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Abstract

We introduce a monaural audio source separation framework
using a latent generative model. Traditionally, discriminative
training for source separation is proposed using deep neural
networks or non-negative matrix factorization. In this paper,
we propose a principled generative approach using variational
autoencoders (VAE) for audio source separation. VAE com-
putes efficient Bayesian inference which leads to a continuous
latent representation of the input data(spectrogram). It contains
a probabilistic encoder which projects an input data to latent
space and a probabilistic decoder which projects data from la-
tent space back to input space. This allows us to learn a ro-
bust latent representation of sources corrupted with noise and
other sources. The latent representation is then fed to the de-
coder to yield the separated source. Both encoder and decoder
are implemented via multilayer perceptron (MLP). In contrast
to prevalent techniques, we argue that VAE is a more princi-
pled approach to source separation. Experimentally, we find
that the proposed framework yields reasonable improvements
when compared to baseline methods available in the literature
i.e. DNN and RNN with different masking functions and au-
toencoders. We show that our method performs better than best
of the relevant methods with ~ 2 dB improvement in the source
to distortion ratio.

Index Terms - Autoencoder, Variational inference, Latent vari-
able, Source separation, Generative models, Deep learning
"

1. Introduction

The objective of Monaural Audio Source Separation (MASS)
is to extract independent audio sources from an audio mixture
in a single channel. Source separation is a classic problem and
has wide applications in automatic speech recognition, biomed-
ical imaging, and music editing. The problem is very chal-
lenging since it’s an ill-posed problem i.e. there can be many
combinations of solutions and the objective is to estimate the
best possible solution. Traditionally, the problem has been well
addressed by non-negative matrix factorization(NMF) [1] and
PLCA[2] . These models learn the latent bases which are spe-
cific to a source from clean training data. These latent bases are
later utilized for separating source from the mixture signal [3].
NMF and PLCA are generative models which work under the
assumption that the data can be represented as the linear com-
position of low-rank latent bases. Several extensions of NMF
and LVM have been employed in literature along with tempo-
ral, sparseness constraints [4, 1, 5]. Though NMF and PLCA are
scalable, these techniques do not learn discriminative bases and
therefore yield worse results when compared to models where
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bases are learned on mixtures. Discriminative NMF [6] has
been proposed in order to learn mixture specific bases which in
turn has shown some improvement over the NMF. NMF based
approaches assume that data is a linear combination of latent
bases and it may be a limiting factor for real-world data. To
model the non-linearity, deep neural networks(DNN), in vari-
ous different configurations have been used in source separation
[7, 8, 9]. The denoising auto-encoder (DAE) is a special type
of fully connected feedforward neural networks which can effi-
ciently de-noise a signal [10]. They are used to learn robust low-
dimensional features even when the inputs are perturbed with
some noise [11] . DAEs have been used for source separation
with input as a mixed signal and the output as the target source,
both in form of spectral frames [12]. Though DAEs have a lot
of advantages, it comes with the cost of high complexity and the
loss in spatial information. Fully connected DAEs cannot cap-
ture the 2D (spectral-temporal) structures of the spectrogram of
the input and output signals and have a lot of parameters to be
optimized and hence the system is highly complex. The fully
convolutional denoising autoencoders [13] maps the distorted
speech signal to its clean speech signal with an application to
speech enhancement. Recently, a deep (stacked) fully convo-
lutional DAEs (CDAES) is used for the audio single channel
source separation (SCSS) [14]. However, current deep learning
approaches for source separation are still computationally ex-
pensive with a lot of parameters to tune and not scalable. NMF
based approaches, on the other hand, work with the simplistic
assumption of linearity and the inability to learn discriminative
bases effectively.

In this paper, our goal is to have best of both worlds - 1)
To learn a set of bases effectively (which is done by encoder
and decoder in VAE) and ii) Inexpensive computation. More-
over, unlike other methods, VAE can also yield the confidence
scores of how good or bad are the separated sources, based on
the average posterior variance estimates. VAE has shown state-
of-the-art in image generation, text generation and reinforce-
ment learning [15, 16, 17, 18, 19]. In this paper, we show the
effectiveness of VAE for audio source separation. We compare
the performance of VAE with DNN/RNN architectures and au-
toencoders. VAE performs better than all methods in terms of a
source to distortion ratio (SDR) with ~ 2 dB improvement.

2. Variational Autoencoder

The variational autoencoder [15] is a generative model which
assumes that an observed variable x is generated from an under-
lying random process with latent variable z as random variables.
In this paper, we aim to learn a robust latent representation of a
noisy signal i.e. P(z|z) &~ P(z|x + n), where z and n denotes
signal and noise respectively. While estimating z for a source,
we consider other sources as noise. The latent variable z is fur-
ther used to estimate the clean (separated) source. Fig. 1 shows
the graphical model of VAE.
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Figure 1: Graphical model of VAE. T is total number of spec-
tral frames. Dotted line denotes the inference of latent variable
while solid line denotes the generative model of observed vari-

able.

Mathematically, the model can be represented as:

Py(x,2) = Py(x|2)Py(z) (1)
Py(z) = /Pg(x|z)Pg(z)dz 2)

VAE assumes that the likelihood function Py (z|z) and prior
distribution Py(z) come from a parametric family of distribu-
tions with parameters 6. The prior distribution is assumed to be
a Gaussian with zero mean and unit variance:

P(2) = N(2;0, I) 3

The likelihood, is often modeled using an independent Gaussian
distribution whose parameters are dependent on z,

Py(x|2) = N (w; pe(2), 05 (2)1) C

where, pp(z) and o3 (2) are non-linear functions of z which
is modeled using a neural network. The posterior distribution
Py(z|x) can be written by Bayes’s formula,
Po(z|z) P(2)
Po(z|z) = J Po(z, z)dz )
However, the denominator is often intractable. Sampling meth-
ods like MCMC can be employed, but these are often too slow
and computationally expensive. Variational Bayesian meth-
ods solves this problem by approximating the intractable true
posterior Py(z|x) with some tractable parametric distribution
ge(z|x). The marginal likelihood can be written as [15]

log Py(z) = Dk rlgs(2|2)||Po(2|x)] + L(6,32)  (6)
where,
[:(97 ¢; .’E) = Etw(z\z) [lOg Py (:E7 Z) - lOg q¢(Z|:E)] N

where, £ and Dgr denotes the expectation and KL diver-
gence respectively. The above marginal likelihood is again
intractable due to KL divergence between approximate and
true posterior, since we don’t know true distribution. Since,
Dgkr > 0, L(0,¢;x) is called as (variational) lower bound
and act as a surrogate for optimizing the marginal likelihood.
Re-parameterizing the random variable z and optimizing with
respect to 6 and ¢ yields [15],
L
0,¢ = argmax L(0,¢ : x) ~ argmax Zlog Py(x|2")
0,9 0,9

=1

+ Drcrlgs(2'2)||P(2)] ®)

Code and data: github.com/anurendra/vae_sep

where, 0 and ¢ are the parameters of multi layered perceptrons
(MLP) for encoders and decoders respectively, L denotes the
total number of samples used in sampling. Often a single sam-
ple is enough for learning 6 and ¢, if we have enough training
data [15]. Encoders and decoders are implemented via MLP
networks with parameters 6 and ¢ respectively. Normally, one
layer neural network is used for encoders and decoder in VAE.
However, number of layers can be increased for increasing the
non-linearity. We call these as deep-VAE in the paper and show
that deep- VAE performs better than VAE.

3. Source Separation

The audio single channel source separation (SCSS) aims to esti-
mate the sources s;(t), Vi from a mixed signal y(¢) made up of
I sources, y(t) = Zle s:(t). We perform computations in the
short time Fourier transform (STFT) domain. Given the STFT
of the mixed signal y(t), the primary goal is to estimate the
STFT of each source $;(t) in the mixture. Each of the sources
is modeled using a single VAE i.e. a specific encoder and de-
coder for each source is learned. Fig. 2 shows the architecture
of VAE used.
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Figure 2: Architecture of VAE for audio source separation

We propose to use as many VAEs as the number of sources
to be separated from the mixed signal. Each VAE deals with
the mixed signal as a combination of a target source and back-
ground noise. These VAEs are trained to estimate the corre-
sponding target sources from other background sources existing
in the mixed signal. While training, VAEs map the magnitude
spectrogram of the mixture to the magnitude spectrogram of
the corresponding target sources. The inputs and outputs of the
VAE:s are 2D-segments from the magnitude spectrograms of the
mixed and target signals respectively. This facilitates the VAEs
capability to capture the time-frequency characteristics of each
source by spanning multiple time frames.

3.0.1. Training and Testing of VAEs for Source Separation

Let’s assume that we have training data as mixed signals and
their corresponding clean sources. Let Y;, be the magnitude
spectrogram of the mixed signal and .S; be the magnitude spec-
trogram of the clean source 7. The VAE of source 7 is trained to
maximize the following likelihood function :

L

6,¢ = argmax Y _log Py(Si|2') + Dxrgs(2'[Vir)[| P(2)]
b 1=

In practice, L = 1 in our set up leads to good learning of
encoder and decoder. Given the trained VAEs, the magnitude
spectrogram Y of the mixed signal is passed through all the
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Figure 3: Performance comparison of VAE ([513 128 64]) and deep VAE ([513 256 192 128 64]) with the baseline i.e. DNN and RNN

with different masking function [7] and autoencoders [14].

trained VAEs. The output of the VAE of source i is the estimate
of the spectrogram S; of source 4.

4. Experiments

In this section, we describe the experiments done for parameter
selection of the model and it’s comparative advantage over other
existing deep learning architectures. We do parameter selection
for latent dimension (K), batch size and encoder and decoder
dimensions in VAE and deep VAE. We finally do the perfor-
mance comparison of speaker source separation and show that
VAE performs better or comparative to baseline methods.

4.1. Experimental Details

To validate the performance of the proposed model, we perform
speaker source separation experiments on the TIMIT database
[20]. To obtain the spectrogram from an audio signal, we per-
form short term Fourier transform (STFT) with 64 ms window
and 16 ms overlap. Only magnitude of spectrogram were given
as input to the algorithm. Finally, the separated time-domain
speech was obtained by multiplying phase of the mixed sig-
nal with the magnitude of the separated spectrogram [2]. We
have used a total of ten speakers (5 male and 5 female) from
the database which includes speech data for five male and five
female speakers sampled at 16 KHz. We normalize each of
the signals to zero mean and unit variance. The training mix-
tures are obtained by linear addition of each male and female
audio signals resulting in 25 mixtures at 0 dB signal to noise
ratio (SNR). We trained five VAEs for five male and five fe-
male speakers respectively. The first 20 mixtures (4 for each
male and female speaker) were used as input to VAE to train all
networks for separation, and the last 5 mixtures were used for
testing. For the input and output data for the VAEs, only mag-
nitude of spectrogram was given as input to the encoder. We
chose 17 frames as the number of spectral frames in each 2D-
segment. So, the dimension of each input and output(target) for
each VAE is 17 (time frames) * 513 (frequency bins). Finally,
the separated time-domain speech was obtained by multiplying
phase of the mixed signal with the magnitude of the separated
spectrogram.

We use perceptually motivated scores as measure of evalua-
tion and subsequently use BSS-EVAL TOOLBOX [21]. It pro-
poses three metrics namely i) Source to distortion ratio (SDR)
ii) Source to interference ratio (SIR) and iii) Source to artifact
ratio (SAR).

4.2. Parameter Selection

The parameters of VAE were selected based on source separa-
tion results as evaluated on perceptual metrics described above.

4.2.1. Number of latent dimension(K)

We fixed all the dimensions except that of latent dimension K,
which was varied in [16 32 64 128 256 512]. The middle layer
in encoder and decoder was fixed as 128, which was separately
tuned.
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Figure 4: Performance comparison for different latent space
dimension [16 32 64 128 256 512]

Fig. 4 shows the plot of source separation for a speaker
in terms of SDR, SIR and SAR for different values of K. We
see that model performs best for all the metrics when K = 64.
Therefore we fix the latent dimension as 64 in later experiments.

4.2.2. Batch size

The magnitude spectrogram has temporal dependency along the
direction of time. VAE learns the existing spatio-temporal struc-
ture from each batch of the spectrogram. There is a trade-off
between increasing and decreasing batch size. As batch-size
increases, VAE is able to extract long-term temporal features
efficiently. However, it leads to loss of time specific structures.
Also, lesser training data leads to a worse estimate of encoder
and decoder. Very small batch size, on the other hand, does not
allow VAE to learn the long-term temporal dependencies. Table
1 shows the performance of source separation as batch size is
varied. Based on the results in the table, we fix batch size to be
17 in the rest of the experiments.

Table 1: Performance of proposed framework for different batch
size in terms of SDR, SIR and SAR.

Evaluation Metrics

Batchsize | SDR  SIR  SAR
1 1.21 1.66 1.16

10 246 331 2.66

17 6.63 8.80 7.02

30 6.61 8.92 6.95

50 6.73  9.02 6.92

70 561 807 1711




4.2.3. Number of layers

The success of VAE lies in it’s ability to learn the non-linear
combination, and yet able to learn the posterior distributions
efficiently. Therefore, we hypothesize that increasing number
of layers in deep-VAE should yield better source separation.
We use rectified linear units (ReLU) as the non-linearity every-
where in our network. We vary the number of layers keeping the
latent dimension fixed to 64, found earlier. Table 2 shows the
results. We see that the performance increases as the number
of layer increases. However, deep architectures doesn’t yield a
substantial improvement given that these come at the cost of be-
ing more computationally expensive. The preference of Deep-
VAE over VAE would, therefore, be dependent on the trade-off
between accuracy and computational availability.

Table 2: Performance of deep-VAE in terms of SDR, SIR and
SAR.

Evaluation Metrics
# Encoder Layers SDR SIR SAR

[513 64] 204 3.18 2.01

[513 128 64] 6.03 8.80 7.02
[513 256 128 64] 6.13 885 7.16
[513256 192128 64] | 6.18 8.84 7.18

4.3. Confidence Score

Unlike other existing source separation methods, VAE also
yields posterior variance estimates of the separated sources. We
calculate the average posterior variance as a proxy for the con-
fidence scores of how good or bad are the separated sources. A
lower variance implies that the distribution is peaky at mean and
the confidence score is high. As discussed earlier, the signal to
noise ratio for training data is (0 dB). For test signals, we vary
the signal to noise ratio (SNR) and compute the average pos-
terior variance. Fig. 5 shows the average posterior variance as
SNR varies. It can be observed that average variance decreases
as SNR increases (except at 0 dB). The anomaly at 0 dB can
be attributed to the fact that VAE was trained on 0 dB SNR.
Fig. 6 shows the reconstructed spectrogram in the case of dif-
ferent signal to noise ratios. We observe that the reconstruction
spectrogram becomes noisy as SNR decreases.
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Figure 5: Variation of average posterior variance with SNR

4.4. Performance Analysis

We do perform analysis of VAE for source separation by com-
paring our algorithm with baseline approaches. We compare the
performance of source separation with the existing deep learn-
ing approaches [7, 8] and autoencoders using a number of eval-
uation metrics. Table 3 shows the performance comparison of
source separation of male and female individually with autoen-
coders. We see that VAE and deep-VAE performs better on
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Figure 6: (a): Target source (b): Reconstructed signal (SNR=
4.7 dB) (c): Reconstructed signal (SNR= 0 dB) (d): Recon-
structed signal (SNR= -0.69 dB)

all evaluation metrics with ~ 3 dB improvement in SDR, ~ 2
dB in SIR and ~ 0.5 dB in SAR. Fig. 3 shows performance
comparison of VAE and deep-VAE with baseline approaches.
We see that VAE and deep-VAE perform best in terms of SDR
with ~ 2 dB improvement. In terms of SIR, Binary-mask ap-
proach performs the best. However, both VAE and deep-VAE
provide good results in terms of all three measures. Note that
for source separation, SDR would be considered the more im-
portant evaluation measure in which Binary-mask method per-
forms far lower. While SDR captures overall noise, SIR and
SAR captures only interference and artifact noise respectively
[21]. This implies that VAE is able to remove noise (mea-
sured by SDR) better than all other models by capturing the
spatio-temporal characteristic of spectrogram in latent space ef-
fectively. We also observe that SAR in VAE and deep-VAE is
better than existing approaches. This shows that artifact intro-
duced by VAE and deep VAE (measured by SAR) is lesser than
other models.

Table 3: Performance of proposed method in terms of SDR, SIR
and SAR.

Evaluation Metrics
Methods Speakers | SDR  SIR  SAR
Autoencoders Male 3.68 743 6.11
Female 234 6.11 6.52
Male 6.26 891 7.27
VAE Female 593 874 6.77
Male 631 896 7.38
Deep VAE | pomale | 6.06 876  6.98

5. Conclusions

In this work, we proposed a variational autoencoder based
framework for monaural audio source separation. We showed
that VAE is able to learn the inherent latent representation of a
source by encoding the non-linear dependencies. The perfor-
mance of the proposed framework is evaluated on audio source
separation. The proposed framework yields reasonable im-
provements when compared to baseline methods. However, the
framework requires prior knowledge of the sources in the mix-
ture and a corresponding VAE has to be used (which allowed
discriminative ability). Future works will be directed towards
developing a single VAE for many/similar sources.
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