Block Matrix Computations and the Singular Value Decomposition

A Tale of Two Ideas

Charles F. Van Loan Department of Computer Science Cornell University

Supported in part by the NSF contract CCR-9901988.

Block Matrices

A block matrix is a matrix with matrix entries, e.g.,

Operations are pretty much "business as usual", e.g.

$$\begin{bmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{bmatrix}^T \begin{bmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11}^T & A_{21}^T \\ \hline A_{12}^T & A_{22}^T \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11}^T A_{11} + A_{21}^T A_{21} & etc \\ \hline etc & etc \end{bmatrix}$$

E.g., Strassen Multiplication

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$P_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22})B_{11}$$

$$P_{3} = A_{11}(B_{12} - B_{22})$$

$$P_{4} = A_{22}(B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{12})B_{22}$$

$$P_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = P_{1} + P_{4} - P_{5} + P_{7}$$

$$C_{12} = P_{3} + P_{5}$$

$$C_{21} = P_{2} + P_{4}$$

$$C_{22} = P_{1} + P_{3} - P_{2} + P_{6}$$

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$U^T A V = \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ are the singular values.

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$U^{T}AV = \Sigma = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{n}) = \begin{bmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0 \end{bmatrix}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ are the singular values.

Fact 1. The columns of $V = v_1 \cdots v_n$ and $U = u_1 \cdots u_n$ are the right and left singular vectors and they are related:

$$\begin{aligned} Av_j &= \sigma_j u_j \\ A^T u_j &= \sigma_j v_j \end{aligned} \qquad j = 1:n \end{aligned}$$

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$U^T A V = \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ are the singular values.

Fact 2. The SVD of A is related to the eigen-decompositions of $A^T A$ and AA^T :

$$V^{T}(A^{T}A)V = \operatorname{diag}(\sigma_{1}^{2}, \dots, \sigma_{n}^{2})$$
$$U^{T}(AA^{T})U = \operatorname{diag}(\sigma_{1}^{2}, \dots, \sigma_{n}^{2}, \underbrace{0, \dots, 0}_{m-n})$$

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$U^{T}AV = \Sigma = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{n}) = \begin{vmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0 \end{vmatrix}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ are the singular values.

Fact 3. The smallest singular value is the distance from A to the set of rank deficient matrices:

$$\sigma_{\min} = \min_{\operatorname{rank}(B) < n} \|A - B\|_F$$

If $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ so

$$U^T A V = \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ are the singular values.

Fact 4. The matrix $\sigma_1 u_1 v_1^T$ is the closest rank-1 matrix to A, i.e., it solves the problem:

$$\sigma_{min} = \min_{\operatorname{rank}(B) = 1} ||A - B||_F$$

The High-Level Message..

- It is important to be able to think at the block level because of problem structure.
- It is important to be able to develop block matrix algorithms
- There is a progression...

"Simple" Linear Algebra

 \downarrow

Block Linear Algebra

 \downarrow Multilinear Algebra

Reasoning

at the

Block Level

Uncontrollability

The system

$$\dot{x} = Ax + Bu$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n > p$

is uncontrollable if

$$G = \int_0^t e^{A(t-\tau)} B B^T e^{A\tau} d\tau$$

is singular.

Uncontrollability

The system

$$\dot{x} = Ax + Bu$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n > p$

is uncontrollable if

$$G = \int_0^t e^{A(t-\tau)} B B^T e^{A\tau} d\tau$$

is singular.

$$\tilde{A} = \begin{bmatrix} A & BB^T \\ 0 & A^T \end{bmatrix} \longrightarrow e^{\tilde{A}t} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \longrightarrow G = F_{11}^T F_{12}$$

Nearness to Uncontrollability

The system

$$\dot{x} = Ax + Bu$$
 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, n > p$

is *nearly* uncontrollable if the minimum singular value of

$$G = \int_0^t e^{A(t-\tau)} B B^T e^{A\tau} d\tau$$

is *small*.

$$\tilde{A} = \begin{bmatrix} A & BB^T \\ 0 & A \end{bmatrix} \longrightarrow e^{\tilde{A}t} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \longrightarrow G = F_{11}^T F_{12}$$

Developing Algorithms at the Block Level

Block Matrix Factorizations: A Challenge

By a block algorithm we mean an algorithm that is rich in matrix-matrix multiplication.

Is there a block algorithm for Gaussian elimination? I.e., is there a way to rearrange the $O(n^3)$ operations so that the implementation spends at most $O(n^2)$ time *not* doing matrix-matrix multiplication?

Why?

Re-use ideology: when you touch data, you want to use it a lot.

Not all linear algebra operations are equal in this regard.

Level	Example	Data	Work
1	$\alpha = y^T z$	O(n)	O(n)
	$y = y + \alpha z$	O(n)	O(n)
2	y = y + As	$O(n^2)$	$O(n^2)$
	$A = A + yz^T$	$O(n^2)$	$O(n^2)$
3	A = A + BC	$O(n^2)$	$O(n^3)$

Here, α is a scalar, y, z vectors, and A, B, C matrices

Scalar LU

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

 $\begin{array}{l} a_{11} \ = \ u_{11} \\ a_{12} \ = \ u_{12} \\ a_{13} \ = \ u_{13} \\ a_{21} \ = \ \ell_{21} u_{11} \\ a_{31} \ = \ \ell_{31} u_{11} \\ a_{22} \ = \ \ell_{21} u_{12} + u_{22} \\ a_{23} \ = \ \ell_{21} u_{13} + u_{23} \\ a_{32} \ = \ \ell_{31} u_{12} + \ell_{32} u_{22} \\ a_{33} \ = \ \ell_{31} u_{13} + \ell_{32} u_{23} + u_{33} \end{array}$

$$\Rightarrow \begin{cases} u_{11} = a_{11} \\ u_{12} = a_{12} \\ u_{13} = a_{13} \\ \ell_{21} = a_{21}/u_{11} \\ \ell_{31} = a_{31}/u_{11} \\ u_{22} = a_{22} - \ell_{21}u_{12} \\ u_{23} = a_{23} - \ell_{21}u_{13} \\ \ell_{32} = (a_{32} - \ell_{31}u_{12})/u_{22} \\ u_{33} = a_{33} - \ell_{31}u_{13} - \ell_{32}u_{23} \end{cases}$$

Recursive Description

If $\alpha \in \mathbb{R}, v, w \in \mathbb{R}^{n-1}$, and $B \in \mathbb{R}^{(n-1) \times (n-1)}$ then

$$A = \begin{bmatrix} \alpha & w^T \\ v & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ v/\alpha & \tilde{L} \end{bmatrix} \begin{bmatrix} \alpha & w^T \\ 0 & \tilde{U} \end{bmatrix}$$

is the LU factorization of A if

$$\tilde{L}\tilde{U} = \tilde{A}$$

is the LU factorization of

$$\tilde{A} = B - vw^T / \alpha.$$

Rich in level-2 operations.

Block LU: Recursive Description

$$\begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} p \\ n-p \\ p & n-p \end{bmatrix}$$

 $A_{11} = L_{11}U_{11}$ $A_{21} = L_{21}U_{11}$ $A_{12} = L_{11}U_{12}$ $A_{22} = L_{21}U_{12} + L_{22}U_{22}$

Get L_{11} , U_{11} via LU of A_{11} Solve triangular systems for L_{21} Solve triangular systems for U_{12} Form $\tilde{A} = A_{22} - L_{21}U_{12}$ $\downarrow \qquad \downarrow \qquad \downarrow$ Get L_{22} , U_{22} via LU of \tilde{A}

Block LU: Recursive Description

$$\begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} p \\ n-p \\ p & n-p \end{bmatrix}$$

 $A_{11} = L_{11}U_{11}$ $A_{21} = L_{21}U_{11}$ $A_{12} = L_{11}U_{12}$ $A_{22} = L_{21}U_{12} + L_{22}U_{22}$

 $\operatorname{Recur} \rightarrow \longrightarrow$

Get L_{11} , U_{11} via LU of A_{11} Solve triangular systems for L_{21} Solve triangular systems for U_{12} Form $\tilde{A} = A_{22} - L_{21}U_{12}$ $\downarrow \qquad \downarrow \qquad \downarrow$ Get L_{22} , U_{22} via LU of \tilde{A}

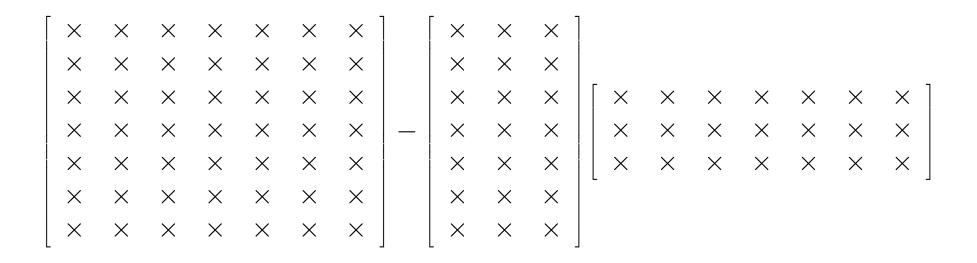
$$O(p^3) \ O(np^2) \ O(np^2) \ O(np^2) \ O(np^2)$$

0

Rich in level-3 operations!!!

Consider: $A = A_{22} - L_{21}U_{12}$

p = 3:



p must be "big enough" so that the advantage of data re-use is realized.

Block Algorithms for (Some) Matrix Factorizations

• *LU* with pivoting:

PA = LU P permutation, L lower triangular, U upper triangular

• Cholesky factorization for symmetric positive definite A:

 $A = GG^T$ G lower triangular

• The QR factorization for rectangular matrices:

A = QR $Q \in \mathbb{R}^{m \times m}$ orthogonal $R \in \mathbb{R}^{m \times n}$ upper triangular

Block Matrix Factorization Algorithms via Aggregation

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

$$Q^T A = H_n \cdots H_1 A = R$$

After 2 steps...

$$H_{2}H_{1}A = \begin{bmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{bmatrix}$$

٠

The H matrices look like this:

$$H = I - 2vv^T$$
 v a unit 2-norm column vector

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

$$Q^T A = H_n \cdots H_1 A = R$$

After 2 steps...

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \boxtimes & \times & \times \\ 0 & 0 & \boxtimes & \times & \times \\ 0 & 0 & \boxtimes & \times & \times \\ 0 & 0 & \boxtimes & \times & \times \end{bmatrix}$$

٠

The H matrices look like this:

$$H = I - 2vv^T$$
 v a unit 2-norm column vector

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

$$Q^T A = H_n \cdots H_1 A = R$$

After 3 steps...

$$H_{3}H_{2}H_{1}A = \begin{bmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}$$

٠

The H matrices look like this:

$$H = I - 2vv^T$$
 v a unit 2-norm column vector

Aggregation

$$\begin{array}{cccc} A = & A_1 & A_2 \\ & p & n-p \end{array} \qquad \qquad p << n \\ \end{array}$$

• Generate the first p Householders based on A_1 :

 $H_p \cdots H_1 A_1 = R_{11}$ (upper triangular)

• Aggregate
$$H_1, \ldots, H_p$$
:
$$H_p \cdots H_1 = I - 2WY^T \qquad W, Y \in \mathbb{R}^{m \times p}$$

• Apply to rest of matrix:

$$(H_p \cdots H_1)A = (H_p \cdots H_1)A_1 \mid (I - 2WY^T)A_2]$$

The WY Representation

• Aggregation:

$$(I - 2WY^{T})(I - 2vv^{T}) = I - 2W_{+}Y_{+}^{T}$$

where

$$W_{+} = W \mid (I - 2WY^{T})v]$$
$$Y_{+} = Y \mid v]$$

• Application

$$A \leftarrow (I - 2WY^T)A = A - (2W)(Y^TA)$$

The Curse of Similarity Transforms

 \boldsymbol{A} symmetric. Compute orthogonal \boldsymbol{Q} such that

$$Q^{T}AQ = \begin{bmatrix} \times & \times & 0 & 0 & 0 & 0 \\ \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times \end{bmatrix}$$

The standard algorithm computes Q as a product of Householder reflections,

$$Q = H_1 \cdots H_{n-2}$$

 H_1 introduces zeros in first column

Scrambles rows 2 through 6.

Must also post-multiply...

$$H_1^T A H_1 = \begin{bmatrix} \times & \times & 0 & 0 & 0 & 0 \\ \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \end{bmatrix}$$

٠

 H_1 scrambles columns 2 through 6.

 H_2 introduces zeros into second column

$$H_1^T A H_1 = \begin{bmatrix} \times & \times & 0 & 0 & 0 & 0 \\ \times & \times & \times & \times & \times & \times \\ 0 & \boxtimes & \times & \times & \times & \times \\ 0 & \boxtimes & \times & \times & \times & \times \\ 0 & \boxtimes & \times & \times & \times & \times \\ 0 & \boxtimes & \times & \times & \times & \times \end{bmatrix}$$

Note that because of H_1 's impact, H_2 depends on all of A's entries.

The H_i can be aggregated, but A must be completely updated along the way destroys the advantage.

Jacobi Methods for Symmetric Eigenproblem

These methods do not initially reduce A to "condensed" form.

They repeatedly reduce the sum-of-squares of the off-diagonal elements.

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & 0 \\ \times & \times & \times & \times \\ \times & 0 & \times & \times \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & 0 & s \\ 0 & 0 & 1 & 0 \\ 0 & -s & 0 & c \end{bmatrix}^{T} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & 0 & s \\ 0 & 0 & 1 & 0 \\ 0 & -s & 0 & c \end{bmatrix}$$

The (2,4) subproblem:

$$\begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T \begin{bmatrix} a_{22} & a_{24} \\ a_{42} & a_{44} \end{bmatrix} \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

 $c^2 + s^2 = 1$ and the off-diagonal sum of squares is reduced by $2a_{24}^2$.

Jacobi Methods for Symmetric Eigenproblem

Cycle through subproblems:

$$(1,2)$$
, $(1,3)$, $(1,4)$, $(2,3)$, $(2,4)$, $(3,4)$

etc.

Parallel Jacobi

Parallel Ordering:

$$\{(1,2), (3,4)\}, \{(1,4), (2,3)\}, \{(1,3), (2,4)\}$$

(1,2):

(3,4):

Block Jacobi

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & 0 \\ \times & \times & \times & \times \\ \times & 0 & \times & \times \end{bmatrix} \leftarrow \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & Q_{11} & 0 & Q_{12} \\ 0 & 0 & I & 0 \\ 0 & Q_{21} & 0 & Q_{22} \end{bmatrix}^{T} A \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & Q_{11} & 0 & Q_{12} \\ 0 & 0 & I & 0 \\ 0 & Q_{21} & 0 & Q_{22} \end{bmatrix}$$

The (2,4) subproblem:

$$\begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}^T \begin{bmatrix} A_{22} & A_{24} \\ A_{42} & A_{44} \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}$$

Convergence analysis requires an understanding of 2-by-2 block matrices that are orthogonal...

The CS Decomposition

The blocks of an orthogonal matrix have related SVDs:

$$\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} = \begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} C & S \\ -S & C \end{bmatrix} \begin{bmatrix} V_1 & 0 \\ 0 & V_2 \end{bmatrix}^T$$
$$C = \operatorname{diag}(\cos(\theta_1), \dots, \cos(\theta_m))$$
$$S = \operatorname{diag}(\sin(\theta_1), \dots, \sin(\theta_m))$$
$$U_1^T Q_{11} V_1 = C$$
$$U_1^T Q_{12} V_2 = S$$
$$U_2^T Q_{21} V_1 = -S$$

$$U_2^T Q_{22} V_2 = C$$

The Curse of Sparsity

How to Extract Level-3 Performance?

Suppose we want to solve a large sparse Ax = b problem.

Iterative methods for this problem can often be dramatically accelerated if you can find a matrix M with two properties:

- It is easy/efficient to solve linear systems of the form Mz = r.
- M approximates the "essence" of A.

M is called a *preconditioner* and the original iteration is modified to effectively solve the equivalent linear system $(M^{-1}A)x = (M^{-1}b)$.

Idea: Kronecker Product Preconditioners

$$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \otimes \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} b_{11}c_{11} & b_{11}c_{12} & b_{11}c_{13} & b_{12}c_{11} & b_{12}c_{12} & b_{12}c_{23} \\ b_{11}c_{21} & b_{11}c_{22} & b_{11}c_{33} & b_{12}c_{31} & b_{12}c_{32} & b_{12}c_{33} \\ b_{11}c_{31} & b_{11}c_{32} & b_{11}c_{33} & b_{12}c_{31} & b_{12}c_{32} & b_{12}c_{33} \\ \hline b_{21}c_{11} & b_{21}c_{12} & b_{21}c_{13} & b_{22}c_{11} & b_{22}c_{12} & b_{22}c_{13} \\ b_{21}c_{21} & b_{21}c_{22} & b_{21}c_{23} & b_{22}c_{21} & b_{22}c_{22} & b_{22}c_{23} \\ \hline b_{21}c_{31} & b_{21}c_{32} & b_{21}c_{33} & b_{22}c_{31} & b_{22}c_{32} & b_{22}c_{33} \\ \end{bmatrix}$$

"Replicated Block Structure"

Some Properties and a Big Fact

Properties:

$(B\otimes C)^T$	=	$B^T \otimes C^T$
$(B\otimes C)^{-1}$	=	$B^{-1}\otimes C^{-1}$
$(B\otimes C)(D\otimes F)$	=	$BD\otimes CF$
$B\otimes (C\otimes D)$	—	$(B\otimes C)\otimes D$

Big Fact:

If B and C are m-by-m, then the m^2 -by- m^2 linear system $(B \otimes C)z = r$ can be solved in $O(m^3)$ time rather than $O(m^6)$ time.

Capturing Essence with a Kronecker Product

Given

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \qquad A_{ij} \in \mathbb{R}^{m \times m}$$

choose B and C to minimize

$$\|A - B \otimes C\|_{F} = \left\| \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} - \begin{bmatrix} b_{11}C & b_{12}C & b_{13}C \\ b_{21}C & b_{22}C & b_{23}C \\ b_{31}C & b_{32}C & b_{33}C \end{bmatrix} \right\|_{F}$$

The exact solution can be obtained via the SVD..

Solution of the min $|| A - B \otimes C ||$ Problem

• Makes the blocks of A into vectors and arrange block-column major order:

$$\tilde{A} = \operatorname{col}(A_{11}) \left| \operatorname{col}(A_{21}) \right| \operatorname{col}(A_{31}) \left| \operatorname{col}(A_{12}) \right| \cdots \left| \operatorname{col}(A_{33}) \right|$$

• Compute the largest singular value σ_{max} and the corresponding singular vectors u_{max} and v_{max} .

•
$$B_{opt} = \sqrt{\sigma_{max}} \cdot \operatorname{reshape}(v_{max}, 3, 3)).$$

•
$$C_{opt} = \sqrt{\sigma_{max}} \cdot \operatorname{reshape}(u_{max}, m, m)).$$

Conclusions

- It is important to be able to think at the block level because of problem structure.
- It is important to be able to develop block matrix algorithms
- There is a progression...

"Simple" Linear Algebra

 \downarrow

Block Linear Algebra

 $\stackrel{\downarrow}{\downarrow}$ Multilinear Algebra (Thursday)