CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

- Intraprocedural Data Flow Analysis: Classical Examples

Agenda

- Intraprocedural Data Flow Analysis: Classical Examples
- Last lecture: Reaching Definitions

Agenda

- Intraprocedural Data Flow Analysis: Classical Examples
- Last lecture: Reaching Definitions
- Today: Available Expressions

Agenda

- Intraprocedural Data Flow Analysis: Classical Examples
- Last lecture: Reaching Definitions
- Today: Available Expressions
- Discussion about the similarities/differences

Available Expressions Analysis

- An expression e is available at a point p if

Available Expressions Analysis

- An expression e is available at a point p if
- Every path from the Entry to p has at least one evaluation of e

Available Expressions Analysis

- An expression e is available at a point p if
- Every path from the Entry to p has at least one evaluation of e
- There is no assignment to any component variable of e after the last evaluation of e prior to p

Available Expressions Analysis

- An expression e is available at a point p if
- Every path from the Entry to p has at least one evaluation of e
- There is no assignment to any component variable of e after the last evaluation of e prior to p
- Expression e is generated by its evaluation

Available Expressions Analysis

- An expression e is available at a point p if
- Every path from the Entry to p has at least one evaluation of e
- There is no assignment to any component variable of e after the last evaluation of e prior to p
- Expression e is generated by its evaluation
- Expression e is killed by assignment to its component variables

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$

AvE Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=$

AvE Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{y+z\}$

AvE Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{y+z\}$
$\operatorname{KILL}\left(s_{1}\right)=$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{OUT}\left(s_{1}\right) & =\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right) \\
\operatorname{GEN}\left(s_{1}\right) & =\{y+z\} \\
\operatorname{KILL}\left(s_{1}\right) & =E_{x}
\end{aligned}
$$

where E_{x} : set of all expression having x as a component

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{OUT}\left(s_{1}\right) & =\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right) \\
\operatorname{GEN}\left(s_{1}\right) & =\{y+z\} \\
\operatorname{KILL}\left(s_{1}\right) & =E_{x}
\end{aligned}
$$

where E_{x} : set of all expression having x as a component This may not work in general - WHY?

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=$ \{rhs \mid Ihs is not part of rhs $\}$
$\operatorname{KILL}\left(s_{1}\right)=E_{\mathrm{lhs}}$

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$ $\operatorname{KILL}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$

AvE Analysis of a Structured Program

$\begin{aligned} \operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\ \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\end{aligned}$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S)
\end{aligned}
$$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \\
\operatorname{IN}\left(s_{2}\right) & =
\end{aligned}
$$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \\
\operatorname{IN}\left(s_{2}\right) & =\operatorname{OUT}\left(s_{1}\right)
\end{aligned}
$$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}(S)$
$\operatorname{IN}\left(s_{2}\right)=\operatorname{OUT}\left(s_{1}\right)$
$\operatorname{OUT}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}(S)$
$\operatorname{IN}\left(s_{2}\right)=\operatorname{OUT}\left(s_{1}\right)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{2}\right)$

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\begin{aligned} \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)\end{aligned}$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)$
$\operatorname{OUT}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{1}\right) \cap \operatorname{OUT}\left(s_{2}\right)$

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$
OUT(S) =

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{1}\right)$

AvE Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{1}\right)$
$\operatorname{IN}\left(s_{1}\right)=$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right) \\
\operatorname{OUT}(S) & =\operatorname{OUT}\left(s_{1}\right) \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \cap \operatorname{GEN}\left(s_{1}\right)
\end{aligned}
$$

AvE Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right) \\
\operatorname{OUT}(S) & =\operatorname{OUT}\left(s_{1}\right) \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \cap \operatorname{GEN}\left(s_{1}\right) ? \\
\operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \cap \operatorname{OUT}\left(s_{1}\right) ? ?
\end{aligned}
$$

AvE Analysis of a Structured Program

AvE Analysis of a Structured Program

Is $\mathrm{x}+\mathrm{y}$ available at $\operatorname{OUT}(S)$?

AvE Analysis is Approximate

- Assumption: All paths are feasible.

AvE Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


AvE Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


AvE Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

Fact Computed
Actual
$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right) \subseteq \operatorname{GEN}\left(s_{1}\right)$

AvE Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

Fact		Computed	Actual
$\operatorname{GEN}(S)$	$=\operatorname{GEN}\left(s_{1}\right) \cap \operatorname{GEN}\left(s_{2}\right)$	\subseteq	$\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)$	$=\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{KILL}\left(s_{2}\right)$	\supseteq	$\operatorname{KILL}\left(s_{1}\right)$

AvE Analysis is Approximate

- Thus,

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$ true $\operatorname{KILL}(S) \subseteq$ analysis $\operatorname{KILL}(S)$

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \subseteq$ analysis $\operatorname{KILL}(S)$
- Fewer expressions marked available than actually do!

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \subseteq$ analysis $\operatorname{KILL}(S)$
- Fewer expressions marked available than actually do!
- Later we shall see that this is SAFE approximation

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \subseteq$ analysis $\operatorname{KILL}(S)$
- Fewer expressions marked available than actually do!
- Later we shall see that this is SAFE approximation
- prevents optimizations

AvE Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \supseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \subseteq$ analysis $\operatorname{KILL}(S)$
- Fewer expressions marked available than actually do!
- Later we shall see that this is SAFE approximation
- prevents optimizations
- but NO wrong optimization

AvE for Basic Blocks

- Expr e is available at the start of a block if

$$
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

AvE for Basic Blocks

- Expr e is available at the start of a block if
- It is available at the end of all predecessors

$$
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

AvE for Basic Blocks

- Expr e is available at the start of a block if
- It is available at the end of all predecessors

$$
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- Expr e is available at the end of a block if

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

AvE for Basic Blocks

- Expr e is available at the start of a block if
- It is available at the end of all predecessors

$$
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- Expr e is available at the end of a block if
- Either it is generated by the block

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

AvE for Basic Blocks

- Expr e is available at the start of a block if
- It is available at the end of all predecessors

$$
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- Expr e is available at the end of a block if
- Either it is generated by the block
- Or it is available at the start of the block and not killed by the block

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

Solving AvE Constraints

- KILL \& GEN known for each BB.

Solving AvE Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.

Solving AvE Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.
- Solution is possible.

Solving AvE Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.
- Solution is possible.
- Iterative approach (on the next slide).
for each block B \{
for each block B \{
$\operatorname{OUT}(B)=\mathcal{U} ; \mathcal{U}=$ "universal" set of all exprs
for each block B \{
$\operatorname{OUT}(B)=\mathcal{U} ; \mathcal{U}=$ "universal" set of all exprs \}
OUT $($ Entry $)=\emptyset ; ~ / / ~ r e m e m b e r ~ r e a c h i n g ~ d e f s ? ~$

```
for each block B {
    OUT(B)=\mathcal{U;}\mathcal{U}= "universal" set of all exprs
```


change = true;
while (change) \{
change = false;

```
for each block B {
    OUT(B)=\mathcal{U;}\mathcal{U}= "universal" set of all exprs
```

\} OUT $($ Entry $)=\emptyset$; // remember reaching defs?
change = true;
while (change) \{
change = false;
for each block B other than Entry \{

```
for each block B {
    OUT(B)=\mathcal{U;}\mathcal{U}= "universal" set of all exprs
}
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN(B)=\bigcap \P\inPRED(B)}\operatorname{OUT}(P)
```

```
for each block B {
        OUT(B)=\mathcal{U;}\mathcal{U}= "universal" set of all exprs
}OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
    change = false;
    for each block B other than Entry
    IN(B)=\bigcap \P\inPRED(B)}\operatorname{OUT}(P)
    oldOut = OUT(B);
    OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B)\cupGEN(B)
```

```
for each block B {
        OUT(B)=\mathcal{U;}\mathcal{U}= "universal" set of all exprs
}
OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN(B)=\bigcap \P\inPRED(B)}\operatorname{OUT}(P)
    oldOut = OUT(B);
    OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B)\cupGEN(B)
    if (OUT(B)\not=oldOut) then {
    change = true;
    }
}
```


Some Issues

- What is \mathcal{U} - the set of all expressions?

Some Issues

- What is \mathcal{U} - the set of all expressions?
- How to compute it efficiently?

Some Issues

- What is \mathcal{U} - the set of all expressions?
- How to compute it efficiently?
- Why Entry block is initialized differently?

Available Expressions: Example

Available Expressions: Bitvectors

Available Expressions: Bitvectors

Available Expressions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

Available Expressions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigwedge_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
\end{gathered}
$$

Available Expressions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcap_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigwedge_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
\end{gathered}
$$

- Bitwise \vee, \wedge, \neg operators

Available Expressions: Application

- Common subexpression elimination in a block B

Available Expressions: Application

- Common subexpression elimination in a block B
- Expression e available at the entry of B

Available Expressions: Application

- Common subexpression elimination in a block B
- Expression e available at the entry of B
- e is also computed at a point p in B

Available Expressions: Application

- Common subexpression elimination in a block B
- Expression e available at the entry of B
- e is also computed at a point p in B
- Components of e are not modified from entry of B to p

Available Expressions: Application

- Common subexpression elimination in a block B
- Expression e available at the entry of B
- e is also computed at a point p in B
- Components of e are not modified from entry of B to p
- e is "upward exposed" in B

Available Expressions: Application

- Common subexpression elimination in a block B
- Expression e available at the entry of B
- e is also computed at a point p in B
- Components of e are not modified from entry of B to p
- e is "upward exposed" in B
- Expressions generated in B are "downward exposed"

Comparison of RD and AvE

- Some vs. All path property

Comparison of RD and AvE

- Some vs. All path property
- Meet operator: \cup vs. \cap

Comparison of RD and AvE

- Some vs. All path property
- Meet operator: \cup vs. \cap
- Initialization of Entry: \emptyset

Comparison of RD and AvE

- Some vs. All path property
- Meet operator: \cup vs. \cap
- Initialization of Entry: \emptyset
- Initialization of other BBs: \emptyset vs. \mathcal{U}

Comparison of RD and AvE

- Some vs. All path property
- Meet operator: \cup vs. \cap
- Initialization of Entry: \emptyset
- Initialization of other BBs: \emptyset vs. \mathcal{U}
- Safety: "More" RD vs. "Fewer" AvE

AvE: alternate Initialization

- What if we Initialize:
$\operatorname{OUT}(B)=\emptyset, \forall B$ including Entry

AvE: alternate Initialization

- What if we Initialize:

$$
\text { OUT }(B)=\emptyset, \forall B \text { including Entry }
$$

- Would we find "extra" available expressions?

AvE: alternate Initialization

- What if we Initialize:

$$
\text { OUT }(B)=\emptyset, \forall B \text { including Entry }
$$

- Would we find "extra" available expressions?
- More opportunity to optimize?

AvE: alternate Initialization

- What if we Initialize:

$$
\text { OUT }(B)=\emptyset, \forall B \text { including Entry }
$$

- Would we find "extra" available expressions?
- More opportunity to optimize?
- OR would we miss some expressions that are available?

AvE: alternate Initialization

- What if we Initialize:

$$
\text { OUT }(B)=\emptyset, \forall B \text { including Entry }
$$

- Would we find "extra" available expressions?
- More opportunity to optimize?
- OR would we miss some expressions that are available?
- Loose on opportunity to optimize?

Live Variables

- A variable x is live at a point p if

Live Variables

- A variable x is live at a point p if
- There is a point p^{\prime} along some path in the flow graph starting at p to the Exit

Live Variables

- A variable x is live at a point p if
- There is a point p^{\prime} along some path in the flow graph starting at p to the Exit
- Value of x could be used at p^{\prime}

Live Variables

- A variable x is live at a point p if
- There is a point p^{\prime} along some path in the flow graph starting at p to the Exit
- Value of x could be used at p^{\prime}
- There is no definition of x between p and p^{\prime} along this path

Live Variables

- A variable x is live at a point p if
- There is a point p^{\prime} along some path in the flow graph starting at p to the Exit
- Value of x could be used at p^{\prime}
- There is no definition of x between p and p^{\prime} along this path
- Otherwise x is dead at p

Live Variables: GEN

- GEN(B): Set of variables whose values may be used in block B prior to any definition
- Also called "use(B)"
- "upward exposed use" of a variable in B

Live Variables: KILL

- $\mathrm{KILL}(B)$: Set of variables defined in block B prior to any use
- Also called "def(B)"
- "upward exposed definition" of a variable in B

Live Variables: Equations

- Set-theoretic definitions:

$$
\operatorname{OUT}(B)=\bigcup_{S \in \operatorname{SUCC}(B)} \operatorname{IN}(S)
$$

$$
\operatorname{IN}(B)=\operatorname{OUT}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

Live Variables: Equations

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{OUT}(B)=\bigcup_{S \in \operatorname{SUCC}(B)} \operatorname{IN}(S) \\
\operatorname{IN}(B)=\operatorname{OUT}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\operatorname{OUT}(B)=\bigvee_{S \in \operatorname{SUCC}(B)} \operatorname{OUT}(S)
$$

$$
\operatorname{IN}(B)=\operatorname{OUT}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
$$

Live Variables: Equations

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{OUT}(B)=\bigcup_{S \in \operatorname{SUCC}(B)} \operatorname{IN}(S) \\
\operatorname{IN}(B)=\operatorname{OUT}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\operatorname{OUT}(B)=\bigvee_{S \in \operatorname{SUCC}(B)} \operatorname{OUT}(S)
$$

$$
\operatorname{IN}(B)=\operatorname{OUT}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
$$

- Bitwise \vee, \wedge, \neg operators

Very Busy Expressions

- Expression e is very busy at a point p if

Very Busy Expressions

- Expression e is very busy at a point p if
- Every path from p to Exit has at least one evaluation of e

Very Busy Expressions

- Expression e is very busy at a point p if
- Every path from p to Exit has at least one evaluation of e
- On every path, there is no assignment to any component variable of e before the first evaluation of e following p

Very Busy Expressions

- Expression e is very busy at a point p if
- Every path from p to Exit has at least one evaluation of e
- On every path, there is no assignment to any component variable of e before the first evaluation of e following p
- Also called Anticipable expression
- Expression e is very busy at a point p if
- Every path from p to Exit has at least one evaluation of e and there is no assignment to any component variable of e before the first evaluation of e following p on these paths.
- Set up the data flow equations for Very Busy Expressions (VBE). You have to give equations for GEN, KILL, IN, and OUT.
- Think of an optimization/transformation that uses VBE analysis. Briefly describe it (2-3 lines only)
- Will your optimization be safe if we replace "Every" by "Some" in the definition of VBE?

