
KinectFusion on Steroids
Swarnendu Biswas

University of Texas at Austin, USA
sbiswas@ices.utexas.edu

Yan Pei
University of Texas at Austin, USA

ypei@cs.utexas.edu

Donald S. Fussell
University of Texas at Austin, USA

fussell@cs.utexas.edu

Keshav Pingali
University of Texas at Austin, USA

pingali@cs.utexas.edu

Abstract
We study opportunities for introducing controlled approxi-
mation in SLAM algorithms such as KinectFusion. We show
that our approach produces substantial savings in run time,
with acceptable tradeoff in accuracy.

Keywords approximate computing, SLAM, KinectFusion,
control

1 Introduction
Simultaneous Localization and Mapping (SLAM) algorithms
are used to control the motion of robots, drones, and UAVs.
The key steps are (i) capture details of the surrounding envi-
ronment, (ii) construct a map of the environment, and (iii)
estimate the position and orientation (i.e., localization) of
the reference object in the environment [3, 5].

Problem. SLAM programs use computationally intensive
kernels like stencil computations and filters, which involve
a lot of floating-point computations [2, 6]. Some SLAM algo-
rithms use non-linear models for motion capture, which are
also computationally expensive. These computational costs
are an impediment to the widespread adoption of SLAM.

Approximating SLAM. In this work, we explore the use of
approximation in SLAM algorithms to trade off accuracy for
running time. SLAM algorithms expose algorithmic knobs
that can be tuned for this purpose [4, 6], but policies for
controlling these knobs are not well understood.

In our study, we explore online controllers for the Kinect-
Fusion algorithm [3, 5], as implemented in the SLAMBench
infrastructure [2, 4, 6], which is a convenient platform for
studying tradeoffs between accuracy and running time for
this algorithm. KinectFusion takes depth values from aKinect
sensor and processes them using parallel algorithms to per-
form mapping and localization in room-size indoor environ-
ments [3, 5]. The quality of the output is usually estimated
using the average trajectory error (ATE) metric, which is a
measure of the average deviation of the trajectory in the
approximate computation from the actual trajectory, which
is the ground truth. SLAMBench outputs an estimate of the
running time of the algorithm [4].

The space of knob settings for this application has roughly
two million points [2], so exhaustive profiling of the knob
space is infeasible. Therefore, we ranked the knobs by their

Algorithm 1 FRAME_DIFF heuristic applied on each frame.
1: curr_knobs← current KinectFusion config
2: if curr_frame ≤ NUM_BOOTSTRAP_FRAMES then
3: continue
4: end if
5: curr_frame_diff← curr_frame - prev_frame
6: frame_hist← frame_hist ∪ curr_frame_diff
7: avg_diff← (

∑
frame_hist) / HIST_LEN

8: max_diff← max(frame_hist)
9: threshold← avg_diff + (max_diff - avg_diff) / 2
10: increasing← sorted_increasing(frame_hist)
11: sample_diff← computeSampleDiff()
12: if curr_frame_diff > threshold or increasing then
13: curr_knobs← curr_knobs - 1 ▷ Increase precision
14: else if sample_diff ≤ SAMPLE_DIFF_THRES then
15: ▷ Set knobs to the highest precision settings
16: curr_knobs← curr_knobs[0]
17: else ▷ Decrease precision
18: curr_knobs← curr_knobs + 1
19: end if

importance in influencing quality and running time, as is
done in the Pupil system [7]. The three most important knobs
are compute size ratio (csr), iterative closest point threshold
(icp), and integration rate (ir). In this work, we control only
these three knobs for approximating KinectFusion (see Sec-
tion 2). Our results, described in Section 3, show that it is
possible to get significant performance improvements with
tolerable loss in accuracy.

2 Controlling KinectFusion
Since SLAM is not useful if it cannotmap the 3D environment
or localize the camera with reasonable accuracy, we consider
two separate constraints on permissible approximations. The
first one is more strict.

1. Constraint 1: Approximation should not induce loss
of tracking of frames earlier than the default setting
of KinectFusion.

2. Constraint 2: The ATE after an approximate Kinect-
Fusion computation should be less than n cm.

2.1 Insights
Insight 1. More precise computation may be needed if the
camera is moving rapidly. Our control system estimates the
rate of movement using the difference between depth values



WAX’18, March 25, 2018, Williamsburg, VA, USA Swarnendu Biswas, Yan Pei, Donald S. Fussell, and Keshav Pingali

ktchn0 ktchn1 lab0 lab1 lab2 lab3 lr0 lr1 lr2 lr3 mr0 mr1 mr2 office0 office1 office2 pd0 pd1 geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2
DEFAULT
FRAME_DIFF_CSR_ICP_IR
FRAME_DIFF_ICP_CSR_IR

Figure 1. Normalized run time of KinectFusion with heuristics that do not lose tracking before the default algorithm.

across successive frames, ramping up the precision as this
estimate gets larger.

Insight 2. Tracking of frames is easier if the scene contains
features like objects or furniture, and is more difficult if the
scene is relatively smooth such as a wall or a door. Our control
system samples random portions of the input depth frame,
and computes the inter-sample deviation of the depth values.
A low inter-sample deviation potentially indicates a poten-
tial smooth surface, so the precision of the computation is
increased (if needed, advanced computer vision algorithms
can be used to detect smooth surfaces).

2.2 Heuristics
Based on these insights, we have devised a heuristic con-
troller that we call FRAME_DIFF. Algorithm 1 shows the
pseudo-code. A few initial frames are used for bootstrap-
ping, and no online control is applied during this time. The
controller maintains a history of the inter-frame difference
(i.e., each incoming depth frame), using a sliding window
mechanism to compute a running threshold information,
which is used to model the variations of the trajectory. A
simpler alternative is to use a constant threshold, but our
experience shows that a constant threshold does not work
well for different types of input trajectories.

By changing the order in which knobs are adjusted, we get
several variations of FRAME_DIFF. We studied two variations:
FRAME_DIFF_CSR_ICP_IR and FRAME_DIFF_ICP_CSR_IR. The
two policies differ in the order in which the knobs are varied.

3 Experimental Results
For our evaluation, we extended the C++ implementation
of KinectFusion in the open-source SLAMBench [4] infras-
tructure1 with our online control algorithm. We ran our ex-
periments on a quad-core Dell PowerEdge 1950 Xeon X5355
system, with 2.66GHz clock frequency and 32GB primary

1https://github.com/pamela-project/slambench

memory. We use four living room trajectories from the ICL-
NUIM dataset [1] as benchmarks. In addition, we used a
first generation Kinect to collect fourteen trajectories in an
indoor environment. For the trajectories we collected, we
use the trajectory computed by the most accurate setting of
KinectFusion to simulate the ground truth.
Given each constraint, we evaluate two variants of the

FRAME_DIFF heuristic on the input trajectories, and measure
the run time and the ATE. Figure 1 shows the results of ap-
proximating KinectFusion with Constraint 1 that does not
allow loss of tracking before the default setting of Kinect-
Fusion, DEFAULT. The bars in Figure 1 are the average of
three trials and are normalized to DEFAULT. For Constraint
1, FRAME_DIFF_CSR_ICP_IR reduces the average run time
by 26%, while FRAME_DIFF_ICP_CSR_IR reduces the over-
head by 13%. Approximating csr first performs better since
it has the most impact on run time. Both the configurations
meet Constraint 1 and do not induce any loss of tracking
before DEFAULT, and the ATE is less than or equal to 5 cm
for all but two trajectories, lr32 and mr1. Using the weaker
Constraint 2, the two heuristics, FRAME_DIFF_CSR_ICP_IR
and FRAME_DIFF_ICP_CSR_IR reduce the run time by 35%
and 30% respectively (figure omitted for space). As before,
controlled approximation of KinectFusion does not induce
an ATE of more than 5 cm for all but two trajectories. In
this context, we observe that the overhead of the heuristics
at every execution step is insignificant (∼1ms compared to
∼1-2s for processing one frame in KinectFusion).

4 Conclusion
In this study, we show simple heuristics that are effective
in reducing the run time of KinectFusion, with acceptable
tradeoffs on the localization accuracy. For future, we plan
to extend the control system to OpenCL/CUDA platforms,
implement PAPI-based energy estimations, and evaluate the
benefits of approximation on an ODROID XU4 platform.

2For lr3, DEFAULT itself incurs an ATE of 11.5 cm.



KinectFusion on Steroids WAX’18, March 25, 2018, Williamsburg, VA, USA

References
[1] [n. d.]. ICL-NUIM RGB-D Benchmark Dataset. http://www.doc.ic.ac.

uk/~ahanda/VaFRIC/iclnuim.html. ([n. d.]). Accessed: 2017-12-09.
[2] Bruno Bodin, Luigi Nardi, M. Zeeshan Zia, Harry Wagstaff, Govind

Sreekar Shenoy, Murali Emani, John Mawer, Christos Kotselidis, Andy
Nisbet, Mikel Lujan, Björn Franke, Paul H.J. Kelly, and Michael O’Boyle.
2016. Integrating Algorithmic Parameters into Benchmarking and
Design Space Exploration in 3D Scene Understanding. In Proceed-
ings of the 2016 International Conference on Parallel Architectures and
Compilation (PACT ’16). ACM, New York, NY, USA, 57–69. https:
//doi.org/10.1145/2967938.2967963

[3] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, and Andrew Fitzgibbon. 2011. KinectFusion:
Real-time 3D Reconstruction and Interaction Using a Moving Depth
Camera. 559–568.

[4] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet,
Paul H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle,

Graham Riley, Nigel Topham, and Steve Furber. 2015. Introducing
SLAMBench, a performance and accuracy benchmarking methodology
for SLAM. In IEEE International Conference on Robotics and Automation
(ICRA). arXiv:1410.2167.

[5] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. In IEEE ISMAR. IEEE.

[6] Oscar Palomar, Andy Nisbet, John Mawer, Graham Riley, and Mikel
Lujan. 2017. Reduced precision applicability and trade-offs for SLAM
algorithms. In Third Workshop on Approximate Computing (WACAS).

[7] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance
Under a Power Cap: A Comparison of Hardware, Software, and Hybrid
Techniques. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’16). ACM, New York, NY, USA, 545–559. https:
//doi.org/10.1145/2872362.2872375

http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://doi.org/10.1145/2967938.2967963
https://doi.org/10.1145/2967938.2967963
https://doi.org/10.1145/2872362.2872375
https://doi.org/10.1145/2872362.2872375

	Abstract
	1 Introduction
	2 Controlling KinectFusion
	2.1 Insights
	2.2 Heuristics

	3 Experimental Results
	4 Conclusion
	References

