
CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738


Agenda

◮ Intraprocedural Data Flow Analysis: Classical Examples



Agenda

◮ Intraprocedural Data Flow Analysis: Classical Examples
◮ Last lecture: Reaching Definitions



Agenda

◮ Intraprocedural Data Flow Analysis: Classical Examples
◮ Last lecture: Reaching Definitions
◮ Today: Available Expressions



Agenda

◮ Intraprocedural Data Flow Analysis: Classical Examples
◮ Last lecture: Reaching Definitions
◮ Today: Available Expressions
◮ Discussion about the similarities/differences



Available Expressions Analysis

◮ An expression e is available at a point p if



Available Expressions Analysis

◮ An expression e is available at a point p if
◮ Every path from the Entry to p has at least one evaluation

of e



Available Expressions Analysis

◮ An expression e is available at a point p if
◮ Every path from the Entry to p has at least one evaluation

of e
◮ There is no assignment to any component variable of e

after the last evaluation of e prior to p



Available Expressions Analysis

◮ An expression e is available at a point p if
◮ Every path from the Entry to p has at least one evaluation

of e
◮ There is no assignment to any component variable of e

after the last evaluation of e prior to p

◮ Expression e is generated by its evaluation



Available Expressions Analysis

◮ An expression e is available at a point p if
◮ Every path from the Entry to p has at least one evaluation

of e
◮ There is no assignment to any component variable of e

after the last evaluation of e prior to p

◮ Expression e is generated by its evaluation

◮ Expression e is killed by assignment to its component

variables



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) =



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {y + z}



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {y + z}

KILL(s1) =



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {y + z}

KILL(s1) = Ex

where Ex : set of all expression having x as a component



AvE Analysis of a Structured Program

d : x = y + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {y + z}

KILL(s1) = Ex

where Ex : set of all expression having x as a component

This may not work in general – WHY?



AvE Analysis of a Structured Program

x = x + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {x + z}

KILL(s1) = Ex

Incorrectly marks x + z as available after s1



AvE Analysis of a Structured Program

x = x + z s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {x + z}

KILL(s1) = Ex

Incorrectly marks x + z as available after s1

GEN(s1) = ∅ for this case



AvE Analysis of a Structured Program

lhs = rhs s1

IN(s1)

OUT(s1)

OUT(s1) = IN(s1)− KILL(s1) ∪ GEN(s1)

GEN(s1) = {rhs | lhs is not part of rhs}

KILL(s1) = Elhs



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) =



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) =



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) =



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) =



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) = OUT(s1)



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) = OUT(s1)

OUT(S) =



AvE Analysis of a Structured Program

s1

s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)− KILL(s2) ∪ GEN(s2)

KILL(S) = KILL(s1)− GEN(s2) ∪ KILL(s2)

IN(s1) = IN(S)

IN(s2) = OUT(s1)

OUT(S) = OUT(s2)



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) =



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) =



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)

IN(s1) =



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)

IN(s1) = IN(s2) = IN(S)



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)

IN(s1) = IN(s2) = IN(S)

OUT(S) =



AvE Analysis of a Structured Program

s1 s2

S

IN(S)

OUT(S)

GEN(S) = GEN(s1) ∩ GEN(s2)

KILL(S) = KILL(s1) ∪ KILL(s2)

IN(s1) = IN(s2) = IN(S)

OUT(S) = OUT(s1) ∩ OUT(s2)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) =



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) =



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) =



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)

IN(s1) =



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)

IN(s1) = IN(S) ∩ GEN(s1)



AvE Analysis of a Structured Program

s1

S

IN(S)

OUT(S)

GEN(S) = GEN(s1)

KILL(S) = KILL(s1)

OUT(S) = OUT(s1)

IN(s1) = IN(S) ∩ GEN(s1) ?

IN(s1) = IN(S) ∩ OUT(s1)??



AvE Analysis of a Structured Program

s1 : nop

S

IN(S) = {x + y}

OUT(S) =?



AvE Analysis of a Structured Program

s1 : nop

S

IN(S) = {x + y}

OUT(S) =?

Is x + y available at OUT(S)?



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Assumption: All paths are feasible.



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Assumption: All paths are feasible.

◮ Example:

if (true) s1;

else s2;



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Assumption: All paths are feasible.

◮ Example:

if (true) s1;

else s2;



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Assumption: All paths are feasible.

◮ Example:

if (true) s1;

else s2;

Fact Computed Actual

GEN(S) = GEN(s1) ∩ GEN(s2) ⊆ GEN(s1)



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Assumption: All paths are feasible.

◮ Example:

if (true) s1;

else s2;

Fact Computed Actual

GEN(S) = GEN(s1) ∩ GEN(s2) ⊆ GEN(s1)
KILL(S) = KILL(s1) ∪ KILL(s2) ⊇ KILL(s1)



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)

◮ Fewer expressions marked available than actually do!



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)

◮ Fewer expressions marked available than actually do!

◮ Later we shall see that this is SAFE approximation



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)

◮ Fewer expressions marked available than actually do!

◮ Later we shall see that this is SAFE approximation
◮ prevents optimizations



AvE Analysis is Approximate

s1 s2

S

IN(S)

OUT(S)

◮ Thus,

true GEN(S) ⊇ analysis GEN(S)
true KILL(S) ⊆ analysis KILL(S)

◮ Fewer expressions marked available than actually do!

◮ Later we shall see that this is SAFE approximation
◮ prevents optimizations
◮ but NO wrong optimization



AvE for Basic Blocks

◮ Expr e is available at the start of a block if

IN(B) =
⋂

P∈PRED(B)

OUT(P)



AvE for Basic Blocks

◮ Expr e is available at the start of a block if
◮ It is available at the end of all predecessors

IN(B) =
⋂

P∈PRED(B)

OUT(P)



AvE for Basic Blocks

◮ Expr e is available at the start of a block if
◮ It is available at the end of all predecessors

IN(B) =
⋂

P∈PRED(B)

OUT(P)

◮ Expr e is available at the end of a block if

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)



AvE for Basic Blocks

◮ Expr e is available at the start of a block if
◮ It is available at the end of all predecessors

IN(B) =
⋂

P∈PRED(B)

OUT(P)

◮ Expr e is available at the end of a block if
◮ Either it is generated by the block

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)



AvE for Basic Blocks

◮ Expr e is available at the start of a block if
◮ It is available at the end of all predecessors

IN(B) =
⋂

P∈PRED(B)

OUT(P)

◮ Expr e is available at the end of a block if
◮ Either it is generated by the block
◮ Or it is available at the start of the block and not killed by

the block

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)



Solving AvE Constraints

◮ KILL & GEN known for each BB.



Solving AvE Constraints

◮ KILL & GEN known for each BB.

◮ A program with N BBs has 2N equations with 2N
unknowns.



Solving AvE Constraints

◮ KILL & GEN known for each BB.

◮ A program with N BBs has 2N equations with 2N
unknowns.
◮ Solution is possible.



Solving AvE Constraints

◮ KILL & GEN known for each BB.

◮ A program with N BBs has 2N equations with 2N
unknowns.
◮ Solution is possible.
◮ Iterative approach (on the next slide).



for each block B {



for each block B {

OUT(B) = U ; U = “universal” set of all exprs



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?

change = true;

while (change) {

change = false;



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?

change = true;

while (change) {

change = false;

for each block B other than Entry {



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?

change = true;

while (change) {

change = false;

for each block B other than Entry {

IN(B) =
⋂

P∈PRED(B) OUT(P);



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?

change = true;

while (change) {

change = false;

for each block B other than Entry {

IN(B) =
⋂

P∈PRED(B) OUT(P);

oldOut = OUT(B);
OUT(B) = IN(B)− KILL(B) ∪ GEN(B);



for each block B {

OUT(B) = U ; U = “universal” set of all exprs

}

OUT(Entry) = ∅; // remember reaching defs?

change = true;

while (change) {

change = false;

for each block B other than Entry {

IN(B) =
⋂

P∈PRED(B) OUT(P);

oldOut = OUT(B);
OUT(B) = IN(B)− KILL(B) ∪ GEN(B);
if (OUT(B) 6=oldOut) then {

change = true;

}

}

}



Some Issues

◮ What is U – the set of all expressions?



Some Issues

◮ What is U – the set of all expressions?

◮ How to compute it efficiently?



Some Issues

◮ What is U – the set of all expressions?

◮ How to compute it efficiently?

◮ Why Entry block is initialized differently?



Available Expressions: Example



Available Expressions: Example

BB GEN KILL

B1

B2

B3

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d}

B2

B3

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2

B3

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d}

B3

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d} {a*b}

B3

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d} {a*b}

B3 {a*b}

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d} {a*b}

B3 {a*b} {}

B4

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d} {a*b}

B3 {a*b} {}

B4 {a*b}

U= {a*b, c+d}



Available Expressions: Example

BB GEN KILL

B1 {a*b, c+d} { }

B2 {c+d} {a*b}

B3 {a*b} {}

B4 {a*b} {c+d}

U= {a*b, c+d}



Available Expressions: Example

Pass# Pt B1 B2 B3 B4

Init IN - - - -
OUT U U U U



Available Expressions: Example

Pass# Pt B1 B2 B3 B4

Init IN - - - -
OUT U U U U

1 IN ∅ a*b,
c+d

c+d c+d

OUT a*b,
c+d

c+d a*b,
c+d

a*b



Available Expressions: Example

Pass# Pt B1 B2 B3 B4

Init IN - - - -
OUT U U U U

1 IN ∅ a*b,
c+d

c+d c+d

OUT a*b,
c+d

c+d a*b,
c+d

a*b

2 IN ∅ a*b c+d c+d
OUT a*b,

c+d
c+d a*b,

c+d
a*b



Available Expressions: Example

Pass# Pt B1 B2 B3 B4

Init IN - - - -
OUT U U U U

1 IN ∅ a*b,
c+d

c+d c+d

OUT a*b,
c+d

c+d a*b,
c+d

a*b

2 IN ∅ a*b c+d c+d
OUT a*b,

c+d
c+d a*b,

c+d
a*b

3 IN ∅ a*b c+d c+d
OUT a*b,

c+d
c+d a*b,

c+d
a*b



Available Expressions: Bitvectors

a bit for each expression:
a*b c+d



Available Expressions: Bitvectors

a bit for each expression:
a*b c+d

Pass# Pt B1 B2 B3 B4

Init IN - - - -
OUT 11 11 11 11

1 IN 00 11 01 01
OUT 11 01 11 10

2 IN 00 10 01 01
OUT 11 01 11 10

3 IN 00 10 01 01
OUT 11 01 11 10



Available Expressions: Bitvectors

◮ Set-theoretic definitions:

IN(B) =
⋂

P∈PRED(B)

OUT(P)

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)



Available Expressions: Bitvectors

◮ Set-theoretic definitions:

IN(B) =
⋂

P∈PRED(B)

OUT(P)

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

IN(B) =
∧

P∈PRED(B)

OUT(P)

OUT(B) = IN(B) ∧ ¬KILL(B) ∨ GEN(B)



Available Expressions: Bitvectors

◮ Set-theoretic definitions:

IN(B) =
⋂

P∈PRED(B)

OUT(P)

OUT(B) = IN(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

IN(B) =
∧

P∈PRED(B)

OUT(P)

OUT(B) = IN(B) ∧ ¬KILL(B) ∨ GEN(B)

◮ Bitwise ∨,∧,¬ operators



Available Expressions: Application

◮ Common subexpression elimination in a block B



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B
◮ e is also computed at a point p in B



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B
◮ e is also computed at a point p in B
◮ Components of e are not modified from entry of B to p



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B
◮ e is also computed at a point p in B
◮ Components of e are not modified from entry of B to p

◮ e is “upward exposed” in B



Available Expressions: Application

◮ Common subexpression elimination in a block B
◮ Expression e available at the entry of B
◮ e is also computed at a point p in B
◮ Components of e are not modified from entry of B to p

◮ e is “upward exposed” in B

◮ Expressions generated in B are “downward exposed”



Comparison of RD and AvE

◮ Some vs. All path property



Comparison of RD and AvE

◮ Some vs. All path property

◮ Meet operator: ∪ vs. ∩



Comparison of RD and AvE

◮ Some vs. All path property

◮ Meet operator: ∪ vs. ∩

◮ Initialization of Entry: ∅



Comparison of RD and AvE

◮ Some vs. All path property

◮ Meet operator: ∪ vs. ∩

◮ Initialization of Entry: ∅

◮ Initialization of other BBs: ∅ vs. U



Comparison of RD and AvE

◮ Some vs. All path property

◮ Meet operator: ∪ vs. ∩

◮ Initialization of Entry: ∅

◮ Initialization of other BBs: ∅ vs. U

◮ Safety: “More” RD vs. “Fewer” AvE



AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry



AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry

◮ Would we find “extra” available expressions?



AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry

◮ Would we find “extra” available expressions?
◮ More opportunity to optimize?



AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry

◮ Would we find “extra” available expressions?
◮ More opportunity to optimize?

◮ OR would we miss some expressions that are available?



AvE: alternate Initialization

◮ What if we Initialize:

OUT(B) = ∅, ∀B including Entry

◮ Would we find “extra” available expressions?
◮ More opportunity to optimize?

◮ OR would we miss some expressions that are available?
◮ Loose on opportunity to optimize?



Live Variables

◮ A variable x is live at a point p if



Live Variables

◮ A variable x is live at a point p if
◮ There is a point p′ along some path in the flow graph

starting at p to the Exit



Live Variables

◮ A variable x is live at a point p if
◮ There is a point p′ along some path in the flow graph

starting at p to the Exit
◮ Value of x could be used at p′



Live Variables

◮ A variable x is live at a point p if
◮ There is a point p′ along some path in the flow graph

starting at p to the Exit
◮ Value of x could be used at p′

◮ There is no definition of x between p and p′ along this path



Live Variables

◮ A variable x is live at a point p if
◮ There is a point p′ along some path in the flow graph

starting at p to the Exit
◮ Value of x could be used at p′

◮ There is no definition of x between p and p′ along this path

◮ Otherwise x is dead at p



Live Variables: GEN

◮ GEN(B): Set of variables whose values may be used in
block B prior to any definition
◮ Also called “use(B)”

◮ “upward exposed use” of a variable in B



Live Variables: KILL

◮ KILL(B): Set of variables defined in block B prior to any
use
◮ Also called “def(B)”

◮ “upward exposed definition” of a variable in B



Live Variables: Equations

◮ Set-theoretic definitions:

OUT(B) =
⋃

S∈SUCC(B)

IN(S)

IN(B) = OUT(B)− KILL(B) ∪ GEN(B)



Live Variables: Equations

◮ Set-theoretic definitions:

OUT(B) =
⋃

S∈SUCC(B)

IN(S)

IN(B) = OUT(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

OUT(B) =
∨

S∈SUCC(B)

OUT(S)

IN(B) = OUT(B) ∧ ¬KILL(B) ∨ GEN(B)



Live Variables: Equations

◮ Set-theoretic definitions:

OUT(B) =
⋃

S∈SUCC(B)

IN(S)

IN(B) = OUT(B)− KILL(B) ∪ GEN(B)

◮ Bitvector definitions:

OUT(B) =
∨

S∈SUCC(B)

OUT(S)

IN(B) = OUT(B) ∧ ¬KILL(B) ∨ GEN(B)

◮ Bitwise ∨,∧,¬ operators



Very Busy Expressions

◮ Expression e is very busy at a point p if



Very Busy Expressions

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e



Very Busy Expressions

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e
◮ On every path, there is no assignment to any component

variable of e before the first evaluation of e following p



Very Busy Expressions

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e
◮ On every path, there is no assignment to any component

variable of e before the first evaluation of e following p

◮ Also called Anticipable expression



QQ

◮ Expression e is very busy at a point p if
◮ Every path from p to Exit has at least one evaluation of e

and there is no assignment to any component variable of e

before the first evaluation of e following p on these paths.

◮ Set up the data flow equations for Very Busy Expressions

(VBE). You have to give equations for GEN, KILL, IN, and

OUT.

◮ Think of an optimization/transformation that uses VBE

analysis. Briefly describe it (2-3 lines only)

◮ Will your optimization be safe if we replace “Every” by

“Some” in the definition of VBE?


