CS738: Advanced Compiler Optimizations

Data Flow Analysis

Amey Karkare
karkare@cse.iitk.ac.in
http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Agenda

- Static analysis and compile-time optimizations

Agenda

- Static analysis and compile-time optimizations
- For the next few lectures

Agenda

- Static analysis and compile-time optimizations
- For the next few lectures
- Intraprocedural Data Flow Analysis

Agenda

- Static analysis and compile-time optimizations
- For the next few lectures
- Intraprocedural Data Flow Analysis
- Classical Examples

Agenda

- Static analysis and compile-time optimizations
- For the next few lectures
- Intraprocedural Data Flow Analysis
- Classical Examples
- Components

Assumptions

- Intraprocedural: Restricted to a single function

Assumptions

- Intraprocedural: Restricted to a single function
- Input in 3-address format

Assumptions

- Intraprocedural: Restricted to a single function
- Input in 3-address format
- Unless otherwise specified

3-address Code Format

- Assignments

3-address Code Format

- Assignments

$$
x=y \text { op } z
$$

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y
\end{aligned}
$$

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer goto L

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer goto L
if x relop y goto L

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer
goto L
if x relop y goto L
- Statements can have label(s)

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer
goto L
if x relop y goto L
- Statements can have label(s)

L: ...

3-address Code Format

- Assignments

$$
\begin{aligned}
& x=y \text { op } z \\
& x=o p y \\
& x=y
\end{aligned}
$$

- Jump/control transfer
goto L
if x relop y goto L
- Statements can have label(s)

L: ...

- Arrays, Pointers and Functions to be added later when needed

Data Flow Analysis

- Class of techniques to derive information about flow of data

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths
- Used to answer questions such as:

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths
- Used to answer questions such as:
- whether two identical expressions evaluate to same value

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths
- Used to answer questions such as:
- whether two identical expressions evaluate to same value
- used in common subexpression elimination

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths
- Used to answer questions such as:
- whether two identical expressions evaluate to same value
- used in common subexpression elimination
- whether the result of an assignment is used later

Data Flow Analysis

- Class of techniques to derive information about flow of data
- along program execution paths
- Used to answer questions such as:
- whether two identical expressions evaluate to same value
- used in common subexpression elimination
- whether the result of an assignment is used later
- used by dead code elimination

Data Flow Abstraction

- Basic Blocks (BB)

Data Flow Abstraction

- Basic Blocks (BB)
- sequence of 3-address code stmts

Data Flow Abstraction

- Basic Blocks (BB)
- sequence of 3-address code stmts
- single entry at the first statement

Data Flow Abstraction

- Basic Blocks (BB)
- sequence of 3-address code stmts
- single entry at the first statement
- single exit at the last statement

Data Flow Abstraction

- Basic Blocks (BB)
- sequence of 3-address code stmts
- single entry at the first statement
- single exit at the last statement
- Typically we use "maximal" basic block (maximal sequence of such instructions)

Identifying Basic Blocks

- Leader: The first statement of a basic block

Identifying Basic Blocks

- Leader. The first statement of a basic block
- The first instruction of the program (procedure)

Identifying Basic Blocks

- Leader: The first statement of a basic block
- The first instruction of the program (procedure)
- Target of a branch (conditional and unconditional goto)

Identifying Basic Blocks

- Leader: The first statement of a basic block
- The first instruction of the program (procedure)
- Target of a branch (conditional and unconditional goto)
- Instruction immediately following a branch

Special Basic Blocks

- Two special BBs are added to simplify the analysis

Special Basic Blocks

- Two special BBs are added to simplify the analysis
- empty (?) blocks!

Special Basic Blocks

- Two special BBs are added to simplify the analysis
- empty (?) blocks!
- Entry: The first block to be executed for the procedure analyzed

Special Basic Blocks

- Two special BBs are added to simplify the analysis
- empty (?) blocks!
- Entry: The first block to be executed for the procedure analyzed
- Exit: The last block to be executed

Data Flow Abstraction

- Control Flow Graph (CFG)

Data Flow Abstraction

- Control Flow Graph (CFG)
- A rooted directed graph $G=(N, E)$

Data Flow Abstraction

- Control Flow Graph (CFG)
- A rooted directed graph $G=(N, E)$
- $N=$ set of BBs

Data Flow Abstraction

- Control Flow Graph (CFG)
- A rooted directed graph $G=(N, E)$
- $N=$ set of BBs
- including Entry, Exit

Data Flow Abstraction

- Control Flow Graph (CFG)
- A rooted directed graph $G=(N, E)$
- $N=$ set of BBs
- including Entry, Exit
- $E=$ set of edges

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through
- Through jump (goto)

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through
- Through jump (goto)
- Edge from Entry to (all?) real first BB(s)

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through
- Through jump (goto)
- Edge from Entry to (all?) real first BB(s)
- Edge to Exit from all last BBs

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through
- Through jump (goto)
- Edge from Entry to (all?) real first BB(s)
- Edge to Exit from all last BBs
- BBs containing return

CFG Edges

- Edge $B_{1} \rightarrow B_{2} \in E$ if control can transfer from B_{1} to B_{2}
- Fall through
- Through jump (goto)
- Edge from Entry to (all?) real first BB(s)
- Edge to Exit from all last BBs
- BBs containing return
- Last real BB

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution
- Typically one graph per procedure

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution
- Typically one graph per procedure
- Graphs for separate procedures have to be combined/connected for interprocedural analysis

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution
- Typically one graph per procedure
- Graphs for separate procedures have to be combined/connected for interprocedural analysis
- Later!

Data Flow Abstraction: Control Flow Graph

- Graph representation of paths that program may exercise during execution
- Typically one graph per procedure
- Graphs for separate procedures have to be combined/connected for interprocedural analysis
- Later!
- Single procedure, single flow graph for now.

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt
- Program point before/after a stmt

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt
- Program point before/after a stmt
- Denoted IN[s] and OUT[s]

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt
- Program point before/after a stmt
- Denoted IN[s] and OUT[s]
- Within a basic block:

Data Flow Abstraction: Program Points

- Input state/Output state for Stmt
- Program point before/after a stmt
- Denoted IN[s] and OUT[s]
- Within a basic block:
- Program point after a stmt is same as the program point before the next stmt

Data Flow Abstraction: Program Points

- Input state/Output state for BBs

Data Flow Abstraction: Program Points

- Input state/Output state for BBs
- Program point before/after a bb

Data Flow Abstraction: Program Points

- Input state/Output state for BBs
- Program point before/after a bb
- Denoted IN[B] and OUT[B]

Data Flow Abstraction: Program Points

- Input state/Output state for BBs
- Program point before/after a bb
- Denoted IN[B] and OUT[B]
- For B_{1} and B_{2} :

Data Flow Abstraction: Program Points

- Input state/Output state for BBs
- Program point before/after a bb
- Denoted IN[B] and OUT[B]
- For B_{1} and B_{2} :
- if there is an edge from B_{1} to B_{2} in CFG, then the program point after the last stmt of B_{1} may be followed immediately by the program point before the first stmt of B_{2}.

Data Flow Abstraction: Execution Paths

- An execution path is of the form

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

Data Flow Abstraction: Execution Paths

- An execution path is of the form

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

where $p_{i} \rightarrow p_{i+1}$ are adjacent program points in the CFG.

Data Flow Abstraction: Execution Paths

- An execution path is of the form

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

where $p_{i} \rightarrow p_{i+1}$ are adjacent program points in the CFG.

- Infinite number of possible execution paths in practical programs.

Data Flow Abstraction: Execution Paths

- An execution path is of the form

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

where $p_{i} \rightarrow p_{i+1}$ are adjacent program points in the CFG.

- Infinite number of possible execution paths in practical programs.
- Paths having no finite upper bound on the length.

Data Flow Abstraction: Execution Paths

- An execution path is of the form

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

where $p_{i} \rightarrow p_{i+1}$ are adjacent program points in the CFG.

- Infinite number of possible execution paths in practical programs.
- Paths having no finite upper bound on the length.
- Need to summarize the information at a program point with a finite set of facts.

Data Flow Schema

- Data flow values associated with each program point

Data Flow Schema

- Data flow values associated with each program point
- Summarize all possible states at that point

Data Flow Schema

- Data flow values associated with each program point
- Summarize all possible states at that point
- Domain: set of all possible data flow values

Data Flow Schema

- Data flow values associated with each program point
- Summarize all possible states at that point
- Domain: set of all possible data flow values
- Different domains for different analyses/optimizations

Data Flow Problem

- Constraints on data flow values

Data Flow Problem

- Constraints on data flow values
- Transfer constraints

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints
- Multiple solutions possible

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints
- Multiple solutions possible
- Trivial solutions, ..., Exact solutions

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints
- Multiple solutions possible
- Trivial solutions, ..., Exact solutions
- We typically compute approximate solution

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints
- Multiple solutions possible
- Trivial solutions, ..., Exact solutions
- We typically compute approximate solution
- Close to the exact solution (as close as possible!)

Data Flow Problem

- Constraints on data flow values
- Transfer constraints
- Control flow constraints
- Aim: To find a solution to the constraints
- Multiple solutions possible
- Trivial solutions, ..., Exact solutions
- We typically compute approximate solution
- Close to the exact solution (as close as possible!)
- Why not exact solution?

Data Flow Constraints: Transfer Constraints

- Transfer functions

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt
- forward functions: Compute facts after a statement s from the facts available before s.

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt
- forward functions: Compute facts after a statement s from the facts available before s.
- General form:

$$
\mathrm{OUT}[s]=f_{s}(\operatorname{IN}[s])
$$

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt
- forward functions: Compute facts after a statement s from the facts available before s.
- General form:

$$
\mathrm{OUT}[s]=f_{s}(\mathbb{N}[s])
$$

- backward functions: Compute facts before a statement s from the facts available after s.

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt
- forward functions: Compute facts after a statement s from the facts available before s.
- General form:

$$
\mathrm{OUT}[s]=f_{s}(\mathbb{N}[s])
$$

- backward functions: Compute facts before a statement s from the facts available after s.
- General form:

$$
\operatorname{IN}[s]=f_{s}(\mathrm{OUT}[s])
$$

Data Flow Constraints: Transfer Constraints

- Transfer functions
- relationship between the data flow values before and after a stmt
- forward functions: Compute facts after a statement s from the facts available before s.
- General form:

$$
\mathrm{OUT}[s]=f_{s}(\mathbb{N}[s])
$$

- backward functions: Compute facts before a statement s from the facts available after s.
- General form:

$$
\operatorname{IN}[s]=f_{s}(\mathrm{OUT}[s])
$$

- f_{s} depends on the statement and the analysis

Data Flow Constraints: Control Flow Constraints

- Relationship between the data flow values of two points that are related by program execution semantics

Data Flow Constraints: Control Flow Constraints

- Relationship between the data flow values of two points that are related by program execution semantics
- For a basic block having n statements:

$$
\mathrm{IN}\left[s_{i+1}\right]=\mathrm{OUT}\left[s_{i}\right], i=1,2, \ldots, n-1
$$

Data Flow Constraints: Control Flow Constraints

- Relationship between the data flow values of two points that are related by program execution semantics
- For a basic block having n statements:

$$
\mathrm{IN}\left[s_{i+1}\right]=\mathrm{OUT}\left[s_{i}\right], i=1,2, \ldots, n-1
$$

- $\operatorname{IN}\left[s_{1}\right]$, OUT $\left[s_{n}\right]$ to come later

Data Flow Constraints: Notations

- PRED (B): Set of predecessor BBs of block B in CFG

Data Flow Constraints: Notations

- PRED (B): Set of predecessor BBs of block B in CFG
- SUCC (B): Set of successor BBs of block B in CFG

Data Flow Constraints: Notations

- PRED (B): Set of predecessor BBs of block B in CFG
- SUCC (B): Set of successor BBs of block B in CFG
- $f \circ g$: Composition of functions f and g

Data Flow Constraints: Notations

- PRED (B): Set of predecessor BBs of block B in CFG
- SUCC (B): Set of successor BBs of block B in CFG
- $f \circ g$: Composition of functions f and g
- \bigoplus : An abstract operator denoting some way of combining facts present in a set .

Data Flow Constraints: Basic Blocks

- Forward

Data Flow Constraints: Basic Blocks

- Forward
- For B consisting of $s_{1}, s_{2}, \ldots, s_{n}$

$$
f_{B}=f_{s_{n}} \circ \ldots \circ f_{s_{2}} \circ f_{s_{1}}
$$

$\operatorname{OUT}[B]=f_{B}(\operatorname{IN}[B])$

Data Flow Constraints: Basic Blocks

- Forward
- For B consisting of $s_{1}, s_{2}, \ldots, s_{n}$

$$
f_{B}=f_{s_{n}} \circ \ldots \circ f_{s_{2}} \circ f_{s_{1}}
$$

$$
\mathrm{OUT}[B]=f_{B}(\operatorname{IN}[B])
$$

- Control flow constraints

$$
\mathrm{IN}[B]=\bigoplus_{P \in \operatorname{PRED}(B)} \operatorname{OUT}[P]
$$

Data Flow Constraints: Basic Blocks

- Forward
- For B consisting of $s_{1}, s_{2}, \ldots, s_{n}$

$$
\begin{gathered}
f_{B}=f_{s_{n}} \circ \ldots \circ f_{s_{2}} \circ f_{s_{1}} \\
\text { OUT }[B]=f_{B}(\operatorname{IN}[B])
\end{gathered}
$$

- Control flow constraints

$$
\operatorname{IN}[B]=\bigoplus_{P \in \operatorname{PRED}(B)} \operatorname{OUT}[P]
$$

- Backward

$$
\begin{gathered}
f_{B}=f_{s_{1}} \circ f_{s_{2}} \circ \ldots \circ f_{s_{n}} \\
\mathrm{IN}[B]=f_{B}(O U T[B]) \\
\text { OUT }[B]=\bigoplus_{S \in \operatorname{SUCC}(B)} I N[S]
\end{gathered}
$$

Data Flow Equations

- Typical Equation

$$
\mathrm{OUT}[s]=\mathrm{IN}[s]-k i l l[s] \cup g e n[s]
$$

Data Flow Equations

- Typical Equation

$$
\mathrm{OUT}[s]=\mathrm{IN}[s]-k i l l[s] \cup g e n[s]
$$

gen(s): information generated

Data Flow Equations

- Typical Equation

$$
\mathrm{OUT}[s]=\mathrm{IN}[s]-k i l l[s] \cup g e n[s]
$$

gen(s): information generated
kill(s): information killed

Data Flow Equations

- Typical Equation

$$
\mathrm{OUT}[s]=\operatorname{IN}[s]-k i l l[s] \cup \text { gen }[s]
$$

gen(s): information generated
kill(s): information killed

- Example:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b} * \mathrm{c} / / \text { generates expression } \mathrm{b} * \mathrm{c} \\
& \mathrm{c}=5 \quad / / \text { kills expression } \mathrm{b} * \mathrm{c} \\
& \mathrm{~d}=\mathrm{b} * \mathrm{c} / / \text { is } \mathrm{b} * \mathrm{c} \text { redundant here? }
\end{aligned}
$$

Example Data Flow Analysis

- Reaching Definitions Analysis
- Definition of a variable $x: x=\ldots$ something . . .
- Could be more complex (e.g. through pointers, references, implicit)

Reaching Definitions Analysis

- A definition d reaches a point p if
- there is a path from the point immediately following d to p
- d is not "killed" along that path
- "Kill" means redefinition of the left hand side (x in the earlier example)

RD Analysis of a Structured Program

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$
$\operatorname{KILL}\left(s_{1}\right)=$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$
$\operatorname{KILL}\left(s_{1}\right)=D_{x}-\{d\}$, where D_{x} : set of all definitions of x

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$
$\operatorname{KILL}\left(s_{1}\right)=D_{x}-\{d\}$, where D_{x} : set of all definitions of x $\operatorname{KILL}\left(s_{1}\right)=$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$
$\operatorname{KILL}\left(s_{1}\right)=D_{x}-\{d\}$, where D_{x} : set of all definitions of x
$\operatorname{KILL}\left(s_{1}\right)=D_{x} ?$

RD Analysis of a Structured Program

$\operatorname{OUT}\left(s_{1}\right)=\operatorname{IN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{1}\right)$
$\operatorname{GEN}\left(s_{1}\right)=\{d\}$
$\operatorname{KILL}\left(s_{1}\right)=D_{x}-\{d\}$, where D_{x} : set of all definitions of x
$\operatorname{KILL}\left(s_{1}\right)=D_{x}$? will also work here but may not work in general

RD Analysis of a Structured Program

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$ $\operatorname{KILL}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$

RD Analysis of a Structured Program

$\begin{aligned} \operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\ \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\end{aligned}$

RD Analysis of a Structured Program

$\begin{aligned} \operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\ \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S)\end{aligned}$

RD Analysis of a Structured Program

$\begin{aligned} \operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right) \\ \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \\ \operatorname{IN}\left(s_{2}\right) & =\end{aligned}$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}(S)$
$\operatorname{IN}\left(s_{2}\right)=\operatorname{OUT}\left(s_{1}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}(S)$
$\operatorname{IN}\left(s_{2}\right)=\operatorname{OUT}\left(s_{1}\right)$
$\operatorname{OUT}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)-\operatorname{KILL}\left(s_{2}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)-\operatorname{GEN}\left(s_{2}\right) \cup \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}(S)$
$\operatorname{IN}\left(s_{2}\right)=\operatorname{OUT}\left(s_{1}\right)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{2}\right)$

RD Analysis of a Structured Program

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)$
OUT(S) =

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$
$\operatorname{IN}\left(s_{1}\right)=\operatorname{IN}\left(s_{2}\right)=\operatorname{IN}(S)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{1}\right) \cup \operatorname{OUT}\left(s_{2}\right)$

RD Analysis of a Structured Program

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$
$\operatorname{OUT}(S)=$

RD Analysis of a Structured Program

$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)=\operatorname{KILL}\left(s_{1}\right)$
$\operatorname{OUT}(S)=\operatorname{OUT}\left(s_{1}\right)$

RD Analysis of a Structured Program

$$
\begin{aligned}
\operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right) \\
\operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right) \\
\operatorname{OUT}(S) & =\operatorname{OUT}\left(s_{1}\right) \\
\operatorname{IN}\left(s_{1}\right) & =
\end{aligned}
$$

RD Analysis of a Structured Program

$\begin{aligned} \operatorname{GEN}(S) & =\operatorname{GEN}\left(s_{1}\right) \\ \operatorname{KILL}(S) & =\operatorname{KILL}\left(s_{1}\right) \\ \operatorname{OUT}(S) & =\operatorname{OUT}\left(s_{1}\right) \\ \operatorname{IN}\left(s_{1}\right) & =\operatorname{IN}(S) \cup \operatorname{GEN}\left(s_{1}\right)\end{aligned}$

RD Analysis is Approximate

- Assumption: All paths are feasible.

RD Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


RD Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


RD Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

Fact Computed
$\operatorname{GEN}(S)=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right) \supseteq \operatorname{GEN}\left(s_{1}\right)$

RD Analysis is Approximate

- Assumption: All paths are feasible.
- Example:

```
if (true) sl;
else s2;
```

Fact	Computed		Actual
$\operatorname{GEN}(S)$	$=\operatorname{GEN}\left(s_{1}\right) \cup \operatorname{GEN}\left(s_{2}\right)$	\supseteq	$\operatorname{GEN}\left(s_{1}\right)$
$\operatorname{KILL}(S)$	$=\operatorname{KILL}\left(s_{1}\right) \cap \operatorname{KILL}\left(s_{2}\right)$	\subseteq	$\operatorname{KILL}\left(s_{1}\right)$

RD Analysis is Approximate

- Thus,

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$ true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- More definitions computed to be reaching than actually do!

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- More definitions computed to be reaching than actually do!
- Later we shall see that this is SAFE approximation

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- More definitions computed to be reaching than actually do!
- Later we shall see that this is SAFE approximation
- prevents optimizations

RD Analysis is Approximate

- Thus,
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- More definitions computed to be reaching than actually do!
- Later we shall see that this is SAFE approximation
- prevents optimizations
- but NO wrong optimization

$R D$ at $B B$ level

- A definition d can reach the start of a block from any of its predecessor

$$
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

$R D$ at $B B$ level

- A definition d can reach the start of a block from any of its predecessor
- if it reaches the end of some predecessor

$$
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

$R D$ at $B B$ level

- A definition d can reach the start of a block from any of its predecessor
- if it reaches the end of some predecessor

$$
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- A definition d reaches the end of a block if

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

$R D$ at $B B$ level

- A definition d can reach the start of a block from any of its predecessor
- if it reaches the end of some predecessor

$$
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- A definition d reaches the end of a block if
- either it is generated in the block

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

$R D$ at $B B$ level

- A definition d can reach the start of a block from any of its predecessor
- if it reaches the end of some predecessor

$$
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)
$$

- A definition d reaches the end of a block if
- either it is generated in the block
- or it reaches block and not killed

$$
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
$$

Solving RD Constraints

- KILL \& GEN known for each BB.

Solving RD Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.

Solving RD Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.
- Solution is possible.

Solving RD Constraints

- KILL \& GEN known for each BB.
- A program with N BBs has $2 N$ equations with $2 N$ unknowns.
- Solution is possible.
- Iterative approach (on the next slide).
for each block B \{

for each block B \{ $\operatorname{OUT}(B)=\emptyset$;

for each block B \{
$\operatorname{OUT}(B)=\emptyset ;$
\} OUT $(B)=1$
\} OUT(Entry) $=\emptyset$; // note this for later discussion
for each block B \{
$\operatorname{OUT}(B)=\emptyset ;$
\}
OUT(Entry) $=\emptyset$; // note this for later discussion change = true; while (change) \{
change = false;

```
for each block B {
    OUT(B)= \emptyset;
}
OUT(Entry)=\emptyset; // note this for later discussion
change = true;
while (change) {
    change = false;
    for each block B other than Entry
```

```
for each block B {
    OUT(B)=\emptyset;
}
OUT(Entry)=\emptyset; // note this for later discussion
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN(B)= U P\inPRED(B)}\operatorname{OUT}(P)
```

```
for each block B {
        OUT(B)=\emptyset;
}
OUT(Entry)=\emptyset; // note this for later discussion
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN(B)= \bigcup P\inPRED(B)}\operatorname{OUT}(P)
    oldOut = OUT(B);
    OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B)\cup\operatorname{GEN}(B)
```

```
for each block B {
        OUT(B)=\emptyset;
}
OUT(Entry) =\emptyset; // note this for later discussion
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN (B)= \bigcup \P\in\operatorname{PRED(B)}}\operatorname{OUT}(P)
    oldOut = OUT(B);
    OUT}(B)=\textrm{IN}(B)-\textrm{KILL}(B)\cup\textrm{GEN}(B)
    if (OUT(B)\not=oldOut) then {
    change = true;
    }
}
```


Reaching Definitions: Example

Reaching Definitions: Bitvectors

Reaching Definitions: Bitvectors

Reaching Definitions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

Reaching Definitions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigvee_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
\end{gathered}
$$

Reaching Definitions: Bitvectors

- Set-theoretic definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)
\end{gathered}
$$

- Bitvector definitions:

$$
\begin{gathered}
\operatorname{IN}(B)=\bigvee_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P) \\
\operatorname{OUT}(B)=\operatorname{IN}(B) \wedge \neg \operatorname{KILL}(B) \vee \operatorname{GEN}(B)
\end{gathered}
$$

- Bitwise \vee, \wedge, \neg operators

Reaching Definitions: Application

Constant Folding

```
while changes occur {
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts }S\mathrm{ of the program {
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts S of the program {
    foreach operand B of S {
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts }S\mathrm{ of the program {
    foreach operand B of S {
    if there is a unique definition of B
    that reaches S and is a constant C {
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts }S\mathrm{ of the program {
    foreach operand B of S {
    if there is a unique definition of B
    that reaches S and is a constant C {
    replace B by C in S;
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts }S\mathrm{ of the program {
    foreach operand B of S {
    if there is a unique definition of B
    that reaches S and is a constant C {
    replace B by C in S;
    if all operands of S are constant {
```


Reaching Definitions: Application

Constant Folding

```
while changes occur {
    forall the stmts }S\mathrm{ of the program {
    foreach operand B of S {
    if there is a unique definition of B
    that reaches }\textrm{S}\mathrm{ and is a constant C {
    replace B by C in S;
    if all operands of }S\mathrm{ are constant {
        replace rhs by eval(rhs);
```


Reaching Definitions: Application

Constant Folding

while changes occur $\{$ forall the stmts S of the program \{
foreach operand B of S \{
if there is a unique definition of B
that reaches S and is a constant C \{
replace B by C in S;
if all operands of S are constant \{ replace rhs by eval(rhs); mark definition as constant;
\} \} \} \} \}

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$
true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- Can it cause the application to infer

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$ true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- Can it cause the application to infer
- an expression as a constant when it is has different values for different executions?

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$ true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- Can it cause the application to infer
- an expression as a constant when it is has different values for different executions?
- an expression as not a constant when it is a constant for all executions?

Reaching Definitions: Application

- Recall the approximation in reaching definition analysis
true $\operatorname{GEN}(S) \subseteq$ analysis $\operatorname{GEN}(S)$ true $\operatorname{KILL}(S) \supseteq$ analysis $\operatorname{KILL}(S)$
- Can it cause the application to infer
- an expression as a constant when it is has different values for different executions?
- an expression as not a constant when it is a constant for all executions?
- Safety? Profitability?

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{d_{x} \left\lvert\, \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\right.\right\}$

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{\begin{array}{l|l}d_{x} & \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\end{array}\right\}$
- $\operatorname{KILL}(B)=\left\{d_{x} \mid B\right.$ contains some definition of $\left.x\right\}$

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{\begin{array}{l|l}d_{x} & \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\end{array}\right\}$
- $\operatorname{KILL}(B)=\left\{d_{x} \mid B\right.$ contains some definition of $\left.x\right\}$
- $\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)$

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{\begin{array}{l|l}d_{x} & \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\end{array}\right\}$
- $\operatorname{KILL}(B)=\left\{d_{x} \mid B\right.$ contains some definition of $\left.x\right\}$
- $\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)$
- $\operatorname{OUT}(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)$

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{\begin{array}{l|l}d_{x} & \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\end{array}\right\}$
- $\operatorname{KILL}(B)=\left\{d_{x} \mid B\right.$ contains some definition of $\left.x\right\}$
- $\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)$
- OUT $(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)$
- meet (\wedge) operator: The operator to combine information coming along different predecessors is \cup

Reaching Definitions: Summary

- $\operatorname{GEN}(B)=\left\{\begin{array}{l|l}d_{x} & \begin{array}{l}d_{x} \text { in } B \text { defines variable } x \text { and is not } \\ \text { followed by another definition of } x \text { in } B\end{array}\end{array}\right\}$
- $\operatorname{KILL}(B)=\left\{d_{x} \mid B\right.$ contains some definition of $\left.x\right\}$
- $\operatorname{IN}(B)=\bigcup_{P \in \operatorname{PRED}(B)} \operatorname{OUT}(P)$
- OUT $(B)=\operatorname{IN}(B)-\operatorname{KILL}(B) \cup \operatorname{GEN}(B)$
- meet (\wedge) operator: The operator to combine information coming along different predecessors is \cup
- What about the Entry block?

Reaching Definitions: Summary

- Entry block has to be initialized specially:

$$
\begin{aligned}
\mathrm{OUT}(\text { Entry }) & =\text { EntryInfo } \\
\text { Entrylnfo } & =\emptyset
\end{aligned}
$$

Reaching Definitions: Summary

- Entry block has to be initialized specially:

$$
\begin{aligned}
\text { OUT(Entry) } & =\text { EntryInfo } \\
\text { EntryInfo } & =\emptyset
\end{aligned}
$$

- A better entry info could be:

$$
\text { Entrylnfo }=\{x=\text { undefined } \mid x \text { is a variable }\}
$$

Reaching Definitions: Summary

- Entry block has to be initialized specially:

$$
\begin{aligned}
\text { OUT(Entry) } & =\text { EntryInfo } \\
\text { EntryInfo } & =\emptyset
\end{aligned}
$$

- A better entry info could be:

$$
\text { Entrylnfo }=\{x=\text { undefined } \mid x \text { is a variable }\}
$$

- Why?

