
Block Matrix Computations

and the

Singular Value Decomposition

A Tale of Two Ideas

Charles F. Van Loan

Department of Computer Science

Cornell University

Supported in part by the NSF contract CCR-9901988.

Block Matrices

A block matrix is a matrix with matrix entries, e.g.,

A =

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

=

A11 A12

A21 A22

 Aij ∈ IR3×2

Operations are pretty much “business as usual”, e.g.

A11 A12

A21 A22

T
A11 A12

A21 A22

 =

AT11 A

T
21

AT12 A
T
22

A11 A12

A21 A22

 =

AT11A11 + A

T
21A21 etc

etc etc

E.g., Strassen Multiplication

 C11 C12
C21 C22

 =
 A11 A12
A21 A22

 B11 B12
B21 B22

P1 = (A11 + A22)(B11 +B22)
P2 = (A21 + A22)B11
P3 = A11(B12 − B22)
P4 = A22(B21 − B11)
P5 = (A11 + A12)B22
P6 = (A21 − A11)(B11 +B12)
P7 = (A12 − A22)(B21 +B22)
C11 = P1 + P4 − P5 + P7
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 + P3 − P2 + P6

Singular Value Decomposition (SVD)

If A ∈ IRm×n then there exist orthogonal U ∈ IRm×m and V ∈ IRn×n so

UTAV = Σ = diag(σ1, . . . ,σn) =

σ1 0
0 σ2
0 0

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values.

Singular Value Decomposition (SVD)

If A ∈ IRm×n then there exist orthogonal U ∈ IRm×m and V ∈ IRn×n so

UTAV = Σ = diag(σ1, . . . ,σn) =

σ1 0
0 σ2
0 0

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values.

Fact 1. The columns of V =
�
v1 · · · vn

]
and U =

�
u1 · · · un

]
are

the right and left singular vectors and they are related:

Avj = σjuj

ATuj = σjvj
j = 1:n

Singular Value Decomposition (SVD)

If A ∈ IRm×n then there exist orthogonal U ∈ IRm×m and V ∈ IRn×n so

UTAV = Σ = diag(σ1, . . . ,σn) =

σ1 0
0 σ2
0 0

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values.

Fact 2. The SVD of A is related to the eigen-decompositions of ATA and
AAT :

V T (ATA)V = diag(σ21, . . . ,σ
2
n)

UT (AAT)U = diag(σ21, . . . ,σ
2
n, 0, . . . , 0� ,� 1

m−n
)

Singular Value Decomposition (SVD)

If A ∈ IRm×n then there exist orthogonal U ∈ IRm×m and V ∈ IRn×n so

UTAV = Σ = diag(σ1, . . . ,σn) =

σ1 0
0 σ2
0 0

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values.

Fact 3. The smallest singular value is the distance from A to the set of rank
deficient matrices:

σmin = min
rank(B) < n

,A− B ,F

Singular Value Decomposition (SVD)

If A ∈ IRm×n then there exist orthogonal U ∈ IRm×m and V ∈ IRn×n so

UTAV = Σ = diag(σ1, . . . ,σn) =

σ1 0
0 σ2
0 0

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values.

Fact 4. The matrix σ1u1v
T
1 is the closest rank-1 matrix to A, i.e., it solves the

problem:

σmin = min
rank(B) = 1

, A− B ,F

The High-Level Message..

• It is important to be able to think at the block level because of problem
structure.

• It is important to be able to develop block matrix algorithms
• There is a progression...

“Simple” Linear Algebra

↓

Block Linear Algebra

↓
Multilinear Algebra

Reasoning
at the

Block Level

Uncontrollability

The system

ẋ = Ax + Bu A ∈ IRn×n , B ∈ IRn×p , n > p

is uncontrollable if

G =
8 t
0 e

A(t−τ)BBTeAτdτ

is singular.

Uncontrollability

The system

ẋ = Ax + Bu A ∈ IRn×n , B ∈ IRn×p , n > p

is uncontrollable if

G =
8 t
0 e

A(t−τ)BBTeAτdτ

is singular.

Ã =

A BBT

0 AT

 −→ eÃt =

F11 F12

0 F22

 −→ G = FT11F12

Nearness to Uncontrollability

The system

ẋ = Ax + Bu A ∈ IRn×n , B ∈ IRn×p , n > p

is nearly uncontrollable if the minimum singular value of

G =
8 t
0 e

A(t−τ)BBTeAτdτ

is small.

Ã =

A BBT

0 A

 −→ eÃt =

F11 F12

0 F22

 −→ G = FT11F12

Developing Algorithms
at the

Block Level

Block Matrix Factorizations: A Challenge

By a block algorithm we mean an algorithm that is rich in matrix-matrix
multiplication.

Is there a block algorithm for Gaussian elimination? I.e., is there a way to
rearrange the O(n3) operations so that the implementation spends at most
O(n2) time not doing matrix-matrix multiplication?

Why?

Re-use ideology: when you touch data, you want to use it a lot.

Not all linear algebra operations are equal in this regard.

Level Example Data Work

1 α = yTz O(n) O(n)

y = y + αz O(n) O(n)

2 y = y + As O(n2) O(n2)

A = A + yzT O(n2) O(n2)

3 A = A +BC O(n2) O(n3)

Here, α is a scalar, y, z vectors, and A, B, C matrices

Scalar LU

a11 a12 a13

a21 a22 a23

a31 a32 a33

=

1 0 0

f21 1 0

f31 f32 1

u11 u12 u13

0 u22 u23

0 0 u33

a11 = u11
a12 = u12
a13 = u13

a21 = f21u11

a31 = f31u11

a22 = f21u12 + u22

a23 = f21u13 + u23

a32 = f31u12 + f32u22

a33 = f31u13 + f32u23 + u33

⇒

u11 = a11
u12 = a12
u13 = a13

f21 = a21/u11

f31 = a31/u11

u22 = a22 − f21u12

u23 = a23 − f21u13

f32 = (a32 − f31u12)/u22

u33 = a33 − f31u13 − f32u23

Recursive Description

If α ∈ IR, v, w ∈ IRn−1, and B ∈ IR(n−1)×(n−1) then

A =

α wT

v B

 =

1 0

v/α L̃

α wT

0 Ũ

is the LU factorization of A if

L̃Ũ = Ã

is the LU factorization of

Ã = B − vwT/α.

Rich in level-2 operations.

Block LU: Recursive Description

L11 0

L21 L22

U11 U12

0 U22

 =

A11 A12

A21 A22

p

n− p
p n− p

A11 = L11U11 Get L11, U11 via LU of A11

A21 = L21U11 Solve triangular systems for L21

A12 = L11U12 Solve triangular systems for U12

A22 = L21U12 + L22U22 Form Ã = A22 − L21U12
↓ ↓ ↓

Get L22, U22 via LU of Ã

Block LU: Recursive Description

L11 0

L21 L22

U11 U12

0 U22

 =

A11 A12

A21 A22

p

n− p
p n− p

A11 = L11U11 Get L11, U11 via LU of A11 O(p3)

A21 = L21U11 Solve triangular systems for L21 O(np2)

A12 = L11U12 Solve triangular systems for U12 O(np2)

A22 = L21U12 + L22U22 Form Ã = A22 − L21U12 O(n2p)

↓ ↓ ↓
Recur → → Get L22, U22 via LU of Ã

Rich in level-3 operations!!!

Consider: Ã = A22 − L21U12

p = 3:

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

−

× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×

p must be “big enough” so that the advantage of data re-use is realized.

Block Algorithms for (Some) Matrix Factorizations

• LU with pivoting:

PA = LU P permutation, L lower triangular, U upper triangular

• Cholesky factorization for symmetric positive definite A:

A = GGT G lower triangular

• The QR factorization for rectangular matrices:

A = QR Q ∈ IRm×m orthogonal R ∈ IRm×n upper triangular

Block Matrix Factorization
Algorithms

via Aggregation

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

QTA = Hn · · ·H1A = R

After 2 steps...

H2H1A =

× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×

.

The H matrices look like this:

H = I − 2vvT v a unit 2-norm column vector

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

QTA = Hn · · ·H1A = R

After 2 steps...

H2H1A =

× × × × ×
0 × × × ×
0 0 ×2 × ×
0 0 ×2 × ×
0 0 ×2 × ×
0 0 ×2 × ×

.

The H matrices look like this:

H = I − 2vvT v a unit 2-norm column vector

Developing a Block QR Factorization

The standard algorithm computes Q as a product of Householder reflections,

QTA = Hn · · ·H1A = R

After 3 steps...

H3H2H1A =

× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×
0 0 0 × ×

.

The H matrices look like this:

H = I − 2vvT v a unit 2-norm column vector

Aggregation

A =
�
A1 A2

]
p n− p

p << n

• Generate the first p Householders based on A1:
Hp · · ·H1A1 = R11 (upper triangular)

• Aggregate H1, . . . ,Hp:
Hp · · ·H1 = I − 2WY T W, Y ∈ IRm×p

• Apply to rest of matrix:
(Hp · · ·H1)A =

�
(Hp · · ·H1)A1 (I − 2WY T)A2

]

The WY Representation

• Aggregation:

(I − 2WY T)(I − 2vvT) = I − 2W+Y
T
+

where

W+ =
�
W (I − 2WY T)v]

Y+ =
�
Y v

]

• Application
A ← (I − 2WY T)A = A− (2W)(Y TA)

The Curse of
Similarity Transforms

A Block Householder Tridiagonalization?

A symmetric. Compute orthogonal Q such that

QTAQ =

× × 0 0 0 0
× × × 0 0 0
0 × × × 0 0
0 0 × × × 0
0 0 0 × × ×
0 0 0 0 × ×

.

The standard algorithm computes Q as a product of Householder reflections,

Q = H1 · · ·Hn−2

A Block Householder Tridiagonalization?

H1 introduces zeros in first column

HT
1 A =

× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×

.

Scrambles rows 2 through 6.

A Block Householder Tridiagonalization?

Must also post-multiply...

HT
1 AH1 =

× × 0 0 0 0
× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×

.

H1 scrambles columns 2 through 6.

A Block Householder Tridiagonalization?

H2 introduces zeros into second column

HT
1 AH1 =

× × 0 0 0 0
× × × × × ×
0 ×2 × × × ×
0 ×2 × × × ×
0 ×2 × × × ×
0 ×2 × × × ×

.

Note that because of H1’s impact, H2 depends on all of A’s entries.

The Hi can be aggregated, but A must be completely updated along the way
destroys the advantage.

Jacobi Methods for Symmetric Eigenproblem

These methods do not initially reduce A to “condensed” form.

They repeatedly reduce the sum-of-squares of the off-diagonal elements.

A =

× × × ×
× × × 0
× × × ×
× 0 × ×

←

1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c

T

A

1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c

The (2,4) subproblem:

 d1 0
0 d2

 =
 c s
−s c

T a22 a24

a42 a44

 c s
−s c

c2 + s2 = 1 and the off-diagonal sum of squares is reduced by 2a224.

Jacobi Methods for Symmetric Eigenproblem

Cycle through subproblems:

(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)

(1,2):

A =

× 0 × ×
0 × × ×
× × × ×
× × × ×

←

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

T

A

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

(1,3):

A =

× × 0 ×
× × × ×
0 × × ×
× × × ×

←

c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

T

A

c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

etc.

Parallel Jacobi

Parallel Ordering:

{(1, 2) , (3, 4)} , {(1, 4) , (2, 3)} , { (1, 3) , (2, 4)}
(1,2):

A =

× 0 × ×
0 × × ×
× × × ×
× × × ×

←

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

T

A

c s 0 0
−s c 0 0
0 0 1 0
0 0 0 1

(3,4):

A =

× × × ×
× × × ×
× × × 0
× × 0 ×

←

1 0 0 0
0 1 0 0
0 0 c s
0 0 −s c

T

A

1 0 0 0
0 1 0 0
0 0 c s
0 0 −s c

Block Jacobi

A =

× × × ×
× × × 0
× × × ×
× 0 × ×

←

I 0 0 0
0 Q11 0 Q12
0 0 I 0
0 Q21 0 Q22

T

A

I 0 0 0
0 Q11 0 Q12
0 0 I 0
0 Q21 0 Q22

The (2,4) subproblem:

D1 0

0 D2

 =

Q11 Q12

Q21 Q22

T

A22 A24

A42 A44

Q11 Q12

Q21 Q22

Convergence analysis requires an understanding of 2-by-2 block matrices that
are orthogonal...

The CS Decomposition

The blocks of an orthogonal matrix have related SVDs:

Q11 Q12

Q21 Q22

 =

U1 0

0 U2

C S

−S C

V1 0

0 V2

T

C = diag(cos(θ1), . . . , cos(θm))

S = diag(sin(θ1), . . . , sin(θm))

UT1 Q11V1 = C

UT1 Q12V2 = S

UT2 Q21V1 = −S
UT2 Q22V2 = C

The Curse of
Sparsity

How to Extract Level-3 Performance?

Suppose we want to solve a large sparse Ax = b problem.

Iterative methods for this problem can often be dramatically accelerated if you
can find a matrix M with two properties:

• It is easy/efficient to solve linear systems of the form Mz = r.

•M approximates the “essence” of A.

M is called a preconditioner and the original iteration is modified to effectively
solve the equivalent linear system (M−1A)x = (M−1b).

Idea: Kronecker Product Preconditioners

 b11 b12
b21 b22

 ⊗

c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

b11c11 b11c12 b11c13 b12c11 b12c12 b12c13

b11c21 b11c22 b11c23 b12c21 b12c22 b12c23

b11c31 b11c32 b11c33 b12c31 b12c32 b12c33

b21c11 b21c12 b21c13 b22c11 b22c12 b22c13

b21c21 b21c22 b21c23 b22c21 b22c22 b22c23

b21c31 b21c32 b21c33 b22c31 b22c32 b22c33

“Replicated Block Structure”

Some Properties and a Big Fact

Properties:

(B ⊗ C)T = BT ⊗ CT

(B ⊗ C)−1 = B−1 ⊗ C−1

(B ⊗ C)(D ⊗ F) = BD ⊗ CF
B ⊗ (C ⊗D) = (B ⊗ C)⊗D

Big Fact:

If B and C are m-by-m, then the m2-by-m2 linear system (B ⊗ C)z = r can
be solved in O(m3) time rather than O(m6) time.

Capturing Essence with a Kronecker Product

Given

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 Aij ∈ IRm×m

choose B and C to minimize

, A− B ⊗ C ,F =

eeeeeeeeeeee

eeeeeeeeeeee

A11 A12 A13
A21 A22 A23
A31 A32 A33

 −

b11C b12C b13C
b21C b22C b23C
b31C b32C b33C

eeeeeeeeeeee

eeeeeeeeeeee
F

The exact solution can be obtained via the SVD..

Solution of the min ,A−B ⊗ C , Problem

• Makes the blocks of A into vectors and arrange block-column major order:

Ã =
�
col(A11) col(A21) col(A31) col(A12) · · · col(A33)

]

• Compute the largest singular value σmax and the corresponding singular
vectors umax and vmax.

• Bopt = √σmax · reshape(vmax, 3, 3)).

• Copt = √σmax · reshape(umax,m,m)).

Conclusions

• It is important to be able to think at the block level because of problem
structure.

• It is important to be able to develop block matrix algorithms
• There is a progression...

“Simple” Linear Algebra

↓

Block Linear Algebra

↓
Multilinear Algebra (Thursday)

