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Problem

• Given a bounding box in an image, extract similar 
regions in the image for a database of images 

• Analogy: Given a term or set of terms, look up and 
retrieve pages that are most relevant for the term 

• Assumption: The bounding box can be found 
without much variation in the database



Example

Video Google: A Text Retrieval Approach to Object Matching in Videos 
Josef Sivic and Andrew Zisserman 

ICCV 2003

link to demo: http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
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Approach
• Text retrieval systems 

• Documents are parsed into words 

• Words are stemmed 

• Stored in an inverted file index 

• Documents are matched using TF-IDF score



Example

• The advances in image recognition extend far beyond cool 
social apps. Medical startups claim they’ll soon be able to 
use computers to read X-rays, MRIs, and CT scans more 
rapidly and accurately than radiologists, to diagnose 
cancer earlier and less invasively, and to accelerate the 
search for life-saving pharmaceuticals. Better image 
recognition is crucial to unleashing improvements in 
robotics, autonomous drones, and, of course, self-driving 
cars—a development so momentous that we made it a cover 
story in June

An excerpt from Fortune magazine on Deep learning http://fortune.com/ai-artificial-intelligence-deep-machine-learning/
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Words - Visual Words?
document) in which the word occurs.
A text is retrieved by computing its vector of word

frequencies and returning the documents with the closest
(measured by angles) vectors. In addition the match on the
ordering and separation of the words may be used to rank
the returned documents.

Paper outline: Here we explore visual analogies of each
of these steps. Section 2 describes the visual descriptors
used. Section 3 then describes their vector quantization
into visual ‘words’, and section 4 weighting and indexing
for the vector model. These ideas are then evaluated on a
ground truth set of frames in section 5. Finally, a stop list
and ranking (by a match on spatial layout) are introduced in
section 6, and used to evaluate object retrieval throughout
two feature films: ‘Run Lola Run’ (‘Lola Rennt’) [Tykwer,
1999], and ‘Groundhog Day’ [Ramis, 1993].
Although previous work has borrowed ideas from the

text retrieval literature for image retrieval from databases
(e.g. [15] used the weighting and inverted file schemes) to
the best of our knowledge this is the first systematic appli-
cation of these ideas to object retrieval in videos.

2. Viewpoint invariant description
Two types of viewpoint covariant regions are computed for
each frame. The first is constructed by elliptical shape adap-
tation about an interest point. The method involves itera-
tively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of
a Laplacian, and the shape by maximizing intensity gradient
isotropy over the elliptical region [2, 4]. The implementa-
tion details are given in [8, 13]. This region type is referred
to as Shape Adapted (SA).
The second type of region is constructed by selecting ar-

eas from an intensity watershed image segmentation. The
regions are those for which the area is approximately sta-
tionary as the intensity threshold is varied. The implemen-
tation details are given in [7]. This region type is referred to
as Maximally Stable (MS).
Two types of regions are employed because they detect

different image areas and thus provide complementary rep-
resentations of a frame. The SA regions tend to be centered
on corner like features, and the MS regions correspond to
blobs of high contrast with respect to their surroundings
such as a dark window on a gray wall. Both types of re-
gions are represented by ellipses. These are computed at
twice the originally detected region size in order for the im-
age appearance to be more discriminating. For a 720 576
pixel video frame the number of regions computed is typi-
cally 1600. An example is shown in Figure 1.
Each elliptical affine invariant region is represented by

a 128-dimensional vector using the SIFT descriptor devel-

Figure 1: Top row: Two frames showing the same scene from
very different camera viewpoints (from the film ‘Run Lola Run’).
Middle row: frames with detected affine invariant regions super-
imposed. ‘Maximally Stable’ (MS) regions are in yellow. ‘Shape
Adapted’ (SA) regions are in cyan. Bottom row: Final matched
regions after indexing and spatial consensus. Note that the corre-
spondences define the scene overlap between the two frames.

oped by Lowe [5]. In [9] this descriptor was shown to be su-
perior to others used in the literature, such as the response of
a set of steerable filters [8] or orthogonal filters [13], and we
have also found SIFT to be superior (by comparing scene
retrieval results against ground truth as in section 5.1). The
reason for this superior performance is that SIFT, unlike the
other descriptors, is designed to be invariant to a shift of a
few pixels in the region position, and this localization er-
ror is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vec-
tors which are invariant to affine transformations of the im-
age. Note, both region detection and the description is com-
puted on monochrome versions of the frames, colour infor-
mation is not currently used in this work.

To reduce noise and reject unstable regions, information
is aggregated over a sequence of frames. The regions de-
tected in each frame of the video are tracked using a simple
constant velocity dynamical model and correlation. Any re-
gion which does not survive for more than three frames is
rejected. Each region of the track can be regarded as an
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document) in which the word occurs.
A text is retrieved by computing its vector of word

frequencies and returning the documents with the closest
(measured by angles) vectors. In addition the match on the
ordering and separation of the words may be used to rank
the returned documents.

Paper outline: Here we explore visual analogies of each
of these steps. Section 2 describes the visual descriptors
used. Section 3 then describes their vector quantization
into visual ‘words’, and section 4 weighting and indexing
for the vector model. These ideas are then evaluated on a
ground truth set of frames in section 5. Finally, a stop list
and ranking (by a match on spatial layout) are introduced in
section 6, and used to evaluate object retrieval throughout
two feature films: ‘Run Lola Run’ (‘Lola Rennt’) [Tykwer,
1999], and ‘Groundhog Day’ [Ramis, 1993].
Although previous work has borrowed ideas from the

text retrieval literature for image retrieval from databases
(e.g. [15] used the weighting and inverted file schemes) to
the best of our knowledge this is the first systematic appli-
cation of these ideas to object retrieval in videos.

2. Viewpoint invariant description
Two types of viewpoint covariant regions are computed for
each frame. The first is constructed by elliptical shape adap-
tation about an interest point. The method involves itera-
tively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of
a Laplacian, and the shape by maximizing intensity gradient
isotropy over the elliptical region [2, 4]. The implementa-
tion details are given in [8, 13]. This region type is referred
to as Shape Adapted (SA).
The second type of region is constructed by selecting ar-

eas from an intensity watershed image segmentation. The
regions are those for which the area is approximately sta-
tionary as the intensity threshold is varied. The implemen-
tation details are given in [7]. This region type is referred to
as Maximally Stable (MS).
Two types of regions are employed because they detect

different image areas and thus provide complementary rep-
resentations of a frame. The SA regions tend to be centered
on corner like features, and the MS regions correspond to
blobs of high contrast with respect to their surroundings
such as a dark window on a gray wall. Both types of re-
gions are represented by ellipses. These are computed at
twice the originally detected region size in order for the im-
age appearance to be more discriminating. For a 720 576
pixel video frame the number of regions computed is typi-
cally 1600. An example is shown in Figure 1.
Each elliptical affine invariant region is represented by

a 128-dimensional vector using the SIFT descriptor devel-

Figure 1: Top row: Two frames showing the same scene from
very different camera viewpoints (from the film ‘Run Lola Run’).
Middle row: frames with detected affine invariant regions super-
imposed. ‘Maximally Stable’ (MS) regions are in yellow. ‘Shape
Adapted’ (SA) regions are in cyan. Bottom row: Final matched
regions after indexing and spatial consensus. Note that the corre-
spondences define the scene overlap between the two frames.

oped by Lowe [5]. In [9] this descriptor was shown to be su-
perior to others used in the literature, such as the response of
a set of steerable filters [8] or orthogonal filters [13], and we
have also found SIFT to be superior (by comparing scene
retrieval results against ground truth as in section 5.1). The
reason for this superior performance is that SIFT, unlike the
other descriptors, is designed to be invariant to a shift of a
few pixels in the region position, and this localization er-
ror is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vec-
tors which are invariant to affine transformations of the im-
age. Note, both region detection and the description is com-
puted on monochrome versions of the frames, colour infor-
mation is not currently used in this work.

To reduce noise and reject unstable regions, information
is aggregated over a sequence of frames. The regions de-
tected in each frame of the video are tracked using a simple
constant velocity dynamical model and correlation. Any re-
gion which does not survive for more than three frames is
rejected. Each region of the track can be regarded as an
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document) in which the word occurs.
A text is retrieved by computing its vector of word

frequencies and returning the documents with the closest
(measured by angles) vectors. In addition the match on the
ordering and separation of the words may be used to rank
the returned documents.

Paper outline: Here we explore visual analogies of each
of these steps. Section 2 describes the visual descriptors
used. Section 3 then describes their vector quantization
into visual ‘words’, and section 4 weighting and indexing
for the vector model. These ideas are then evaluated on a
ground truth set of frames in section 5. Finally, a stop list
and ranking (by a match on spatial layout) are introduced in
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text retrieval literature for image retrieval from databases
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a Laplacian, and the shape by maximizing intensity gradient
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oped by Lowe [5]. In [9] this descriptor was shown to be su-
perior to others used in the literature, such as the response of
a set of steerable filters [8] or orthogonal filters [13], and we
have also found SIFT to be superior (by comparing scene
retrieval results against ground truth as in section 5.1). The
reason for this superior performance is that SIFT, unlike the
other descriptors, is designed to be invariant to a shift of a
few pixels in the region position, and this localization er-
ror is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vec-
tors which are invariant to affine transformations of the im-
age. Note, both region detection and the description is com-
puted on monochrome versions of the frames, colour infor-
mation is not currently used in this work.

To reduce noise and reject unstable regions, information
is aggregated over a sequence of frames. The regions de-
tected in each frame of the video are tracked using a simple
constant velocity dynamical model and correlation. Any re-
gion which does not survive for more than three frames is
rejected. Each region of the track can be regarded as an
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Stemming?

• Centroids - obtained by clustering visual words and 
using centroid for representation



MS and SA “Visual Words”

SA

MS



Stop words

• In text retrieval, in order stop 
words (most common words 
such as and, or etc) are 
removed 

• Similar strategy is used in 
VideoGoogle

Figures 6 show the benefit of imposing a stop list – the
very common visual words occur at many places in the im-
age and are responsible for mis-matches. Most of these are
removed once the stop list is applied. The removal of the
remaining mis-matches is described next.

6.2. Spatial consistency
Google increases the ranking for documents where the
searched for words appear close together in the retrieved
texts (measured by word order). This analogy is especially
relevant for querying objects by a subpart of the image,
where matched covariant regions in the retrieved frames
should have a similar spatial arrangement [12, 14] (e.g.
compactness) to those of the outlined region in the query
image. The idea is implemented here by first retrieving
frames using the weighted frequency vector alone, and then
re-ranking them based on a measure of spatial consistency.
Spatial consistency can be measured quite loosely sim-

ply by requiring that neighbouring matches in the query re-
gion lie in a surrounding area in the retrieved frame. It can
also be measured very strictly by requiring that neighbour-
ing matches have the same spatial layout in the query re-
gion and retrieved frame. In our case the matched regions
provide the affine transformation between the query and re-
trieved image so a point to point map is available for this
strict measure.
We have found that the best performance is obtained in

the middle of this possible range of measures. A search
area is defined by the 15 nearest neighbours of each match,
and each region which also matches within this area casts a
vote for that frame. Matches with no support are rejected.
The total number of votes determines the rank of the frame.
This works very well as is demonstrated in the last row of
figure 6, which shows the spatial consistency rejection of in-
correct matches. The object retrieval examples of figures 7
to 9 employ this ranking measure and amply demonstrate
its usefulness.
Other measures which take account of the affine map-

ping between images may be required in some situations,
but this involves a greater computational expense.

6.3. Object retrieval
Implementation – use of inverted files: In a classical file
structure all words are stored in the document they appear
in. An inverted file structure has an entry (hit list) for each
word where all occurrences of the word in all documents
are stored. In our case the inverted file has an entry for each
visual word, which stores all the matches, i.e. occurrences
of the same word in all frames. The document vector is
very sparse and use of an inverted file makes the retrieval
very fast. Querying a database of 4k frames takes about 0.1
second with a Matlab implementation on a 2GHz pentium.
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Figure 5: Frequency of MS visual words among all 3768
keyframes of Run Lola Run (a) before, and (b) after, application
of a stoplist.

Figure 6: Matching stages. Top row: (left) Query region and
(right) its close-up. Second row: Original word matches. Third
row: matches after using stop-list, Last row: Final set of matches
after filtering on spatial consistency.
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Spatial consistency
• The matches are scored for 

being spatially consistent 

• More matches in a 
neighbourhood indicate high 
likelihood of a correct match 

• Obtained by considering a 
region from 15 nearest 
neighbour matches, more 
matches in the region increase 
the support for the match
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of the same word in all frames. The document vector is
very sparse and use of an inverted file makes the retrieval
very fast. Querying a database of 4k frames takes about 0.1
second with a Matlab implementation on a 2GHz pentium.

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

4000
Frequency of visual words over all keyframes

Word rank (sorted by frequency)

W
or

d 
fre

qu
en

cy

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350
Frequency of visual words over all keyframes

Word rank (sorted by frequency)

W
or

d 
fre

qu
en

cy

(a) (b)

Figure 5: Frequency of MS visual words among all 3768
keyframes of Run Lola Run (a) before, and (b) after, application
of a stoplist.

Figure 6: Matching stages. Top row: (left) Query region and
(right) its close-up. Second row: Original word matches. Third
row: matches after using stop-list, Last row: Final set of matches
after filtering on spatial consistency.

6

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 

0-7695-1950-4/03 $17.00 © 2003 IEEE 



Scoring of words
• Words are scored using TF-IDF 

• Each document is represented by a k terms t1…tk 

• where nid is the number of occurrences of word i in document d 

• and nd is the number of words in document d. 

• ni is the number of term i in the whole database 

• and N is the number of documents in the database.

The standard weighting is known as ‘term frequency–
inverse document frequency’, tf-idf, and is computed as
follows. Suppose there is a vocabulary of k words,
then each document is represented by a k-vector Vd
t1 ti tk of weighted word frequencies with com-
ponents

ti
nid
nd
log
N
ni

where nid is the number of occurrences of word i in doc-
ument d, nd is the total number of words in the document
d, ni is the number of occurrences of term i in the whole
database and N is the number of documents in the whole
database. The weighting is a product of two terms: the
word frequency nid nd , and the inverse document frequency
logN ni. The intuition is that word frequency weights
words occurring often in a particular document, and thus de-
scribe it well, whilst the inverse document frequency down-
weights words that appear often in the database.
At the retrieval stage documents are ranked by their nor-

malized scalar product (cosine of angle) between the query
vectorVq and all document vectors Vd in the database.
In our case the query vector is given by the visual words

contained in a user specified sub-part of a frame, and the
other frames are ranked according to the similarity of their
weighted vectors to this query vector. Various weighting
models are evaluated in the following section.

5. Experimental evaluation of scene
matching using visual words

Here the objective is to match scene locations within a
closed world of shots [12]. The method is evaluated on 164
frames from 48 shots taken at 19 different 3D locations in
the movie Run Lola Run. We have between 4-9 frames from
each location. Examples of three frames from each of four
different locations are shown in figure 3a. There are signif-
icant viewpoint changes over the triplets of frames shown
for the same location. Each frame of the triplet is from a
different (and distant in time) shot in the movie.
In the retrieval tests the entire frame is used as a query

region. The retrieval performance is measured over all 164
frames using each in turn as a query region. The correct re-
trieval consists of all the other frames which show the same
location, and this ground truth is determined by hand for the
complete 164 frame set.
The retrieval performance is measured using the average

normalized rank of relevant images [10] given by

Rank
1
NNrel

Nrel

∑
i 1
Ri

Nrel Nrel 1
2

where Nrel is the number of relevant images for particular
query image, N is the size of the image set, and Ri is the

rank of the ith relevant image. In essence Rank is zero if all
Nrel images are returned first. The Rank measure lies in the
range 0 to 1, with 0 5 corresponding to random retrieval.

5.1. Ground truth image set results
Figure 3b shows the average normalized rank using each
image of the data set as a query image with the tf-idfweight-
ing described in section 4. The benefit in having two feature
types is evident. The combination of both clearly gives bet-
ter performance than either one alone. The performance of
each feature type varies for different frames or locations.
For example, in frames 46-49 MS regions perform better,
and conversely for frames 126-127 SA regions are superior.
The retrieval ranking is perfect for 17 of the 19 locations,

even those with significant viewpoint changes. The ranking
results are less impressive for images 61-70 and 119-121,
though even in these cases the frame matches are not missed
just low ranked. This is due to a lack of regions in the over-
lapping part of the scene, see figure 4. This is not a problem
of vector quantization (the regions that are in common are
correctly matched), but due to few features being detected
for this type of scene (pavement texture). We return to this
point in section 7.
Table 1 shows the mean of the Rank measure computed

from all 164 images for three standard text retrieval term
weighting methods [1]. The tf-idf weighting outperforms
both the binary weights (i.e. the vector components are one
if the image contains the descriptor, zero otherwise) and
term frequency weights (the components are the frequency
of word occurrence). The differences are not very signifi-
cant for the ranks averaged over the whole ground truth set.
However, for particular frames (e.g. 49) the difference can
be as high as 0.1.
The average precision recall curve for all frames is

shown in figure 3c. For each frame as a query, we have
computed precision as the number of relevant images (i.e.
of the same location) relative to the total number of frames
retrieved, and recall as the number of correctly retrieved
frames relative to the number of relevant frames. Again the
benefit of combining the two feature types is clear.
These retrieval results demonstrate that there is no loss

of performance in using vector quantization (visual words)
compared to direct nearest neighbour (or ε-nearest neigh-
bour) matching of invariants [12].
This ground truth set is also used to learn the system pa-

rameters including: the number of cluster centres; the mini-
mum tracking length for stable features; and the proportion
of unstable descriptors to reject based on their covariance.

6. Object retrieval
In this section we evaluate searching for objects throughout
the entire movie. The object of interest is specified by the
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Example

Figures 6 show the benefit of imposing a stop list – the
very common visual words occur at many places in the im-
age and are responsible for mis-matches. Most of these are
removed once the stop list is applied. The removal of the
remaining mis-matches is described next.

6.2. Spatial consistency
Google increases the ranking for documents where the
searched for words appear close together in the retrieved
texts (measured by word order). This analogy is especially
relevant for querying objects by a subpart of the image,
where matched covariant regions in the retrieved frames
should have a similar spatial arrangement [12, 14] (e.g.
compactness) to those of the outlined region in the query
image. The idea is implemented here by first retrieving
frames using the weighted frequency vector alone, and then
re-ranking them based on a measure of spatial consistency.
Spatial consistency can be measured quite loosely sim-

ply by requiring that neighbouring matches in the query re-
gion lie in a surrounding area in the retrieved frame. It can
also be measured very strictly by requiring that neighbour-
ing matches have the same spatial layout in the query re-
gion and retrieved frame. In our case the matched regions
provide the affine transformation between the query and re-
trieved image so a point to point map is available for this
strict measure.
We have found that the best performance is obtained in

the middle of this possible range of measures. A search
area is defined by the 15 nearest neighbours of each match,
and each region which also matches within this area casts a
vote for that frame. Matches with no support are rejected.
The total number of votes determines the rank of the frame.
This works very well as is demonstrated in the last row of
figure 6, which shows the spatial consistency rejection of in-
correct matches. The object retrieval examples of figures 7
to 9 employ this ranking measure and amply demonstrate
its usefulness.
Other measures which take account of the affine map-

ping between images may be required in some situations,
but this involves a greater computational expense.

6.3. Object retrieval
Implementation – use of inverted files: In a classical file
structure all words are stored in the document they appear
in. An inverted file structure has an entry (hit list) for each
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Figures 6 show the benefit of imposing a stop list – the
very common visual words occur at many places in the im-
age and are responsible for mis-matches. Most of these are
removed once the stop list is applied. The removal of the
remaining mis-matches is described next.

6.2. Spatial consistency
Google increases the ranking for documents where the
searched for words appear close together in the retrieved
texts (measured by word order). This analogy is especially
relevant for querying objects by a subpart of the image,
where matched covariant regions in the retrieved frames
should have a similar spatial arrangement [12, 14] (e.g.
compactness) to those of the outlined region in the query
image. The idea is implemented here by first retrieving
frames using the weighted frequency vector alone, and then
re-ranking them based on a measure of spatial consistency.
Spatial consistency can be measured quite loosely sim-

ply by requiring that neighbouring matches in the query re-
gion lie in a surrounding area in the retrieved frame. It can
also be measured very strictly by requiring that neighbour-
ing matches have the same spatial layout in the query re-
gion and retrieved frame. In our case the matched regions
provide the affine transformation between the query and re-
trieved image so a point to point map is available for this
strict measure.
We have found that the best performance is obtained in

the middle of this possible range of measures. A search
area is defined by the 15 nearest neighbours of each match,
and each region which also matches within this area casts a
vote for that frame. Matches with no support are rejected.
The total number of votes determines the rank of the frame.
This works very well as is demonstrated in the last row of
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Example

Example queries: Figures 7 and 8 show results of two
object queries for the movie ‘Run Lola Run’, and figure 9
shows the result of an object query on the film ‘Ground-
hog day’. Both movies contain about 4K keyframes. Both
the actual frames returned and their ranking are excellent –
as far as it is possible to tell, no frames containing the ob-
ject are missed (no false negatives), and the highly ranked
frames all do contain the object (good precision).
The object query results do demonstrate the expressive

power of the visual vocabulary. The visual words learnt for
Lola are used unchanged for the Groundhog Day retrieval.

7. Summary and Conclusions
The analogy with text retrieval really has demonstrated
its worth: we have immediate run-time object retrieval
throughout a movie database, despite significant viewpoint
changes in many frames. The object is specified as a sub-
part of an image, and this has proved sufficient for quasi-
planar rigid objects.
There are, of course, improvements that can be made

mainly to overcome problems in the visual processing. Low
rankings are currently due to a lack of visual descriptors for
some scene types. However, the framework allows other ex-
isting affine co-variant regions to be added (they will define
an extended visual vocabulary), for example those of [17].
Another improvement would be to define the object of in-
terest over more than a single frame to allow for search on
all its visual aspects.
The text retrieval analogy also raises interesting ques-

tions for future work. In text retrieval systems the tex-
tual vocabulary is not static, growing as new documents are
added to the collection. Similarly, we do not claim that our
vector quantization is universal for all images. So far we
have learnt vector quantizations sufficient for two movies,
but ways of upgrading the visual vocabulary will need to be
found. One could think of learning visual vocabularies for
different scene types (e.g. city scape vs a forest).
Finally, we now have the intriguing possibility of follow-

ing other successes of the text retrieval community, such as
latent semantic indexing to find content, and automatic clus-
tering to find the principal objects that occur throughout the
movie.

Acknowledgements We are grateful to David Lowe, Jiri
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plying their region detector/descriptor codes. Thanks to Andrew
Blake, Mark Everingham, Andrew Fitzgibbon, Krystian Mikola-
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Figure 7: Object query example I. First row: (left) frame with
user specified query region (a poster) in yellow, and (right) close
up of the query region. The four remaining rows show (left) the
1st, 12th, 16th, and 20th retrieved frames with the identified re-
gion of interest shown in yellow, and (right) a close up of the im-
age with matched elliptical regions superimposed. In this case 20
keyframes were retrieved: six from the same shot as the query
image, the rest from different shots at later points in the movie.
All retrieved frames contain the specified object. Note the poster
appears on various billboards throughout the movie (and Berlin).
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Example

Figure 8: Object query example II. Run Lola Run. First row:
(left) query region, and (right) its close up. Next rows: The 9th,
16th and 25th retrieved frames (left) and object close-ups (right)
with matched regions. 33 keyframes were retrieved. 31 contained
the object. The two incorrect frames were ranked 29 and 30.

Figure 9: Object query example III. Groundhog Day. First row:
(left) query region, and (right) its close up. Next rows: The 12th,
35th and 50th retrieved frames (left) and object close-ups with
matched regions (right). 73 keyframes were retrieved of which 53
contained the object. The first incorrect frame was ranked 27th.
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Conclusion
• Local features enable us to obtain word analogues 

for representing images 

• Exact instance recognition can be obtained by 
using a text retrieval approach to match sets of 
local features 

• Limitations: this particular approach (using only 
features) cannot generalise to match categories 
unless 



Next class

• A brief overview of local feature representation


