Instance Recognition

CS 6980: Visual Recognition
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Problem

* (Given a bounding box in an image, extract similar
regions in the image for a database of images

* Analogy: Given a term or set of terms, look up and
retrieve pages that are most relevant for the term

* Assumption: The bounding box can be found
without much variation in the database



Example
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Video Google: A Text Retrieval Approach to Object Matching in Videos
Josef Sivic and Andrew Zisserman
ICCV 2003

link to demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
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Approacn

Text retrieval systems

Documents are parsed into words
Words are stemmed

Stored in an inverted file index

Documents are matched using TF-IDF score



Example

* The advances in image recognition extend far beyond cool
social apps. Medical startups claim they'll soon be able to
use computers to read X-rays, MRIs, and CT scans more
rapidly and accurately than radiologists, to diagnose
cancer earlier and less invasively, and to accelerate the
search for life-saving pharmaceuticals. Better image
recognition is crucial to unleashing improvements in
robotics, autonomous drones, and, of course, self-driving
cars—a development so momentous that we made it a cover
story in June

An excerpt from Fortune magazine on Deep learning http://fortune.com/ai-artificial-intelligence-deep-machine-learning/
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An excerpt from Fortune magazine on Deep learning http://fortune.com/ai-artificial-intelligence-deep-machine-learning/
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One option - Segmentation?

Will not create repeatable segments that can be matched



Worads - Visual W .

Solution proposed: Very local patches that can be well
represented. Will see more about these In next class



Words Vlsua\ WOrds’7

Visual words obtained by local interest operators (MSER and
SA) that are described using SIFT



Stemming”?

* Centroids - obtained by clustering visual words and
using centroid for representation



MS and SA “Visual Words”
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Figure 2: Samples from the clusters corresponding to a single vi-
sual word. (a) Two examples of clusters of Shape Adapted regions.
(b) Two examples of clusters of Maximally Stable regions.



Stop words
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Spatial consistency

e The matches are scored for
being spatially consistent

 More matches in a
neighbourhood indicate high
likelihood of a correct match

* Obtained by considering a
region from 15 nearest
neighbour matches, more
matches in the region increase
the support for the match




Scoring of words

Words are scored using TF-IDF

Each document is represented by a k terms t1.. .1k

n;d N
ti = — log —
nd n;
where njyi1s the number of occurrences of word /in document d
and nyis the number of words in document d.

n;is the number of term /in the whole database

and N is the number of documents in the database.
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Conclusion

* L ocal features enable us to obtain word analogues
for representing images

* Exact instance recognition can be obtained by
using a text retrieval approach to match sets of
local features

* Limitations: this particular approach (using only
features) cannot generalise to match categories
unless



Next class

* A brief overview of local feature representation



