
CS738: Advanced Compiler Optimizations

Overview of Optimizations

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Recap

◮ Optimizations
◮ To improve efficiency of generated executable (time, space,

resources, . . . )
◮ Maintain semantic equivalence

◮ Two levels
◮ Machine Independent
◮ Machine Dependent

Machine Independent
Code Optimizations

Machine Independent Optimizations

◮ Scope of optimizations
◮ Intraprocedural

◮ Local
◮ Global

◮ Interprocedural



Local Optimizations

◮ Restricted to a basic block
◮ Simplifies the analysis
◮ Not all optimizations can be applied locally

◮ E.g. Loop optimizations
◮ Gains are also limited
◮ Simplify global/interprocedural optimizations

Global Optimizations

◮ Typically restricted within a procedure/function
◮ Could be restricted to a smaller scope, e.g. a loop

◮ Most compiler implement up to global optimizations
◮ Well founded theory
◮ Practical gains

Interprocedural Optimizations

◮ Spans multiple procedures, files
◮ In some cases multiple languages!

◮ Not as popular as global optimizations
◮ No single theory applicable to all scenarios
◮ Time consuming

A Catalog of
Code Optimizations



Compile-time Evaluation

◮ Move run-time actions to compile-time
◮ Constant Folding

Volume =
4
3
× π × r × r × r

◮ Compute 4
3 × π at compile-time

◮ Applied frequently for linearizing indices of
multidimensional arrays

◮ When should we NOT apply it?

Compile-time Evaluation

◮ Constant Propagation
◮ Replace a variable by its “constant” value

i = 5
...
j = i * 4

can be replaced by
i = 5
...
j = 5 * 4

◮ May result in the application of constant folding

◮ When should we NOT apply it?

Common Subexpression Elimination

◮ Reuse a computation if already “available”

x = u + v
...
y = u + v

can be replaced by

t = u + v
x = t
...
y = t

◮ How to check if an expression is already available?
◮ When should we NOT apply it?

Copy Propagation

◮ Replace (use of) a variable by another variable
◮ If they are guaranteed to have the “same value”

i = k
...
j = i * 4

can be replaced by
i = k
...
j = k * 4

◮ May result in dead code, common subexpression

◮ When should we NOT apply it?



Code Movement

◮ Move the code around in a program
◮ Benefits

◮ Code size reduction
◮ Reduction in the frequency of execution

◮ How to find out which code to move?

Code Movement

◮ Code size reduction
◮ Suppose the operator ⊕ results in the generation of a large

number of machine instructions. Then,

if (a < b)
u = x⊕y

else
v = x⊕y

can be replaced by

t = x⊕y
if (a < b)

u = t
else

v = t

◮ When should we NOT apply it?

Code Movement

◮ Execution frequency reduction

if (a < b)
u = . . .

else
v = x * y

w = x * y

can be replaced by

if (a < b)
u = . . .
t = x * y

else
t = x * y
v = t

w = t

◮ When should we NOT apply it?

Loop Invariant Code Movement

◮ Move loop invariant code out of the loop

for (. . . ) {
. . .
u = a + b
. . .

}

can be replaced by

t = a + b
for (. . . ) {

. . .
u = t
. . .

}

◮ When should we NOT apply it?



Code Movement

Safety of code motion
Profitability of code motion

Other Optimizations

◮ Dead code elimination
◮ Remove unreachable and/or unused code.
◮ Can we always do it?
◮ Is there ever a need to introduce unused code?

◮ Strength Reduction
◮ Use of low strength operators in place of high strength

ones.
◮ i ∗ i instead of i ∗ ∗ 2, pow(i , 2)
◮ i << 1 instead of i ∗ 2

◮ Typically performed for integers only – Why?

Agenda

◮ Static analysis and compile-time optimizations
◮ For the next few lectures
◮ Intraprocedural Data Flow Analysis

◮ Classical Examples
◮ Components

Assumptions

◮ Intraprocedural: Restricted to a single function
◮ Input in 3-address format
◮ Unless otherwise specified



3-address Code Format

◮ Assignments
x = y op z
x = op y
x = y

◮ Jump/control transfer
goto L
if x relop y goto L

◮ Statements can have label(s)
L: . . .

◮ Arrays, Pointers and Functions to be added later when
needed


