive

(日)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Top Element (⊤) ∀x ∈ S, x ∧ ⊤ = ⊤ ∧ x = x (Optional) Bottom Element (⊥)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Powerset for a set S, 2^S

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Meet \bigwedge is \cap

• Powerset for a set S, 2^S

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- Meet \bigwedge is \cap
- ▶ Partial Order is \subseteq

• Powerset for a set S, 2^S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Meet \bigwedge is \cap
- Partial Order is ⊆
- ▶ Top element is S

- Powerset for a set S, 2^S
- Meet \bigwedge is \cap
- Partial Order is ⊆
- ► Top element is S
- Bottom element is Ø

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Powerset for a set S, 2^S

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Meet \bigwedge is \cup

• Powerset for a set S, 2^S

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- Meet \bigwedge is \cup
- ► Partial Order is ⊇

• Powerset for a set S, 2^S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Meet \bigwedge is \cup
- ► Partial Order is ⊇
- ► Top element is Ø

- Powerset for a set S, 2^S
- Meet \bigwedge is \cup
- ► Partial Order is ⊇
- ► Top element is Ø
- Bottom element is S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

- ► *x*, *y*, *z* ∈ *S*
- glb of x and y is an element g such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

x, *y*, *z* ∈ *S* glb of *x* and *y* is an element *g* such that *g* ≤ *x*

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

▲□▶▲□▶▲□▶▲□▶ □ のQ@

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

• $x, y \in S$ • (S, Λ) is a semilattice

► *x*, *y* ∈ *S*

- (S, \bigwedge) is a semilattice
- Prove that $x \land y$ is glb of x and y.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

 \blacktriangleright \geq order

We can define symmetric concepts

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- ► ≥ order
- ► Join operation (\/)

We can define symmetric concepts

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- ► ≥ order
- ▶ Join operation (\/)
- Least upper bound (lub)

► (S, ∧, ∨) is a lattice iff for each **non-empty finite** subset Y of S

(S, ∧, ∨) is a lattice iff for each non-empty finite subset Y of S both ∧ Y and ∨ Y are in S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

(S, ∧, ∨) is a lattice iff for each **non-empty finite** subset Y of S both ∧ Y and ∨ Y are in S. (S, ∧, ∨) is a complete lattice

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

(S, ∧, ∨) is a lattice iff for each non-empty finite subset Y of S both ∧ Y and ∨ Y are in S. (S, ∧, ∨) is a complete lattice iff for each subset Y of S

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(S, ∧, ∨) is a lattice iff for each non-empty finite subset Y of S both ∧ Y and ∨ Y are in S. (S, ∧, ∨) is a complete lattice iff for each subset Y of S both ∧ Y and ∨ Y are in S.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Complete lattice (S, \bigwedge, \bigvee)

For every pair of elements x and y, both x ∧ y and x ∨ y should be in S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Complete lattice (S, \land, \lor)

For every pair of elements x and y, both x ∧ y and x ∨ y should be in S

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Example : Powerset lattice

Lattice

• Complete lattice (S, \land, \lor)

For every pair of elements x and y, both x ∧ y and x ∨ y should be in S

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Example : Powerset lattice
- We will talk about meet semi-lattices only

Lattice

- Complete lattice (S, \land, \lor)
 - For every pair of elements x and y, both x ∧ y and x ∨ y should be in S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Example : Powerset lattice
- We will talk about meet semi-lattices only
 - except for some proofs

- Graphical view of posets
- Elements = the nodes in the graph

- Graphical view of posets
- Elements = the nodes in the graph
- If x < y then x is depicted lower than y in the diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Graphical view of posets
- Elements = the nodes in the graph
- If x < y then x is depicted lower than y in the diagram
- An edge between x and y (x lower than y) implies x < y and no other element z exists s.t. x < z < y (i.e. transitivity is excluded)

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Lattice Diagram for $(\{a, b, c\}, \cap)$

Lattice Diagram for $(\{a, b, c\}, \cap)$

 $x \land y$ = the highest *z* for which there are paths downward from both *x* and *y*.

What if there is a large number of elements?

Combine simple lattices to build a complex one

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What if there is a large number of elements?

Combine simple lattices to build a complex one

Superset lattices for singletons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What if there is a large number of elements?

- Combine simple lattices to build a complex one
- Superset lattices for singletons

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Combine to form superset lattice for multi-element sets

• (S, \bigwedge) is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when

• (S, \bigwedge) is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when $S = S_1 \times S_2$ (domain)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

•
$$(S, \bigwedge)$$
 is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when
 $S = S_1 \times S_2$ (domain)
For (a_1, a_2) and $(b_1, b_2) \in S$

•
$$(S, \bigwedge)$$
 is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when
 $S = S_1 \times S_2$ (domain)
For (a_1, a_2) and $(b_1, b_2) \in S$
 $(a_1, a_2) \bigwedge (b_1, b_2) = (a_1 \bigwedge_1 b_1, a_2 \bigwedge_2 b_2)$

•
$$(S, \bigwedge)$$
 is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when
 $S = S_1 \times S_2$ (domain)
For (a_1, a_2) and $(b_1, b_2) \in S$
 $(a_1, a_2) \bigwedge (b_1, b_2) = (a_1 \bigwedge_1 b_1, a_2 \bigwedge_2 b_2)$
 $(a_1, a_2) \leq (b_1, b_2)$ iff $a_1 \leq 1 b_1$ and $a_2 \leq 2 b_2$

►
$$(S, \bigwedge)$$
 is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when
 $S = S_1 \times S_2$ (domain)
For (a_1, a_2) and $(b_1, b_2) \in S$
 $(a_1, a_2) \bigwedge (b_1, b_2) = (a_1 \bigwedge_1 b_1, a_2 \bigwedge_2 b_2)$
 $(a_1, a_2) \leq (b_1, b_2)$ iff $a_1 \leq 1 b_1$ and $a_2 \leq 2 b_2$
 \leq relation follows from \bigwedge

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

• (S, \bigwedge) is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when $S = S_1 \times S_2$ (domain) For (a_1, a_2) and $(b_1, b_2) \in S$ $(a_1, a_2) \land (b_1, b_2) = (a_1 \bigwedge_1 b_1, a_2 \bigwedge_2 b_2)$ $(a_1, a_2) \leq (b_1, b_2)$ iff $a_1 \leq b_1$ and $a_2 \leq b_2$ \leq relation follows from \bigwedge

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Product of lattices is associative
- Can be generalized to product of N > 2 lattices

► (S, \land) is product lattice of (S_1, \land_1) and (S_2, \land_2) when $S = S_1 \times S_2$ (domain) For (a_1, a_2) and $(b_1, b_2) \in S$ $(a_1, a_2) \land (b_1, b_2) = (a_1 \land_1 b_1, a_2 \land_2 b_2)$ $(a_1, a_2) \leq (b_1, b_2)$ iff $a_1 \leq_1 b_1$ and $a_2 \leq_2 b_2$ \leq relation follows from \land

- Product of lattices is associative
- Can be generalized to product of N > 2 lattices
- $(S_1, \bigwedge_1), (S_2, \bigwedge_2), \dots$ are called component lattices

Product Lattice: Example

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Product Lattice: Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Height of a Semilattice

• Length of a chain $x_1 \leq x_2 \leq \ldots \leq x_k$ is k

Height of a Semilattice

- Length of a chain $x_1 \leq x_2 \leq \ldots \leq x_k$ is k
- Let K = max over lengths of all the chains in a semilattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Height of a Semilattice

- Length of a chain $x_1 \leq x_2 \leq \ldots \leq x_k$ is k
- Let K = max over lengths of all the chains in a semilattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Height of the semilattice = K - 1

► (*D*, *S*, ∧, *F*)

► (*D*, *S*, **, *F*)

D: direction – Forward or Backward

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- \blacktriangleright (D, S, \bigwedge, F)
- D: direction Forward or Backward
- (S, \wedge) : Semilattice Domain and meet

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ► (*D*, *S*, ∧, *F*)
- D: direction Forward or Backward
- (S, Λ) : Semilattice Domain and meet
- F: family of transfer functions of type S → S (see next slide)

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

▶ *F*: family of functions $S \rightarrow S$. Must Include

- ▶ *F*: family of functions $S \rightarrow S$. Must Include
 - functions suitable for the boundary conditions (constant transfer functions for *Entry* and *Exit* nodes)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• *F*: family of functions $S \rightarrow S$. Must Include

- functions suitable for the boundary conditions (constant transfer functions for *Entry* and *Exit* nodes)
- Identity function I:

$$l(x) = x \quad \forall x \in S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• *F*: family of functions $S \rightarrow S$. Must Include

- functions suitable for the boundary conditions (constant transfer functions for *Entry* and *Exit* nodes)
- Identity function I:

$$l(x) = x \quad \forall x \in S$$

Closed under composition:

$$f,g\in F, f\circ g \Rightarrow h\in F$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Monotonic Functions

Monotonic Functions

- ► (S, ≤): a poset
- $f: S \rightarrow S$ is monotonic iff

$$\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)$$

Monotonic Functions

• $f: S \rightarrow S$ is monotonic iff

$$\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Composition preserves monotonicity

Monotonic Functions

- ► (S, ≤): a poset
- $f: S \rightarrow S$ is monotonic iff

$$\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)$$

Composition preserves monotonicity

• If f and g are monotonic, $h = f \circ g$, then h is also monotonic

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Monotone Frameworks

► (D, S, ∧, F) is monotone if the family F consists of monotonic functions only

$$f \in F$$
, $\forall x, y \in S$ $x \leq y \Rightarrow f(x) \leq f(y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Monotone Frameworks

► (D, S, ∧, F) is monotone if the family F consists of monotonic functions only

$$f \in F$$
, $\forall x, y \in S$ $x \leq y \Rightarrow f(x) \leq f(y)$

Equivalently

$$f \in F$$
, $\forall x, y \in S$ $f(x \land y) \leq f(x) \land f(y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Monotone Frameworks

► (D, S, ∧, F) is monotone if the family F consists of monotonic functions only

$$f \in F$$
, $\forall x, y \in S$ $x \leq y \Rightarrow f(x) \leq f(y)$

Equivalently

$$f \in F$$
, $\forall x, y \in S$ $f(x \bigwedge y) \le f(x) \bigwedge f(y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof? : QQ in class

Let *f* be a monotonic function on a complete lattice (S, ∧, ∨). Define

Then,

•
$$red(f) = \{v \mid v \in S, f(v) \le v\}$$
, pre fix-points

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then,

Then,

Let f be a monotonic function on a complete lattice (S, ∧, ∨). Define
red(f) = {v | v ∈ S, f(v) ≤ v}, pre fix-points
ext(f) = {v | v ∈ S, f(v) ≥ v}, post fix-points
fix(f) = {v | v ∈ S, f(v) = v}, fix-points
Then,

(日)

Let *f* be a monotonic function on a complete lattice (S, \bigwedge, \bigvee) . Define

- ► red(f) = { $v | v \in S, f(v) \le v$ }, pre fix-points • ovt(f) = { $v | v \in S, f(v) \ge v$ }, post fix-points
- $ext(f) = \{v \mid v \in S, f(v) \ge v\}$, post fix-points

• fix
$$(f) = \{v \mid v \in S, f(v) = v\}$$
, fix-points

Then,

•
$$\bigwedge$$
 red $(f) \in$ fix (f) . Further, \bigwedge red $(f) = \bigwedge$ fix (f)

(日)

Let *f* be a monotonic function on a complete lattice (S, ∧, ∨). Define

- ▶ $red(f) = \{v \mid v \in S, f(v) \le v\}$, pre fix-points
- $ext(f) = \{v \mid v \in S, f(v) \ge v\}$, post fix-points

• fix(
$$f$$
) = { $v | v \in S, f(v) = v$ }, fix-points

Then,

- \bigwedge red $(f) \in$ fix(f). Further, \bigwedge red $(f) = \bigwedge$ fix(f)
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\bigvee \operatorname{ext}(f) = \bigvee \operatorname{fix}(f)$

(日)

Let *f* be a monotonic function on a complete lattice (S, ∧, ∨). Define

- $red(f) = \{v \mid v \in S, f(v) \le v\}$, pre fix-points
- $ext(f) = \{v \mid v \in S, f(v) \ge v\}$, post fix-points

• fix
$$(f) = \{v \mid v \in S, f(v) = v\}$$
, fix-points

Then,

- \bigwedge red $(f) \in$ fix(f). Further, \bigwedge red $(f) = \bigwedge$ fix(f)
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\bigvee \operatorname{ext}(f) = \bigvee \operatorname{fix}(f)$

(日)

fix(f) is a complete lattice

• $f: S \rightarrow S$ is a **monotonic** function

- $f: S \rightarrow S$ is a **monotonic** function
- (S, Λ) is a finite height semilattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- $f: S \rightarrow S$ is a **monotonic** function
- (S, Λ) is a finite height semilattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▶ \top is the top element of (*S*, \land)

- $f: S \rightarrow S$ is a **monotonic** function
- (S, Λ) is a finite height semilattice
- ▶ \top is the top element of (S, Λ)

▶ Notation:
$$f^0(x) = x, f^{i+1}(x) = f(f^i(x)), \forall i \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- $f: S \rightarrow S$ is a **monotonic** function
- (S, Λ) is a finite height semilattice
- ▶ \top is the top element of (*S*, \land)
- ▶ Notation: $f^0(x) = x, f^{i+1}(x) = f(f^i(x)), \forall i \ge 0$
- The greatest fixed point of f is

$$f^{k}(\top)$$
, where $f^{k+1}(\top) = f^{k}(\top)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

// monotonic function f on a meet semilattice

// monotonic function f on a meet semilattice x := \top ;

// monotonic function f on a meet semilattice x := \top ; while (x \neq f(x)) x := f(x);

// monotonic function f on a meet semilattice x := \top ; while (x \neq f(x)) x := f(x); return x;

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙