CS738: Advanced Compiler Optimizations

Foundations of Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

- Intraprocedural Data Flow Analysis
- We looked at 4 classic examples
- Today: Mathematical foundations

Taxonomy of Dataflow Problems

- Categorized along several dimensions

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide
- the direction of flow

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide
- the direction of flow
- confluence operator

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by
- the operator used for confluence or divergence

Taxonomy of Dataflow Problems

- Categorized along several dimensions
- the information they are designed to provide
- the direction of flow
- confluence operator
- Four kinds of dataflow problems, distinguished by
- the operator used for confluence or divergence
- data flows backward or forward

Taxonomy of Dataflow Problems

Confluence \rightarrow Direction \downarrow
 Forward Backward

Taxonomy of Dataflow Problems

Confluence \rightarrow Direction \downarrow	\bigcup	\bigcap
Forward	R D	
Backward		

Taxonomy of Dataflow Problems

Confluence \rightarrow Direction \downarrow	\bigcup	\bigcap
Forward	R D	Av E
Backward		

Taxonomy of Dataflow Problems

\section*{Confluence \rightarrow Direction \downarrow
 Forward Backward
 | R D | Av E |
| :---: | :---: |
| $L V$ | |}

Taxonomy of Dataflow Problems

\section*{Confluence \rightarrow Direction \downarrow
 Forward Backward
 | R D | Av E |
| :---: | :---: |
| LV | VBE |}

Why Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values
- Bounded, Finite
- Suitable meet operator
- Suitable flow functions
- monotonic, closed under composition
- But what is SUITABLE ?

Lattice Theory

Partially Ordered Sets

- Posets

Partially Ordered Sets

- Posets
S : a set

Partially Ordered Sets

- Posets
S : a set
\leq : a relation

Partially Ordered Sets

- Posets
S : a set
\leq : a relation
(S, \leq) is a poset if for $x, y, z \in S$

Partially Ordered Sets

- Posets
S : a set
\leq : a relation
(S, \leq) is a poset if for $x, y, z \in S$
- $x \leq x$ (reflexive)

Partially Ordered Sets

- Posets
S : a set
\leq : a relation
(S, \leq) is a poset if for $x, y, z \in S$
- $x \leq x$ (reflexive)
- $x \leq y$ and $y \leq x \Rightarrow x=y$ (antisymmetric)

Partially Ordered Sets

- Posets
S : a set
\leq : a relation
(S, \leq) is a poset if for $x, y, z \in S$
- $x \leq x$ (reflexive)
- $x \leq y$ and $y \leq x \Rightarrow x=y$ (antisymmetric)
- $x \leq y$ and $y \leq z \Rightarrow x \leq z$ (transitive)

Chain

- Linear Ordering

Chain

- Linear Ordering
- Poset where every pair of elements is comparable

Chain

- Linear Ordering
- Poset where every pair of elements is comparable
- $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$ is a chain of length k

Chain

- Linear Ordering
- Poset where every pair of elements is comparable
- $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$ is a chain of length k
- We are interested in chains of finite length

Observation

- Any finite nonempty subset of a poset has minimal and maximal elements

Observation

- Any finite nonempty subset of a poset has minimal and maximal elements
- Any finite nonempty chain has unique minimum and maximum elements

Semilattice

- Set S and meet \wedge

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)
- $x \wedge y=y \bigwedge x$ (commutative)

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)
- $x \wedge y=y \wedge x$ (commutative)
- $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ (associative)

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)
- $x \wedge y=y \wedge x$ (commutative)
- $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ (associative)
- Partial order for semilattice

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)
- $x \wedge y=y \wedge x$ (commutative)
- $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ (associative)
- Partial order for semilattice
- $x \leq y$ if and only if $x \bigwedge y=x$

Semilattice

- Set S and meet \wedge
- $x, y, z \in S$
- $x \wedge x=x$ (idempotent)
- $x \wedge y=y \wedge x$ (commutative)
- $x \wedge(y \wedge z)=(x \wedge y) \wedge z$ (associative)
- Partial order for semilattice
- $x \leq y$ if and only if $x \wedge y=x$
- Reflexive, antisymmetric, transitive

Border Elements

- Top Element (T)

Border Elements

- Top Element (T)
- $\forall x \in S, x \wedge \top=\top \wedge x=x$

Border Elements

- Top Element (T)
- $\forall x \in S, x \wedge \top=\top \wedge x=x$
- (Optional) Bottom Element (\perp)

Border Elements

- Top Element (T)
- $\forall x \in S, x \wedge \top=\top \wedge x=x$
- (Optional) Bottom Element (\perp)
- $\forall x \in S, x \wedge \perp=\perp \bigwedge x=\perp$

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cap

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cap
- Partial Order is \subseteq

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cap
- Partial Order is \subseteq
- Top element is S

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cap
- Partial Order is \subseteq
- Top element is S
- Bottom element is \emptyset

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cup

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cup
- Partial Order is \supseteq

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cup
- Partial Order is \supseteq
- Top element is \emptyset

Familiar (Semi)Lattices

- Powerset for a set $S, 2^{S}$
- Meet \wedge is \cup
- Partial Order is \supseteq
- Top element is \emptyset
- Bottom element is S

Greatest Lower Bound (glb)

- $x, y, z \in S$

Greatest Lower Bound (glb)

- $x, y, z \in S$
- glb of x and y is an element g such that

Greatest Lower Bound (glb)

- $x, y, z \in S$
- glb of x and y is an element g such that
- $g \leq x$

Greatest Lower Bound (glb)

- $x, y, z \in S$
- glb of x and y is an element g such that
- $g \leq x$
- $g \leq y$

Greatest Lower Bound (glb)

- $x, y, z \in S$
- glb of x and y is an element g such that
- $g \leq x$
- $g \leq y$
- if $z \leq x$ and $z \leq y$ then $z \leq g$

QQ

- $x, y \in S$

QQ

- $x, y \in S$
- (S, \wedge) is a semilattice

QQ

- $x, y \in S$
- (S, \wedge) is a semilattice
- Prove that $x \wedge y$ is glb of x and y.

Semi(?)-Lattice

- We can define symmetric concepts

Semi(?)-Lattice

- We can define symmetric concepts
- \geq order

Semi(?)-Lattice

- We can define symmetric concepts
- \geq order
- Join operation (V)

Semi(?)-Lattice

- We can define symmetric concepts
- \geq order
- Join operation (V)
- Least upper bound (lub)

Lattice

- (S, \wedge, \bigvee) is a lattice

Lattice

- (S, \bigwedge, \bigvee) is a lattice iff for each non-empty finite subset Y of S

Lattice

- (S, \bigwedge, \bigvee) is a lattice iff for each non-empty finite subset Y of S both $\wedge Y$ and $\bigvee Y$ are in S.

Lattice

- (S, \bigwedge, \bigvee) is a lattice iff for each non-empty finite subset Y of S both $\wedge Y$ and $\bigvee Y$ are in S.
- (S, \wedge, \bigvee) is a complete lattice

Lattice

- (S, \wedge, \bigvee) is a lattice iff for each non-empty finite subset Y of S both $\wedge Y$ and $\bigvee Y$ are in S.
- (S, \wedge, \bigvee) is a complete lattice iff for each subset Y of S

Lattice

- (S, \bigwedge, \bigvee) is a lattice iff for each non-empty finite subset Y of S both $\wedge Y$ and $\bigvee Y$ are in S.
- (S, \wedge, \bigvee) is a complete lattice iff for each subset Y of S both $\wedge Y$ and $\bigvee Y$ are in S.

Lattice

- Complete lattice (S, \wedge, \vee)

Lattice

- Complete lattice (S, \wedge, \bigvee)
- For every pair of elements x and y, both $x \bigwedge y$ and $x \bigvee y$ should be in S

Lattice

- Complete lattice (S, \wedge, \bigvee)
- For every pair of elements x and y, both $x \bigwedge y$ and $x \bigvee y$ should be in S
- Example : Powerset lattice

Lattice

- Complete lattice (S, \wedge, \vee)
- For every pair of elements x and y, both $x \bigwedge y$ and $x \bigvee y$ should be in S
- Example : Powerset lattice
- We will talk about meet semi-lattices only

Lattice

- Complete lattice (S, \wedge, \vee)
- For every pair of elements x and y, both $x \wedge y$ and $x \bigvee y$ should be in S
- Example : Powerset lattice
- We will talk about meet semi-lattices only
- except for some proofs

Lattice Diagram

- Graphical view of posets

Lattice Diagram

- Graphical view of posets
- Elements = the nodes in the graph

Lattice Diagram

- Graphical view of posets
- Elements $=$ the nodes in the graph
- If $x<y$ then x is depicted lower than y in the diagram

Lattice Diagram

- Graphical view of posets
- Elements = the nodes in the graph
- If $x<y$ then x is depicted lower than y in the diagram
- An edge between x and y (x lower than y) implies $x<y$ and no other element z exists s.t. $x<z<y$ (i.e. transitivity is excluded)

Lattice Diagram

Lattice Diagram for $(\{a, b, c\}, \cap)$

Lattice Diagram

Lattice Diagram for $(\{a, b, c\}, \cap)$
$x \bigwedge y=$ the highest z for which there are paths downward from both x and y.

What if there is a large number of elements?

- Combine simple lattices to build a complex one

What if there is a large number of elements?

- Combine simple lattices to build a complex one
- Superset lattices for singletons

What if there is a large number of elements?

- Combine simple lattices to build a complex one
- Superset lattices for singletons

- Combine to form superset lattice for multi-element sets

Product Lattice

- (S, \wedge) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when

Product Lattice

- (S, Λ) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain)

Product Lattice

- (S, Λ) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$

Product Lattice

- (S, \wedge) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$

$$
\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \Lambda_{1} b_{1}, a_{2} \bigwedge_{2} b_{2}\right)
$$

Product Lattice

- (S, \wedge) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$
$\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \wedge_{1} b_{1}, a_{2} \bigwedge_{2} b_{2}\right)$
$\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)$ iff $a_{1} \leq 1 b_{1}$ and $a_{2} \leq b_{2}$

Product Lattice

- (S, \wedge) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$
$\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \wedge_{1} b_{1}, a_{2} \bigwedge_{2} b_{2}\right)$
$\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)$ iff $a_{1} \leq 1 b_{1}$ and $a_{2} \leq_{2} b_{2}$
\leq relation follows from \wedge

Product Lattice

- (S, \wedge) is product lattice of $\left(S_{1}, \bigwedge_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$
$\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \wedge_{1} b_{1}, a_{2} \bigwedge_{2} b_{2}\right)$
$\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)$ iff $a_{1} \leq_{1} b_{1}$ and $a_{2} \leq_{2} b_{2}$
\leq relation follows from \wedge
- Product of lattices is associative

Product Lattice

- (S, Λ) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$
$\left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \wedge_{1} b_{1}, a_{2} \bigwedge_{2} b_{2}\right)$ $\left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right)$ iff $a_{1} \leq 1 b_{1}$ and $a_{2} \leq 2 b_{2}$
\leq relation follows from \wedge
- Product of lattices is associative
- Can be generalized to product of $N>2$ lattices

Product Lattice

- (S, Λ) is product lattice of $\left(S_{1}, \Lambda_{1}\right)$ and $\left(S_{2}, \Lambda_{2}\right)$ when $S=S_{1} \times S_{2}$ (domain) For $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b 2\right) \in S$

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right) \wedge\left(b_{1}, b_{2}\right)=\left(a_{1} \wedge_{1} b_{1}, a_{2} \wedge_{2} b_{2}\right) \\
& \left(a_{1}, a_{2}\right) \leq\left(b_{1}, b_{2}\right) \text { iff } a_{1} \leq_{1} b_{1} \text { and } a_{2} \leq_{2} b_{2}
\end{aligned}
$$

\leq relation follows from \wedge

- Product of lattices is associative
- Can be generalized to product of $N>2$ lattices
- $\left(S_{1}, \bigwedge_{1}\right),\left(S_{2}, \bigwedge_{2}\right), \ldots$ are called component lattices

Product Lattice: Example

Product Lattice: Example

Height of a Semilattice

- Length of a chain $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$ is k

Height of a Semilattice

- Length of a chain $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$ is k
- Let $K=$ max over lengths of all the chains in a semilattice

Height of a Semilattice

- Length of a chain $x_{1} \leq x_{2} \leq \ldots \leq x_{k}$ is k
- Let $K=$ max over lengths of all the chains in a semilattice
- Height of the semilattice $=K-1$

Data Flow Analysis Framework

- (D, S, \wedge, F)

Data Flow Analysis Framework

- (D, S, \wedge, F)
- D: direction - Forward or Backward

Data Flow Analysis Framework

- (D, S, \wedge, F)
- D: direction - Forward or Backward
- (S, \wedge) : Semilattice - Domain and meet

Data Flow Analysis Framework

- (D, S, \wedge, F)
- D: direction - Forward or Backward
- (S, Λ) : Semilattice - Domain and meet
- F: family of transfer functions of type $S \rightarrow S$ (see next slide)

Transfer Functions

- F: family of functions $S \rightarrow S$. Must Include

Transfer Functions

- F: family of functions $S \rightarrow$ S. Must Include
- functions suitable for the boundary conditions (constant transfer functions for Entry and Exit nodes)

Transfer Functions

- F: family of functions $S \rightarrow$ S. Must Include
- functions suitable for the boundary conditions (constant transfer functions for Entry and Exit nodes)
- Identity function I :

$$
I(x)=x \quad \forall x \in S
$$

Transfer Functions

- F: family of functions $S \rightarrow S$. Must Include
- functions suitable for the boundary conditions (constant transfer functions for Entry and Exit nodes)
- Identity function I :

$$
I(x)=x \quad \forall x \in S
$$

- Closed under composition:

$$
f, g \in F, \quad f \circ g \Rightarrow h \in F
$$

Monotonic Functions

- (S, \leq) : a poset

Monotonic Functions

- (S, \leq) : a poset
- $f: S \rightarrow S$ is monotonic iff

$$
\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

Monotonic Functions

- (S, \leq) : a poset
- $f: S \rightarrow S$ is monotonic iff

$$
\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

- Composition preserves monotonicity

Monotonic Functions

- (S, \leq) : a poset
- $f: S \rightarrow S$ is monotonic iff

$$
\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

- Composition preserves monotonicity
- If f and g are monotonic, $h=f \circ g$, then h is also monotonic

Monotone Frameworks

- (D, S, \bigwedge, F) is monotone if the family F consists of monotonic functions only

$$
f \in F, \quad \forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

Monotone Frameworks

- (D, S, \bigwedge, F) is monotone if the family F consists of monotonic functions only

$$
f \in F, \quad \forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

- Equivalently

$$
f \in F, \quad \forall x, y \in S \quad f(x \bigwedge y) \leq f(x) \bigwedge f(y)
$$

Monotone Frameworks

- (D, S, \bigwedge, F) is monotone if the family F consists of monotonic functions only

$$
f \in F, \quad \forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)
$$

- Equivalently

$$
f \in F, \quad \forall x, y \in S \quad f(x \bigwedge y) \leq f(x) \bigwedge f(y)
$$

- Proof? : QQ in class

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, \wedge, \bigvee). Define

Then,

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- $\operatorname{red}(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points

Then,

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- $\operatorname{red}(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points

Then,

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- red $(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points
- $\operatorname{fix}(f)=\{v \mid v \in S, f(v)=v\}$, fix-points

Then,

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- red $(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points
- $\mathrm{fix}(f)=\{v \mid v \in S, f(v)=v\}$, fix-points

Then,

- $\wedge \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\wedge \operatorname{red}(f)=\bigwedge \operatorname{fix}(f)$

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- red $(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points
- $\mathrm{fix}(f)=\{v \mid v \in S, f(v)=v\}$, fix-points

Then,

- $\wedge \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\wedge \operatorname{red}(f)=\bigwedge \operatorname{fix}(f)$
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further,, $\operatorname{ext}(f)=\bigvee$ fix (f)

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, Λ, \bigvee). Define
- red $(f)=\{v \mid v \in S, f(v) \leq v\}$, pre fix-points
- $\operatorname{ext}(f)=\{v \mid v \in S, f(v) \geq v\}$, post fix-points
- $\operatorname{fix}(f)=\{v \mid v \in S, f(v)=v\}$, fix-points

Then,

- $\wedge \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\wedge \operatorname{red}(f)=\bigwedge \operatorname{fix}(f)$
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\bigvee \operatorname{ext}(f)=\bigvee \operatorname{fix}(f)$
- fix (f) is a complete lattice

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function
- (S, \wedge) is a finite height semilattice

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function
- (S, \wedge) is a finite height semilattice
- T is the top element of (S, Λ)

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function
- (S, \wedge) is a finite height semilattice
- T is the top element of (S, \wedge)
- Notation: $f^{0}(x)=x, f^{i+1}(x)=f\left(f^{i}(x)\right), \forall i \geq 0$

Application of Fixed Point Theorem

- $f: S \rightarrow S$ is a monotonic function
- (S, \wedge) is a finite height semilattice
- T is the top element of (S, Λ)
- Notation: $f^{0}(x)=x, f^{i+1}(x)=f\left(f^{i}(x)\right), \forall i \geq 0$
- The greatest fixed point of f is

$$
f^{k}(\top), \text { where } f^{k+1}(\top)=f^{k}(\top)
$$

Fixed Point Algorithm

// monotonic function f on a meet semilattice

Fixed Point Algorithm

// monotonic function f on a meet semilattice $\mathrm{x}:=\mathrm{T}$;

Fixed Point Algorithm

// monotonic function f on a meet semilattice x : = T;
while (x $\neq \mathrm{f}(\mathrm{x})) \mathrm{x}:=\mathrm{f}(\mathrm{x})$;

Fixed Point Algorithm

// monotonic function f on a meet semilattice x : = T;
while (x $\neq \mathrm{f}(\mathrm{x})) \mathrm{x}:=\mathrm{f}(\mathrm{x})$;
return x;

